MnZn软磁铁氧体材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高磁导率铁氧体材料的磁导率很高,较少的线圈匝数就可以获得较高的电感量,磁芯可以很小,因此,高磁导率铁氧体材料能够满足器件和系统小型化和轻量化的要求。此外,高磁导率软磁铁氧体磁芯还能有效地吸收电磁干扰信号,达到抗电磁干扰的目的。随着电子产品普遍应用于人们的日常生活,电磁干扰问题日趋严重今,研究高磁导率铁氧体材料是解决这个问题的主要途径之一。随着21世纪信息技术和电子产品数字化的发展,国内对高磁导率铁氧体材料的需求量猛增,它的产量已经占据软磁铁氧体产量的30%以上。
     由于其技术含量高,附加值高,市场竞争激烈,所以,高磁导率材料的研究一直是国内外的重点。本论文主要对R12K高磁导率MnZn铁氧体材料的氧化物陶瓷制备工艺进行了研究。在论文中,研究了Fe2O3、ZnO含量对样品磁性能参数(如起始磁导率μi、饱和磁感应强度Bs、剩余磁感应强度Br和矫顽力Hc)的影响,确定了R12K软磁材料的最优配方;并在此基础上研究了球磨转速、预烧温度对材料微观结构和磁性能的影响;此外还采用正交实验方法分析了添加剂CaCO3、V2O5、Bi2O3和MoO3对材料性能的综合作用。研究结果表明:
     1、随着配方中Fe2O3含量的增加,起始磁导率先上升后降低,饱和磁感应强度呈下降趋势,矫顽力总体上升。
     2、随着配方中ZnO摩尔含量的增加,起始磁导率和剩余磁感应强度均先上升后降低,饱和磁感应强度和矫顽力呈下降趋势。
     3、通过正交实验确定最佳配方为Fe2O3: ZnO: MnO =52:22:26 (mol%)
     4、球磨转速过高或太低都会使粉料颗粒难以被有效碾磨,混合均匀,从而影响高磁导率MnZn铁氧体材料的磁性能,适宜二次球磨转速为r=210r/min。
     5、添加适量V2O5(0.06wt%)可以有效改善材料的综合性能:由正交实验法确定的添加剂最佳比为CaCO3 : Bi2O3 : MoO3 : V2O5(wt%)=0.02 : 0.05 : 0.06 : 0.02。
     6、随着预烧温度的升高,起始磁导率先上升后降低,饱和磁感应强度下降,在840℃左右预烧,材料的起始磁导率和饱和磁感应强度较高。
High permeability materials can meet the requirements of miniaturization and lightweight of devices and systems because based on them less coils can get higher inductance due to their high permeability and smaller core. At the same time, the ferrite cores with high permeability can effectively absorb the electromagnetic interference signals, which can achieve the goal of anti-electromagnetic interference. With the electron products generally applied to the daily life, the problems of electromagnetic interference are becoming more and more serious, so investigation of high permeability materials is one of the good means to resolve this problem. Due to the development of information technology and electron product, the requirement of the high permeability materials increased sharply and their output reached 30 percent of the overall yield of ferrite. Thus study on the high permeability materials is the focus of the research in the world because of its high technical skills and addedvalue.
     In this paper, the conventional ceramic process of the R12K MnZn ferrite were studied. In the experiment, the effect of Fe2O3 and ZnO on the magnetic properties of ferrites, such as initial permeability (μi), saturation magnetic induction (Bs) was considered and the best formula of R12K MnZn ferrite was confirmed. Based on this formula, the influence of calcining temperature and rate of ball milling on initial permeability (μi), saturation magnetic induction (Bs), residual magnetic induction (Br) and coercive force (Hc) was discussed in detail. Furthermore, We analyzed the associated influence of dopants (CaCO3 ,V2O5 ,Bi2O3 and MoO3) on the magnetic properties of ferrites by adopting orthogonal design scheme. The main results were shown as follows:
     1、With the Fe2O3 content of the prescription increasing,μi showed the changing tendency of increasing at first and then decreasing, but Bs was always decreased and Hc was always increased.
     2、With the ZnO content of the prescription increasing,μi and Br were both increased at first and then decreased, but Bs and Hc were both decreased.
     3、The optimal mol ratio of Fe2O3, ZnO and MnO was 52 : 22 : 26.
     4、The rotational speed of a ball mill being too fast or too slow both lead to difficult grinding and mixing of powder particles, which could influence the magnetic properties of MnZn ferrite. The experiment results showed that the suitable secondary rotational speed was 210 r/min.
     5、Appropriate additive amount of V2O5 (0.06 wt%) can improve the comprehensive performance of materials. By the orthogonal design scheme, the optimal proportions of CaCO3 : Bi2O3 : MoO3 : V2O5 (wt%) is 0.02 : 0.05 : 0.06 : 0.02.
     6、The increasing of calcining temperature had an important effect onμi and Bs. Calcined under 840℃,μi and Bs of materials were both high.
引文
[1]陈国华. 21世纪软磁铁氧体材料和元件发展趋势[J].磁性材料及器件,2001,32(4):34~36.
    [2]陆明岳.MnZn铁氧体最新进展及其发展趋势[J].磁性材料及器件,2001,32(5):27.
    [3]杨青慧,刘颖力,张怀武.高磁导率软磁材料的研究现状与关键工艺[J].磁性材料及器件,2003,34(2):33~36.
    [4] Ott G, Wrba J, Lucke R. Recent developments of Mn-Zn ferrites for high permeability applications[J]. J Magn Magn Mater,2003,254-255:535.
    [5] Uzma Ghazanfar, Siddiqi S A, Abbas G. Structural analysis of the Mn-Zn ferrites using XRD technique[J].Mater Sci Eng B,2005,118:84.
    [6] Botta P M, Bercoff P G, et al. Two alternative synthesis routes for MnZn ferrites using mechanochemical treatments[J].Ceram Int,2006,32:857.
    [7] Kasahara T, Park H S, Shindo D, et al. In situ observations of domain wall motion in Mn-Zn and Ni-Zn ferrites by Lorentz microscopy and electron holography[J].J Magn Magn Mater,2006,305:165.
    [8]王长振,谭维,周甘宇.锰锌铁氧体粉制备技术综述[J].中国锰业,2002,20(3):37.
    [9]李东风,贾振斌等.尖晶石型软磁铁氧体纳米材料的制备研究进展[J].电子元件与材料,2003,22(6):37.
    [10] Yan Q,Gambino R J, Sampath S, et al. Effects of zinc loss on the magnetic properties of plasma-sprayed MnZn ferrites[J].Acta Mater,2004,52,:3347.
    [11] Stefanescu M, Caizer C, Stoia M, et al. Ultrafine perfectly spherical Ni-Zn ferrite nanoparticles with ultranarrow distribution isolated in a silica matrix prepared by a novel synthesis method in the liquid phase[J].Acta Mater,2006,54:1249.
    [12]黄伟,何华辉,冯则坤等.高磁导、高直流叠加MnZn软磁铁氧体材料研究[J].磁性材料及器件,2005,36(6):27.
    [13]谭维,王长振,周甘宇,章四琪.高磁导率锰锌铁氧体材料研究现状[J].中国锰业,2002,20(1):33~36.
    [14]黄永杰,李世堃,兰中文.磁性材料[M].北京:电子工业出版社,1993:1~54.
    [15]严密,彭晓领.磁学基础与磁性材料[M].浙江:浙江大学出版社,2006:1~30.
    [16]廖绍彬.高磁导率软磁铁氧体材料的应用[J].电子元器件应用,2000,2(7):19~20.
    [17]沈庆峰,杨显万,刘春侠.软磁铁氧体材料[J].昆明理工大学学报(理工版),2003,28(2):17~22.
    [18]何水校.软磁铁氧体材料的应用与市场[J].磁性材料及器件,1998,29(1):44~47.
    [19]王耕福.不断发展的软磁铁氧体技术[J].世界产品与技术,2000,(8):24~27.
    [20] Shenoy S D,Joy P A, Anantharaman M R. Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite[J].J Magn Magn Mater,2004,269:217~220.
    [21] Lee Seung-Jun, Jeong Jong-Ryul, Shin Sung-Chul, et al. Synthesis and characterization of superparamagnetic maghemite nanopaticles prepared by coprecipitation technique[J].J Magn Magn Mater,2004,282:147~152.
    [22]任尚坤,岳卫东.MnZn软磁铁氧体材料[J].周口师范学院学报,2005,22(5):44~48.
    [23]段希萌,陈文革.锰锌软磁铁氧体的制备、应用及研究进展[J].电工材料,2008,(4):42~46.
    [24]梁丽萍,刘玉存,王建华.软磁铁氧体的发展与应用[J].山西化工,2007,27(2):31~33.
    [25]朱中平,薛剑锋.中外磁性材料实用手册[M].北京:中国物资出版社,2004.
    [26]杨新科.锰锌软磁铁氧体粉制备研究进展[J].宝鸡文理学院学报(自然科学版),2001,21(2):125~127.
    [27]徐敏,邬文波.浅谈现代功率铁氧体材料的现状及发展方向[J].磁性材料及器件,1999,30(5):42~50.
    [28]冯则坤,李海华,何华辉.低损耗Mn-Zn功率铁氧体研究进展[J].磁性材料及器件,2002,33(2):33~35.
    [29]王宝罗,方卫民.纳米锰锌软磁铁氧体的制备及其产品表征[J].化学世界,2007(5):262~265.
    [30] Znidarsic A, Drofenik M. High Resistivity Grain Boundaries in CaO-doped MnZn Ferrites for HighFrequency power Application[J].Amer. Ceram. Soc, 1999, 82(2):359~365.
    [31]于凌宇.中国与世界磁性材料产业现状与展望[J].新材料产业,2002,(6):26~28.
    [32]吴全兴.磁性材料的现状与展望[J].稀有金属快报,2002,(1):3~5.
    [33]杨遇春.磁性材料市场展望[J].现代材料动态,2000,(4):1~2.
    [34]陈国华.中国磁性材料产品市场现状与预测[J].稀土信息,2000, (11):3~5.
    [35]曾桓兴.磁性材料产业现状与展望[J].现代化工,1994,14 (1): 9~12.
    [36] C. R. Bowen and B. Derrby. Self-propagating High Temperature Stythesis of Ceramic Materials[J]. British Ceramic Transaction, 1997, 96(1):25~26.
    [37] A. G.Merzhanov. Self-propagating High Temperature Synthesis:Twenty Years of Search and Finding[J]. 1~53, Combustion and Plasma Synthesis of High-Temperature Materials. Z. Munir and J. B. Holt. VCH. New York, 1990.
    [38]赵光.中国软磁铁氧体用氧化铁[J].磁性材料及器件,2002,33 (3 ):29~33.
    [39] E.Wgorter, Saturation magnetization and evystal chemistry of Ferrimagnetic oxides[J].Philips Res. Repts, 1964.9,295~302,321~365,403~443.
    [40]姚礼华.氧化物法制Mn-Zn铁氧体颗粒料[J].磁性材料及器件,1999,30 (2 ):39~43.
    [41]陆明岳.世界MnZn铁氧体发展近况[J].专家论坛,2005.
    [42]陆明岳.高磁导率MnZn铁氧体TL13材料的研制[J].磁性材料及器件,1999,30(2):34~38.
    [43] G.Blasse, Crystal chemistry and some magnetic properties of mixed metal oxides with spinet structure[J]. Philips Res. Repts,Suppl. 1994,(3),1~139.
    [44] T.Smit, Ion distribution in spinets. Solid State Comm. 1968,6,745~746.
    [45]余忠,兰中文,王京梅.添加CaO、V2O5对高频MnZn铁氧体性能的影响[J].材料研究学报,2004,18(2):176~180.
    [46]冯则坤,李海华,何华辉.掺杂对高磁导率MnZn铁氧体磁特性的影响[J].华中科技大学学报,2004,32(1):79~81.
    [47]王朝明,兰中文,余忠.预烧温度对高导磁率MnZn铁氧体微结构和磁性能的影响[J].功能材料,2005,37(4):552~554.
    [48]苏桦,张怀武,唐晓莉,向兴元.预烧温度对高磁导率NiCuZn铁氧体性能的影响[J].磁性材料及器件,2004,35(3):13~15.
    [49]何新华,熊茂仁,李剑华,李仁翠.预烧温度对NiCuZn铁氧体陶瓷材料烧结和显微结构的影响[J].中国陶瓷.2000,36(3):1~4.
    [50]陆厚根.粉体工程导论[M].上海:同济大学出版社,1993:214~218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700