基于多层压电陶瓷的低压驱动超声电机
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天、微电子和光电子、武器装备等高新技术领域对电机性能的要求日益增加。传统的电磁电机已不能满足这些特殊场合的需求。在这一背景下,世界各国都在研究新一代的电机。其中压电超声电机具有效率高、结构简单、微型化等优点,近二十年来得到了快速的发展并有许多成功应用。然而普通超声电机驱动电压一般较高,且驱动电路复杂,需配合变压器使用,对器件整体的轻型化和微型化极为不利,制约了超声电机的发展。因此,降低驱动电压,简化激励方式成为了超声电机领域内的研究热点。
     本论文完成了基于多层压电陶瓷的超声电机的设计仿真、精密制备及性能测试。在本课题组对行波电机研究的基础上改进研制出新的驻波电机。电机的设计采用圆盘型结构,通过定子齿表面与转子的摩擦进行驱动并可通过弹簧调节二者间的预压力。采用四块多层压电陶瓷作为激励元件,其纵向位移被放大为定子齿的横向位移。以定子齿的横向位移放大率为评测标准,分别选择了B03和B02为电机的最佳工作模态。
     多层压电陶瓷的制备使用干法流延多层叠印技术,所用低烧瓷料为Pb(Mg_(1/3)Nb_(2/3))O_3-Pb(Ni_(1/3)Nb_(2/3))O_3-Pb(ZrTi)O_3。电机金属部件的加工使用数控精雕技术,用CAD作图和输出刀具路径,通过设计装卡进行定位以完成工件的两面加工。所用材料为标准59号黄铜,卡具材料为有机玻璃。制备多批电机分别测试优化,最终确定的电机中定子齿高1mm,圆盘厚0.3mm,总体尺寸为φ9mm×16mm。
     使用多普勒激光测振仪进行扫频实验,得到定子纵向振动速度的频谱,进而得到电机各振动模态的谐振频率。实验表明精密加工后的样机模态纯净,与理论设计相符。研究预压力、驱动电压等因素对电机输出力矩的影响,实验表明电机空载时在5V_(p-p)即可起动,最佳预应力为1.8N,起最佳工作电压为15V_(p-p),输出力矩为1.2mNm。专利查新和项目专家组验收表明,本研究的结构原理和5Vp-p低电压驱动性能达到了国内领先水平。
The development of aerospace, microelectronics, optoelectronics, and high-tech weapons requires high performance of motors. Traditional electromagnetic motors can not meet the needs. These areas call for a new generation of motors. Piezoelectric ultrasonic motor with high efficiency, simple structure, and miniaturization has been rapidly developed in the past two decades and has many successful applications. However, ordinary ultrasonic motor has high driving voltage, so that the system must be complex, even needs transformers which limits the development of ultrasonic motors. Therefore, lower driving voltage, simple structure has been focused.
     This thesis has designed, fabricated and tested a new ultrasonic motor with low driving voltage based on multilayer piezoelectric ceramic. Use a disk-type structure through the stator tooth and rotor surface to drive. The spring provides preload between them. Four multi-layer piezoelectric ceramics serve as the actuator. The vibration is tested using the Doppler Laser Vibration Testing method. B(0,3) and B(0,2) were chosen the best work for the motor mode.
     Piezoelectric ceramic is prepared using the dry trapping technology, and Pb(Mg_(1/3)Nb_(2/3))O_3-Pb(Ni_(1/3)Nb_(2/3))O_3-Pb(ZrTi)O_3 low co-firing ceramic powder. The structural parts use CNC techniques with CAD drawing and output tools. Use the standard 59Cu for metal parts. Preparation of test batches of motors were optimized, the final stator motor made of high 1mm, disc thickness 0.3mm, and the overall size ofφ9mm×16mm. Using laser Doppler Vibrometer tests the mode of stator surface vibration spectrum, and then get the motor vibration mode and its resonant frequency. Experiments show that the test result matches the theoretical design well. Pre-pressure, voltage and other factors have effect on the output torque. Experiments show that the motor with no load can drive under 5V_(p-p), and can be obtain the best output torque at 1.8N and 15V_(p-p). The best output torque is 1.2mNm. Experts group and patented searching shows that the structure with low driving voltage of 5V_(p-p) performs to a leading level.
引文
[1] Choi M.S. Application of Ag–ceramic composite electrodes to low firing piezoelectric multilayer ceramic actuators. Electroceram[J]. 2008..
    [2] Caballero A.C. Ceramic–electrode interaction in PZT and PNN–PZT multilayer piezoelectric ceramics with AG/PD 70/30 inner electrode. Journal of Material Science[J].1997.
    [3]赵淳生,超声电机技术与应用.北京:科学出版社,2007:1
    [4]陈在礼,褚祥诚,陈维山等.超声波马达的发展国内最新动态.应用声学,1999,18(2):1-5
    [5]陈海,孟中岩.超声马达的应用与发展动向.电子元器件,2000,2(11):17-20
    [6] Kanda T. A micro ultrasonic motor using a micro-machined cylindrical bulk PZT transducer. Sensors and Actuators[J].2006.
    [7] Williams W, Brown W.J. Piezoelectric motor. US: 2439499, 1942
    [8] Britten F. J. Britten’s Watch and Clock Maker’s Handbook: Dictionary and Guide. New York: Arco Publishing Co. , 1978: 109
    [9] Lavinenko V. V, Nekrasov M. Piezoelectric motor. Soviet Patent:217509, 1965
    [10] Barth H. V . Ultrasonic Drive motor. IBM Technical Disclosure Bulletin, 1973, 16(7): 2263
    [11]邓习树,吴运新.国内外直线超声电机的研究现状及关键技术.微电机,2005,38(5):78-81.
    [12] Ohnishi K. A Novel Ultrasonic Linear Actuator. Proc. IEEE Ultrasonic symposium. 1991:206-212.
    [13]董蜀湘,李龙土,桂治轮等.高分辨特性压电行波旋转马达研究.声学学报,1997,22(3):218-222.
    [14]张凯,周铁英,王欢等.1mm压电柱式超声微电机的研制.声学学报,2004,29(3):258-261.
    [15]马相林,黄卫清,赵淳生.一种新型杆式行波型超声电机的研究.机械科学与技术,2004,23(9):1030-1036.
    [16]刘建芳,杨志刚,赵宏伟,程光明.新型压电精密步进旋转驱动器.吉林大学学报,2006,36(5):673-677.
    [17]褚祥诚,季叶,李龙土.一种低压驱动的压电马达.中国专利:200710177966.2,2007-11-23.
    [18]王剑,郭吉丰.径向-扭转振动复合型超声波电机的理论与实验研究.振动与冲击,2008,27(9):162-163.
    [19]郑大铉.小型透镜组件.中国专利:CN1664641A, 2005-09-07.
    [20]毕晓鹏.压电扬声器与压电螺纹传动技术.北京:清华大学,2008:14
    [21]张福学.现代压电学(下册).北京:科学出版社,2002
    [22]刘延柱,陈文良,陈立群.振动力学.北京:高等教育出版社,1998
    [23]王荣津.水声材料手册.北京:科学出版社,1983
    [24]王春雷,李吉超,赵明磊.压电铁物理.北京:科学出版社,2009
    [25] Chu X C, Ma L, Yuan S M, et al. Two-dimensional Optical Scanning of a Piezoelectric Cantilever Actuator. Journal of Electroceramics,2008,21(Sp. Iss. SI): 774~777
    [26] Chen Y, Liu Q L, Zhou T Y. A Traveling Wave Ultrasonic Motor of High Torque. Ultrasonics,2006,44(Suppl.1): e581~e584
    [27] Yan R B, Chu X C, Li L T, et al. Vibration Modes for Annular Stator of Travelling Wave Ultrasonic Motor. Rare Metal Materials and Engineering,2005,34(6): 1119~1121
    [28] Chu X C, Xing Z P, Li L T, et al. High Resolution Miniaturized Stepper Ultrasonic Motor Using Differential Composite Motion. Ultrasonics,2004,41(9): 737~741
    [29]干福熹.信息材料.天津:天津大学出版社, 2000
    [30] Bai M R, Huang T. Development of panel loudspeaker system: Design, evaluation and enhancement. Journal of the Acoustical Society of Ameica,2001,109(6): 2751~2761
    [31] Fahy F. Comment on "Development of panel loudspeaker system: Design, evaluation and enhancement", Journal of the Acoustical Society of America,2003,113(1): 43~44
    [32] Audio Products Division of National Semiconductor Analog Products Group, Santa Clara, California. Piezoelectric Transducers-Ceramic Speakers, Audio Education Series eBooks Vol.7.
    [33] Sang Choon Ko, Yong Chul Kim, Seung Seob Lee, et al. Micromachined piezoelectric membrane acoustic device. Sensors and Actuators A-Physical,2003,103(1-2):130~134
    [34] Wang Q. A Note On Possible Flutter of Piezoelectric Layers. International Journal of Structural Stability and Dynamics,2005,5(1):125~133
    [35]株式会社村田制作所.压电元件及其制造方法.日本,发明专利申请公开说明书,98103979.0,1998.7.22
    [36]赵淳生,朱华.超声电机技术的发展和应用.机械制造与自动化, 2008,37(3): 1~9
    [37]褚祥诚,李龙土.压电陶瓷超声波马达.物理, 2002,31: 229~230
    [38] Morita T. Miniature piezoelectric motors. Sensors and Actuators A,2003,103:291~298
    [39] Fujita H. Microactuators and Micromachines. Proceedings of the IEEE, 86:1724
    [40]阎立,褚祥诚,李龙土.压电微马达研究进展.压电与声光, 2002, 24:116~119
    [41]陈明,陈新业,姜开利,等.超声波马达的应用.应用声学, 2000,19(4):38~43
    [42] Henderson D A. Simple Ceramic Motor, Inspiring Smaller Products, Actuator 2006, 10th International Conference on New Actuators, 14-16 June 2006, Bremen, Germany
    [43] Randeraat J, Setterington R E. Piezoelectric Ceramics. UK: Mullard Limited, 1974
    [44]栾桂冬,张金铎,王仁乾.压电换能器与换能器阵(上).北京:北京大学出版社, 2005
    [45] Mu T. Forced Vibration of the Two-Layer Piezoceramic and Metal Composite Thin Circular Plate with Different Diameter for Each Layer. Chinese Journal of Acoustics, 1983, 2(3): 229~243
    [46]穆廷荣.弯曲振动压电陶瓷薄圆板的等效电路和剪应力.声学学报,1983, 8(1): 45~53
    [47] Mu T. Measurement Method of Material Constants of Thin Piezoelectric Cylindrical Tubes. Chinese Journal of Acoustics, 1984,3(4): 362~368
    [48]杜功焕,朱哲民,龚秀芬.声学基础(第二版).南京:南京大学出版社, 2001
    [49]张福学.现代压电学(下册).北京:科学出版社, 2002
    [50] Ueha S, Tomikawa Y, Korosawa M, et al. Ultrasonic Motors: Theory and Application. Oxford: Clarendon Press, 1993
    [51] Chu X.C, Ma L, Li L.T. A disk–pivot structure micro piezoelectric actuator using vibration mode B11. Ultrasonics, 2006, 44(Suppl.1): e561~e564
    [52]赵淳生.超声电机技术与应用.北京:科学出版社, 2007
    [53]胡敏强,金龙,顾菊平.超声波电机原理与设计.北京:科学出版社, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700