铝硼硅酸盐玻璃介电性能与光学碱度关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃纤维作为最主要的增强材料在印刷电路基板、雷达天线罩的制作中已被广泛应用。当代电子科技正朝着微型化、高性能、高密度、多功能的方向发展,除要求相关的雷达罩体、基片、封装等介质材料具有高热导、高强度外,还要求有低的介电常数和低的介质损耗,从而加快信号传递的速度,减小串扰和降低能量损耗。因而,研究低介电玻璃纤维势在必行。
     铝硼硅酸盐玻璃系统作为低介电玻璃纤维的基础系统,一直被国内外学者广泛关注。本文选择原始E玻璃系统为基础,分别研究SiO_2、B_2O_3、Al_2O_3对玻璃介电性能和失透温度范围的影响,从而确定基础组成的配比范围。根据前期试验选择因素水平即:SiO_2:51.5%、53.5%、55.5%,Al_2O_3:12.5%、14.5%、15.5%;CaO:4.0%,7.0%,10.0%进行三因素三水平的正交试验分析。最终得到的最优配比为:SiO_2:53.5%,Al_2O_3:14.5%;CaO:4.0%,即此配比的玻璃具有较低的介电常数和较低的介电损耗,熔制情况较佳。
     本论文利用线性回归模型确定了系统介电性能与实验因素的关系,并对回归方程进行了优化。利用优化的回归方程对实验结果进行了预测。并对预测精度、预测的适用条件等进行了分析。根据线性回归原理,以玻璃的理论光学碱度(Λth)为自变量,相对介电常数(εr)为因变量,利用49组数据拟合出介电常数与光学碱度之间关系的线性回归方程方程。一元线性回归分析表明,玻璃介电常数和理论光学碱度值之间存在线性关系,相关系数为0.9245。以氧化镁替代氧化钙,利用回归方程对玻璃组分变化后介电常数的值进行预测,实验结果与预测结果相近,从而证明了方程的正确性,并且从光学碱度的角度解释了玻璃介电常数随组成变化的规律。在一定范围内可以根据氧化物的光学碱度值选择用于制备低介电常数玻璃纤维的氧化物种类.
     通过红外光谱、差热分析等测试手段对TiO2取代部分CaO后玻璃的性能进行了研究,得出结论如下:随TiO2含量的增加,玻璃相对介电常数随之降低;红外光谱表明:TiO2没有取代CaO时玻璃中CaO含量较多,玻璃中硼酸盐基团优先与碱土金属氧化物结合;而当TiO2取代部分CaO后,CaO含量不足,根据四面体回避原则,越来越多的硼酸盐与硅酸盐结构单元相联接,而不是与铝氧多面体相联接。差示扫描量热分析表明,随着TiO2取代量的增加,玻璃转变温度Tg逐渐增高。
Fiberglass is the essential reinforced material in present society. The printed circuit board(PCB) and radome are the main application field of fiberglass in the electronic. Presently electronic technology is developing to the miniaturization, the high density, the high performance and the multi-purpose. Related materials not only has high heat conductivity, high intensity but also must have the low dielectric constant (εr) and low dielectric loss (tanδ) which can reduce RC delay time and speed up the signal transmission. Thus, the study of low dielectric glass material is imperative.
     Al_2O_3-B_2O_3-SiO_2 glass system as a low dielectric glass-fiber-based system, has been obtain extensive attention from scholars at home and abroad. We choose the original E-glass system for the based system. The influence of SiO_2, B_2O_3 and Al_2O_3 contents on properties of glass was discussed in the paper. The level of selection factors based on pre-test and information is SiO_2: 51.5%, 53.5% and 55.5%; Al_2O_3: 12.5%, 14.5% and 15.5%; CaO: 4.0%, 7.0% and 10.0%. This is an orthogonal test with three factors and three levels. Through analysis, we obtained the optimal ratio which is SiO_2: 53.5%, Al_2O_3: 14.5%; CaO: 4.0%. Namely, the ratio of the glass has a low dielectric constant and low dielectric loss, and the melting situation is better.
     Regression analysis is another statistical tool, which is useful in quantitative description of complex relationships between experimental factors and results. It can also be used to predict unknown experimental results with high precision. In the current work, linear regression analysis was performed to reveal the dependence of dielectric properties on experimental factors. After being optimized, the regression equation was utilized to predict experimental results. The precision and applicability of prediction was discussed at the same time. In this paper, according to the linear regression theory, we fitted out the linear regression equation using 49 sets of date which has described the relationship between the dielectric constant and optical basicity. Unary linear regression analysis showed that the linear relationship exists between the glass theoretical optical basicity values and dielectric constant, and its correlation coefficient is 0.9245. With magnesium oxide substitute calcium oxide,the dielectric constant was predicted after the changes of glass composition using the regression equation. The experimental result was nearly same to estimated result. That proved the correctness of the equation. Then, the regular of the variation of dielectric constant with changes of composition was explicated from the perspective of optical basicity. Optical basicity value is useful to design the composition of low dielectric constant glass fiber.
     The dielectric properties were investigated using infrared spectroscopy, differential thermal analysis and other testing methods after a part of boron oxide was replaced by calcium oxide. Draw the following conclusions: the relative dielectric constant of glass decreases with increasing of titanium dioxide content. Infrared spectra indicate that borate group combined priority with the alkaline-earth metal oxides when the content of CaO in glass was more. According to the principle of avoiding tetrahedron, more and more borate group link to the silicate structural unit when the content of calcium oxide was less. Differential thermal analysis showed that the glass transition temperature (Tg) gradually increased with the increase of the amount of titanium dioxide.
引文
[1]祝大同.对未来我国覆铜板业技术发展的战略与任务的探讨[J].印制电路信息,2004(2):19-25.
    [2]于凌宇.电子元件创新发展举措[J].中国电子商情,2008(8):18-22.
    [3]徐言超,于晓杰,岳云龙,等.氧化物介电性能及研究现状[J].济南大学学报(自然科学版),2007,21(1):20-24.
    [4]危良才.我国电子玻纤生产技术发展与产品开发方向[J].纤维复合材料,2008(2):39-42.
    [5]岳云龙,于晓杰,吴海涛,等.印制电路板用铝硼硅酸盐玻璃结构与介电性能[J].电子元件与材料,2008,27(5):59-61.
    [6]宁兆元,叶超.超低介电常数材料和多孔SiOCH薄膜[J].世界科技研究与发展,2004(5):25-28.
    [7]危良才.中国电子电路产业基础材料市场发展趋势[J].玻璃纤维,2008(1):45-47.
    [8]危良才.覆铜板工业的发展与电子玻纤工业的崛起[J].印制电路信息,2005(12):21-24.
    [9]田丽.影响印制电路板的特性阻抗因素及对策[J].自动化与仪器仪表,2003(2):48-50.
    [10] SHAPIRO M J, DOBUZINSKY D, MATSUDA T, et al.CVD of fluorosilicate glass for ULSL applications[J]. Thin solid filns,1995,270:503-507.
    [11]黄娆,刘之景.新型低介电常数材料研究进展[J].纳米材料与结构,2003(9):11-14.
    [12] Haddi A, Trocellier P, Djanarthany S, et al. Coupling of microanalytical techniques to study the relationship between chemical durability and irradiation resistance of alumino-borosilicate glasses[J]. Nucl Instr Meth Phys Res B,2006,249:869-873.
    [13] Lu Chunhua, Ni Yaru, Zhang Qitu, et al. NMR Study on Structural Characteristics of Rare Earth Doped Boro-Alumino-Silicate Glasses[J]. Journal of Rare Earth,2006,24:413-417.
    [14]彭琳,赵高凌,应浩等.无碱铝硼硅系玻璃结构的红外光谱[J].硅酸盐学报,2007,35(7): 856-859.
    [15] Justin G, Prabakar W S, Karl T, et al. The effects of antimony oxide on the structure of alkaline-earth alumino borosilicate glasses[J]. J Non-cryst Solids,2004,349:276-284.
    [16]洪旭辉,华幼卿.玻璃纤维增强树脂基复合材料的介电特性[J].化工新型材料,2005,33(4): 16-19.
    [17]欧辉生.国内外电子级玻璃纤维生产现状及市场发展趋势[J].印制电路信息,2005(9):23-25.
    [18]赵智彪,许志,利定东.低介电常数材料在超大规模集成电路工艺中的应用[J].半导体技术,2004,29(2):4-6.
    [19] JIN Y K, MOOS H, et al. Origin of low dielectric constant of carbon-incorporated silicon oxide film deposited by plasma enhanced chemical vapor deposition[J]. Appl Phys,2001,90(5): 2469-2473.
    [20]危良才.国内外电子级玻璃纤维布生产及市场现状分析[J].玻璃纤维,2007(2):29-33.
    [21] Leena Gulia, Fred E Hickman, Bob Forcier. Multilayer Material Technology for Improved Signal Integrity in the Region above 5 GHz [J]. Multilayer Material Technology,2001,153:131-134.
    [22] Matsumoto M, Suzuki Y, Waketa H. New Low Dielectric Glass Fiber Woven, Materials for Next Generation Board [C]. JPAC,June,1999.
    [23] E·勒孔特, S·克勒.低介电常数的增强玻璃纤维[P].中国专利:02810477.3,2002-05-02.
    [24]川上弘伦,谷広次.用于高频电路的具有低介电常数的玻璃组合物[P].日本专利:96122504.1, 2003.12.
    [25]张志法,刘颖,岳云龙,等.一种低介电常数玻璃纤维:中国,CN101012105[P]. 2007-08-08.
    [29]洪旭辉,华幼卿.玻璃纤维增强树脂基复合材料的介电特性[J].化工新型材料,2005,33 (4):16-19.
    [26]刘天化,毕松梅. E_D低介电常数玻璃纤维混并织物的工艺设计及技术分析[J].安徽工程科技学院学报,2007,22(2):73-76.
    [27] Bleay SM, Humberstone L. Mechanical and electrical assessment of hybrid composites containing hollow glass reinforcement[J]. Composites Science and Technology,1999(59):1321~1329.
    [28]严小雄,王金龙,李小兰.改性聚酰亚胺树脂复合材料的研究[J].纤维复合材料,2003(4):6-7.
    [30]辜信实.印制电路用覆铜箔层压板[M].北京:化学工业出版社,2002.
    [31]周艳艳.界面状态对FRP产品性能的影响[J].长春学精密机械学院学报,2002;25(1):30-32.
    [32]聂嘉阳,王幼甫,陆集平.材料工艺[M].北京:宇航出社,1993:229.
    [33]干福熹.现代玻璃科学技术[M].上海:上海科学技术出版社,1986:380-38.
    [34] H舒尔兹[德].玻离本质结构和性质[M].北京:中国建筑工业出版社,1984:101-128, 141-156,323-340.
    [35] Lee P W, Mizuno S, Tran H, et al. Dielectric Constant and Stability of Fluorine Doped Plasma-Enhanced Chemical Vapor Deposited SiO_2 Thin Films[J]. J Electrochem Soc,1996, 143(60):2015.
    [36]西北轻工业学院主编.玻璃工艺学[M].北京:中国轻工业出版社,1982.
    [37] Han S M, Aydil E S. Properties of Fluorinated Silicon Oxide Films Formed Using Fluorotriethoxysilane for Interlayer Dielectrics in Multilevel Interconnections[J]. J Vac Sci Technol A,1997,15(6):2893-2904.
    [38] Han S M, Aydil E S. Reasons for Lower dielectric constant of fluorinated SiO_2 films[J]. J Appl Phys.1998,83(4):2172-2178.
    [39] J A Duffy, M D Ingram. Establishment of an optical scale for lewis basicity in inorganic oxyacids, molten salts and glasses [J]. Journal of the American Chemical Society,1971,93(24):6448-6454.
    [40] J A Duffy, M D Ingram. An interpretation of glass chemistry in terms of the optical basicity concept[J]. Journal of Non-Crystalline Solids,1976,21:373-410.
    [41]于晓杰.无碱铝硼硅酸盐玻璃的研究[D].济南大学硕士学位论文,2008.
    [42] Qi J, NingG, Sun T. Relationships between molar polarisability, molar volume and density of binary silicate, borate and phosphate glasses[J]. Phys Chem Glasses,2007,48(6):354-356.
    [43] Ei Mallawany R. The optical properties of tellurite glasses[J]. J Appl Phys,1992,72:1774-1777.
    [44] Chen G R, Baccaro S, Nikl M, et al. The red-shift of ultraviolet spectra and the relation to optical basicity of Ce-doped alkali rare-earth phosphate glasses[J]. J Am Ceram Soc,2004,87(7): 1378-1380.
    [45] Bei J, Qian G, Liang X, et al. Optical properties of Ce3+-doped oxide glasses and correlations with optical basicity [J]. Mater Res Bul,2007,42:1195-1200.
    [46] Duffy J A. A common optical basicity scale for oxide and fluoride glasses [J]. J Non-Cryst Solids,1989,109(1):35-39.
    [47] Duffy J A. Ultraviolet transparency of glass: a chemical approach in terms of band theory, polarisability and electronegativity[J]. Phycs Chem Glasses,2001,42(3):151-157.
    [48] Qi J, Xue D, Ratajczak H, et al. Electronic polarizability of the oxide ion and density of binary silicate, borate and phosphate oxide glasses[J]. Physica B,2004,349:265-269.
    [49] Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides[J]. J Appl Phys,1996,79(3):1736-1740.
    [50] Duffy J A. A review of optical basicity and its applications to oxydic systems[J]. Geochim Cosmochim Acta,1993,57:3961-3970.
    [51] Duffy J A. The electronic polarisability of oxygen in glass and the effect of composition[J]. J Non-Cryst Solids,2002,297:275-284.
    [52] VellifL L, Varamis C P, Kamitsos E, et al. Optical basicity and refractivity inmixed oxyfluoride glasses[J]. Phys. Chem. Glasses,2008,49(4):182-187.
    [53] Dimitrov V, Komatsu T, SatoR. Polarizability optical basicity and O1s binding energy of simple oxides[J]. J Ceram Soc Japan,1999,107(1):21-26.
    [54] Honma T, SatoR, BeninoY, et al. Electronic polarizability,optical basicity and XPS spectra of Sb2O3-B_2O_3glasses[J]. J Non-Cryst Solids,2000,272:1-13.
    [55] Honma T, BeninoY, Komatsu T. Correlation among electronic polarisability,optical basicity, interaction parameter and XPS spectra of Bi2O3-B_2O_3glasses[J]. Phys Chem Glasses,2002,43(1): 32-40.
    [56] J A Duffy. Proe 3rd Interntional Conference on Molten S1ags and Fluxes,Glasgow,U K,June,1988.
    [57] J A Duffy, M D Ingram and I D Sommerviller. J Chem Soe, Faraday Trans I,1978,14:1410-1419.
    [58] Ingram M D. Optical basicities and structural dynamics in glassy materials[J]. J Non-Cryst Solids, 1997,222:42-49.
    [59]齐济,王承遇,宁桂玲.光学碱度在玻璃中的应用及其与元素性质的关系[J].硅酸盐通报,2009,28(5):1018-1023.
    [60]张琳,魏锡文.含钛玻璃光学碱度的测量[J].理化检验-化学分册,2000,36(1):31-32.
    [61]赵新宇,王晓丽,张木等.稀土氧化物氧离子电极化率和光学碱度[J].沈阳工业大学学报,2008,30(6):658-661.
    [62]张木,王铁林,常勇,等.二元玻璃光学碱度和O2-电极化率的研究[J].沈阳化工学院学报, 2008,22(1):22-24.
    [63]魏锡文,李宁,张琳. Na_2O-P_2O_5玻璃的结构和光学碱度[J].化学研究与应用,1993,5(2):68-70.
    [64]杨学民.光学碱度及其在冶金中的应用[J].化工冶金,1994,15(1):87-94.
    [65]翁宇,王忠东.利用光学碱度计算含CaF_2脱硫剂脱硫能力的研究[J].炼钢,1999,15(1):25-27,46.
    [66]史培阳,姜茂发,刘承军,等. CaO对CaO-Al_2O_3-SiO_2系微晶玻璃析晶和性能的影响[J].硅酸盐学报,2004,32(11):1389-1393.
    [67] KWAN CHI KAO. Dielectric phenomena in solids with emphasis on physical concepts of electronic processes[M]. London: Elsevier Academic Press,2004:79-80.
    [68] VESSELIN DIMITROV, TAKAYUKI KOMATSU. Classification of simple oxides: a polarizability approach[J]. Journal Solid State Chemistry,2002,163(1):100-112.
    [69]王仪财,吴孟强,许峰云,等.石英玻璃的高温介电特性研究[J].四川大学学报,2005,42(2): 387-393.
    [70] Tamura Shinichi. Low-dielectric-constant glass fibers and glass fiber fabric made thereof[P],United States Patent 6,846,761.2003(3).
    [71] A Levitskii, S A Gailevich, I S Shimchik. The effect of bivelent cations on the physicochemical properties and structure of borosilicate glass[J]. Glass and Ceramics,2004,61(3):3-4.
    [72]陆佩文.无机材料科学基础[M].武昌:武汉工业大学出版社,2001.
    [73]余芳.用于低温共烧陶瓷基板的低介电常数玻璃的研究[D].华东理工大学硕士论文,2006.
    [74] Minoru Tomozawa. The mixed alkali effect and thermodynamic stste of glasses[J]. Solid Sstste Lonics,1998(105):249-255.
    [75] John A Duffy. Interrealionship between polarisability and polarizing power of cations: applicatioin to glasses containing zinc oxide[J]. Phys. Chem. Glasses: Eur J Glass Sci Technol. A,2005,47(1): 22-27.
    [76] J A Duffy, M D Ingram. Comments on the application of optical basicity to glass[J]. Journal of Non-Crystalline Solids,1992,144:76-80.
    [77]陈希孺,王桂松.近代实用回归分析[M].南宁:广西人民出版社,1989,4-27.
    [78]徐言超.低介电常数玻璃纤维组成与性能的研究[D].济南大学,2007.
    [79]王中俭,陈兴芬,胡一晨,等.电子玻璃纤维介电性能和工艺参数的研究[J].材料科学与工艺,2007,15(5):662-664.
    [80] HIROSHI YAMASHITA, KAZUKIKO INOUE, TAKESHI NAKAJIN, et al. Nuclear magnetic resonance studies of 0.139MO(or M2O)-0.673SiO_2-(0.188-x)Al_2O_3-xB_2O_3(M=Mg,Ca,Sr and Ba, M=Na and K) glasses [J]. Journal of Non-Crystalline Solids,2003,331(1-3):128-136.
    [81] APPEN A A著.玻璃化学[M].谢于深,许超译,北京:中国建筑工业出版社,1981.
    [82] H.Scholze. Glass nature, structure and properties[M]. translated by M J Larkin,Springer-Verlag, New York,1991,318.
    [83]刘克本.无机化学[M].成都:成都科技大学出版社,1987:137.
    [84] Tsuyoshi Honma, Ryuji Sato, Yasuhiko Benino et al. Electronic polarizability, optical basicity and XPS spectra of Sb2O3-B_2O_3 glasses[J]. Journal of Non-Crystalline Solids,2000,272:1-13.
    [85] Vesselin Dimitrov, Takayuki Komatsu. Classification of oxide glasses: A polarizability approach[J]. Journal of Solid State Chemistry,2005,178:831-846.
    [86] A Lebouteiller, P Courtine. Improvement of a Bulk Optical Basicity Table for Oxidic Systems[J]. Journal of Solid State Chemistry,1998,137:94-103.
    [87] Manal Abdel-Baki, Fouad El-Diasty, Fathy A. Abdel Wahab. Optical characterization of xTiO_2-(60-x)SiO_2-40Na_2O glasses: Absorption edge,Fermi level,electronic polarizability and optical basicity[J]. Optics Communications,2006,261:65-70.
    [88] C Narayana Reddy, R P. Sreekanth Chakradhar. Elastic properties and spectroscopic studies of fast ion conducting Li_2O-ZnO-B_2O_3 glass system[J]. Mater Res Bull,2007(42):1337-1347.
    [89] Barbara Stuart. Infrared Spectroscopy:Fundamentals and applications[M]. 2004 John Wiley & Sons, Ltd.
    [90]倪亚茹,陆春华,张焱,等.稀土离子在硼铝玻璃结构中的作用[J].材料科学与工程学报,2006,24(6):858-861.
    [91] RICHARD K. BROW, DAVID R. TALLANT. Structural design of sealing glasses [J]. Journal Non-Crystalline Solids,1997,222:396-406.
    [92] R K MISHRA, V SUDARSAN, C P KAUSHIK, et al. Effect of BaO addition on the structural aspects and thermophysical properties of sodium borosilicate glasses [J]. Journal Non-Crystalline Solids,2007,353(16-17):1612-1617.
    [93] I AVRAMOV, TS VASSILEV, I PENKOV. The glass transition temperature of silicate and borate glasses [J]. Journal Non-Crystalline Solids,2005,351:472-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700