基于EBG结构的新型PIFA天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信和个人无线通信技术的快速发展,使得通信系统对应用于其终端的天线提出了新的要求:一方面要求天线的小型化、宽频带和多频化;另一方面要求天线辐射对人体的影响降到最低。平面倒F天线(Planar Inverted-F Antenna, PIFA)因其具有体积小、重量轻、剖面低、可内置、易于加工、且易于和载体共形等突出的结构特点以及能实现宽频带和多频段的特性而得到了广泛的应用。
     新型电磁材料的研究及其应用越来越受到人们的关注。微波光子晶体,也称为电磁带隙结构(Electromagnetic Band-Gap, EBG)或者电磁晶体,是一种具有频率禁带的新型周期结构,可以有效控制电磁波的传播,其特有的性质使得电磁晶体具有广泛的应用前景。本文以EBG结构和PIFA天线基本理论为基础,采用电磁仿真软件结合实验测试,对EBG结构的小型化进行了研究,并将其应用到PIFA天线中,同时设计了一个宽频带和一个多频段PIFA天线。
     本论文的主要工作及创新之处如下:
     1.基于EBG结构的工作原理和频率特性,采用交指型结构增大EBG等效电容的方法,设计了一种小型化的EBG结构。直接传输法仿真得到该交指型EBG结构的带隙范围为2.2-2.SGHz。相对于常规的矩形EBG结构,结构周期长度减小为二分之一,面积减小为四分之一,小型化因子为50%。
     2.从PIFA天线的结构研究入手,介绍了PIFA天线的主要性能参数和基本分析方法。对微带天线的小型化、宽频带和多频带技术进行了分析与总结。在此基础上,研究并设计了一种双L型缝隙加载三频PIFA天线,该天线工作在GSM(0.89~0.96GHz)、DCS(1.71~1.88GHz)和ISM(2.4~2.484GHz)三个频段。此外,利用地板开槽技术,设计了一种新型宽频PIFA天线。该天线工作频率范围为2.3~6.3GHz(S11≤-10dB),相对带宽达到93%。研究并总结了这两个天线结构参数对天线性能的影响,并制作了天线进行测试,测试结果与仿真结果吻合较好。
     3.研究EBG加载前后,手机PIFA天线的人脑比吸收率SAR(Specific Absorption Rate)值。将设计好的小型化交指EBG结构应用于手机PIFA天线。研究表明,加载EBG结构的新型PIFA天线,人脑比吸收率有所降低,同时提高了天线的增益和效率。实际制作了天线并进行了SAR测试,测试结果与仿真结果吻合良好。
With the rapid development of mobile and personal wireless communication technologies, the new requirements for antennas used to communication terminals have been proposed:On one side the antennas are required to be miniaturized, broadband, and multiband; On the other side we should minimize the influence of antenna radiation on human body. Planar inverted-F antenna (PIFA) coming out during these years has been rapidly and widely adopted because it has the structural advantages of small size, light weight, low profile, internally equipped, easily fabricated and mounted on the carrier. A PIFA has the properties of broadband and mufti-band.
     The research and application of new electromagnetic material are more and more concerned. Microwave photonic crystals, also referred an electromagnetic bandgap (EBG) materials, are periodic structures characterized by the existence of frequency band gaps, which has a great of applications in the future because of its new properties. Based on the basic principles of the PIFA antenna and EBG structures, the miniaturization of EBG structure and the application of EBG structures to PIFA are studied by using electromagnetic simulations and experiments. Furthermore, a broadband PIFA antenna and a mufti-band PIFA antenna are designed.
     The main work and achievements of this thesis can be summarized as follows:
     1. The operating principle and frequency characteristics of the EBG structures are discussed. By means of interdigitating structure to increase the equivalent capacitance, a new kind of miniaturized EBG structure is designed. Utilizing direct transmission method, we get the surface wave bandgap of the interdigitating EBG structures is 2.2-2.8GHz. Compared to the conventional rectangular EBG structures, the proposed EBG structure reduces the length of half and the area of one quarter. The miniaturization factor is about 50%.
     2. A detailed description on the configurations of PIFA antennas and the principal characteristics and analysis methods are introduced. Meanwhile, the miniaturized, broadband and mufti-band technologies about the microstrip antenna are analyzed and summarized. Based on this, a new triple-band PIFA with dual-L-shaped slot-loaded is proposed and studied, which can operate at GSM (0.89~0.96 GHz)、DCS (1.71~1.88 GHz) and ISM (2.4~2.484GHz). In addition, by means of cutting slots on the ground plane suitably, a new kind of broadband PIFA was designed. The antenna operated at frequency range from 2.3GHz to 6.3GHz (S11≤-lOdB), with relative bandwidth up to 93%. The relationship between antenna parameters and performance of antennas are analyzed and discussed. The two new PIFA antennas have been fabricated to conduct experiments. The measurement results are in good agreement with simulation results.
     3. The interdigitating EBG structure is applied to the PIFA in mobile handset. The performance and the specific absorption rate (SAR) of new PIFA with EBG structures were analyze and compared with a conventional PIFA in the same environment. The results show that the PIFA integrated with EBG structures can reduce the SAR and improve the antenna gain and efficiency. Finally, the new PIFA with EBG structures was fabricated and the SAR was measured by using DASY5 system. The measured results agree well with the simulated results.
引文
[1]T. Kamgaing and O. Ramahi, Electromagnetic Band-gap Structures for Multiband Mitigation of Resonant Modes in Parallel-Plate Waveguides. IEEE Antennas and Propagation Society Symposiums.2004,4. p.3577-3580.
    [2]K. Rambabu, A. Tennent and J. Bormemann, A Simplified Model for Planar Electromagnetic Band-gap Structures for Med by Metal Patches and Via Holes. Progress in Electromagnetic Research Symposium 2003. p.26.
    [3]G. K. Palikaras, A. P. Feresidis, and J. C. Vardaxoglou, Cylindrical Electromagnetic Band Gap Structures for Base Station Antennas. IEEE International symposium on Antennas and Propagation. Monterey CA, USA,2004.
    [4]I.T鲍尔P·布哈蒂亚著,梁联悼,寇廷耀译,《微带天线》北京电子工业出版社,1984.
    [5]Paseal Ciais, Robert Staraj and Georges, Design of an Internal Quad-band Antenna for Mobile Phones. IEEE Microwave and wireless components letters. 2004,14(4). p.148-150.
    [6]Xu Jing, Zhengwei Du, Ke Gong, Compact Planar Monopole Antenna for Multi-band Mobile Phones. Asia-Pacific Conference Proceedings.2005,4.
    [7]P.Ciais, R.Staraj, G.Kossiavas, C.Luxey, Compact Internal Multiband Antenna for Mobile Phone and WLAN Standards. Electronics Letters.2004,4(15). p. 920-921.
    [8]Yong-Xin Guo, M.Y.W.China, Z.N.Chen, Miniature Built-in Quad-band Antennas for Mobile Handsets. IEEE Antennas and Wireless Propagation Letters. 2003,2. p.30-32.
    [9]樊明延,张雪霞,冯正和,移动通信中小天线技术新进展.通信市场.2003,6.第80-82页.
    [10]周晓明,移动电话与人体系统建模及其数值模拟研究.华南理工大学博士学位论文.2004.
    [11]J. Wang and O. Fujiwara, Reduction of Electromagnetic Absorption in the Human Head for Portable Telephone by a Ferrite Sheet Attachment. IEICE Trans Communications.1997,80(12). p.1810-1815.
    [12]J. N. Hwang and F. C. Chen, Reduction of the Peak SAR in the Human Head with Metamaterials. IEEE Trans on Antennas and Propagation.2006.54(12). p. 3763-3770.
    [13]S. Kwak, D. U. Sim, J. H. Kwon and H. D. Choi, Comparison of the SAR in the Human Head using the EBG Structures Applied to a Mobile Handset. Proceedings of the 37th European Microwave Conference.2007. p.937-940.
    [14]Khaleghi A, Azoulay A, Bolomey J. C., Interaction of Dual Band Helical and PIFA Handset Antennas with Human Head and Hand. Progress In Electromagnetics Research.2007. p.225-242.
    [15]E. Yablonovitch, Inhibited Spontaneous Emission in Solid-state Physics and Electronics, Physical Review Letters,1987,58(20). p.059-2062.
    [16]S. John, Strong Localization of Photons in Certain Disordered Dielectric Super-lattices. Physical Review Letters,1987,58(20). p.2486-2489.
    [17]D. Sieverpiper, L. Zhang, R. F. J.Broas, N. G., Alexopolus and E. Yablonovitch. High-impedance Electromagnetic Surfaces with a Forbidden Frequency Band. IEEE Trans. Microwave Theory Tech,1999,47. p.2059-2074.
    [18]F. Yang, K. Ma, Y. Qian, and T. Itoh, A Uniplanar Compact Photonic-bandgap (UC-PBG) Structure and Its Application for Microwave Circuit. IEEE Trans. Microwave Theory Tech,1999,47(8). p.1509-1514.
    [19]L. Yang, et al., A novel compact Electromagnetic-Bandgap(EBG) Structure and Its Application for Microwave Circuits. IEEE Trans. Microwave Theory Tech, 2005,53(1). p.183-189.
    [20]Y. Yao, X. Wang, and Z. Feng, A Novel Dual-band Compact Electromagnetic-Bandgap (EBG) Structure and Its Application in Multi-antennas. IEEE, Antennas and Propagation Society International Symposium,2006. p.1943-1946.
    [21]O. Folayan and R. J. Langley, Wideband Reduced Size Electromagnetic Bandgap Structure. Electronics Letters,2005,41(20). p.1099-1100.
    [22]C. R. Simovski and A. A. Sochava, High-impedance Surfaces Based on Self Resonant Grids Analytical Modeling and Numerical Simulations. Progress In Electromagnetics Research,2003,43. p.239-256.
    [23]C. R. Simovski, P. de Maagt, and I. V. Melchakova, High-impedance Surface Having Stable Resonance with Respect to Polarization and Incidence angle. IEEE Trans. Antenna and Propag,2005,53(3). p.908-914.
    [24]D. J. Kern, et al., The Design Synthesis of Multi-band Artificial Magnetic Conductor Using High Impedance Frequency Selective Surface. IEEE Trans. Antenna and Propag,2005,53(1). p.8-17.
    [25]B. Q. Lin, Q. R. Zheng, and N. C. Yuan, A Novel Planar PBG Structure for Size Reduction. IEEE Antenna and Wireless Propag. Lett,200616(5). p.269-271.
    [26]I. Gallina, et al., Aperiodic-tiling-based Mushroom-type High-impedance surface. IEEE Antenna and Wireless Propag. Lett,2008,7. p.54-57.
    [27]Fan Yang, et al., Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications. IEEE Trans. Antennas and Propagation, 2003,51(10). p.2691-2703.
    [28]Ramesh Abhari, et al., Metello-Dielectric Electromagnetic Band-gap Structures or Suppression and Isolation of Parallel-Plate Noise in High-Speed Circuits. IEEE Trans. Microwave Theory and Tech,2003,51(6). p.1629-1639.
    [29]Rader Engheta, Thin Absorbing Screens Using Metamaterial Surfaces. IEEE Antennas and Propagation Society International Symposium,2002,2. p.392-395.
    [30]Hsiuan-Ju Hsu,et al., A Duroid-Based Planar EBG Cavity Resonator Filter with Improved Quality Factor. IEEE Antennas and Wireless Propagation Letters,2002, 1(2). p.67-70.
    [31]William J Chappell, et al., High Isolation Planar Filters Using EBG Substrates. IEEE Microwave and Wireless Components,2001,11(6). p.246-248.
    [32]Young-Joon Ko, et al., Fully Integrated Unequal Wilkinson Power Divider with EBG CPW IEEE Microwave and Wireless Components,2003,13(7). p.276-278.
    [33]Mekki Belaid, et al., Spatial Power Amplifier Using a Passive Active TEM Waveguide Concept. IEEE Trans. Microwave Theory and Tech,2003,51(3). p. 684-689.
    [34]Thevenot M, Reineix A and Jecko B, A Dielectric Photonic Parabolic Reflector. Microwave and Optical Tech. Lett,1999,21(6). p.411-414.
    [35]Fei-Ran Yang, Kuang-Ping Ma, Yongxi Qian, et al., A Novel TEM Waveguide Using Uniplanar Compact Photonic Band-gap (UC-PBG) Structure. IEEE Trans. Microwave Theory and Tech,1999,47(11). p.2092-2098.
    [36]T. L. Wu, Y. Y. Lin, C. C. Wang, and S. T. Chen, Electromagnetic Bandgap Power/ground Planes for Wideband Suppression of Ground Bounce Noise and Radiated Emission in High-speed Circuits. IEEE Trans. Microw. Theory Tech, 2005,53(9). p.2935-2942.
    [37]T. L. Wu, C. C. Wang, Y. H. Lin, and G. Chang, A Novel Power Plane with Super-wideband Elimination of Ground Bounce Noise on High Speed Circuits. IEEE Micro. Wireless Compon. Lett,2005,15(3). p.174-176.
    [38]X. H. Wang, B. Z. Wang, Y. H. Bi, and W. Shao, A Novel Uniplanar Compact Photonic Bandgap Power Plane with Ultra-broadband Suppression of Ground Bounce Noise. IEEE Micro. Wireless Compon. Lett,2006,16(5). p.267-268.
    [39]J. Qin, O. M Ramahi, Ultra-wideband Mitigation of Simultaneous Switching Noise Using Novel Planar Electromagnetic Bandgap Structures. IEEE Micro. Wireless Compon. Lett,2006,16(9). p.487-489.
    [40]M. S. Zhang, Y. S. Li, C. Jia, and J. Pan, A. Double-surface Electromagnetic Bandgap Structure with One Surface Embedded in Power Plane for Ultra-wideband SSN Suppression. IEEE Micro. Wireless Compon. Lett,2007,17(10).p.706-708.
    [41]S. H. Joo, D. Y. Kim, and H. Y. Lee, A S-bridged Inductive Electromagnetic Bandgap Power Plane for Suppression of Ground Bounce Noise. IEEE Micro. Wireless Compon. Lett,2007,17(10). p.709-711.
    [42]施华,舒琳,王均宏,手机天线的研究进展.移动通信,2002,26(11).第38-42页.
    [43]张晓菊,手机天线的小型化与多频段.大连海事大学学位论文,大连,2007.
    [44]梁昌洪,PBG高阻表面的准静态等效媒质模型.西安电子科技大学报告,西安,2004.
    [45]梁乐,紧致型电磁带隙结构和双负媒质结构研究.西安电子科技大学博士学位论文,西安,2008.
    [46]Yuan Yao, et al., A Novel Dual-Band Compact Electromagnetic Bandgap(EBG) Structure and Its Application in Multi-Antennas. IEEE Antennas and Propagation Society Internationals Symposium,2006. p.1943-1946.
    [47]Yang F, Rahmat-Samii Y, Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications. IEEE Trans. Antennas and Propagation,2003,51(10). p.2691-703.
    [48]Mingyan Fan, Hu R.,Feng Z-H, Zhang X-X, Advance in 2D-EBG Structures' Research. Journal of Infrared and millimeter waves.2003,22(2). p.127-131.
    [49]张丰敏,展宽电磁带隙结构的带隙带宽的新方法研究.清华大学硕士学位论文,2007.
    [50]J. Ollikainen, O. Lehmus, M. Fischer, and P.Vainkainen, Internal Dual-band Patch Antenna for Mobile Phone, in Proc.Millennium Conf. On Antennas Propagation, Davos, Switzerland, p.364.
    [51]H. Mosallaei, Y. Rahmat-Samii, Periodic Bandgap and Effective Dielectric Materials in Electromagnetics:Characterization and Applications in Nanocavities and Waveguides. IEEE Trans,2003,51. p.549-563.
    [52]Ramon Gonzalo, Beatriz Martinez, Peter De Maagt, Mario Sorolla, Improved Patch Antenna Performance by Using Photonic Bandgap Substrates. Microwave and Optical Technology Letters,2000,24(4). p.213-215.
    [53]Ram'on Gonzalo, Peter de Maagt and Mario Sorolla, Enhanced Patch Antenna Performance by Suppressing Surface Waves Using Photonic Bandgap Substrates. IEEE Transactions on Microwave Theory And Techniques,1999,47(11). p. 2131-2138.
    [54]Fan Yang, Rahmat-Samii Y, Applications of Electromagnetic Band-gap(EBG) Structures in Microwave Antenna Designs. Microwave and Millimeter Wave Technology,2002. p.528-531.
    [55]F. Yang and Yahya Rahmat-Samii, Microstrip Antennas Integrated with Electromagnetic Band-gap (EBG) Structures:A Low Mutual Coupling Design for Array Applications. IEEE Trans. Antennas Propaga.2003,51. p.2936-2946.
    [56]L. Zhang, J. A. Castaneda, and N. G. Alexopoulos, Scan Blindness Free Phased Array Design Using PBG Materials. IEEE Trans. Antennas and Propaga.2004, 52(8). p.2000-2007.
    [57]Zeev Iluz, Reuven Shavit, and Reuven Bauer, Microstrip Antenna Phased Array with Electromagnetic Bandgap Substrate. IEEE Trans. Antennas and Propagation. 2004,52 (6). p.1446-1453.
    [58]T. H. Liu, W. X. Zhang, M. Zhang, Low Profile Spiral Antenna with PBG Substrate. Electron Lett.2000,36. p.779-780.
    [59]V. C. Sanchez, W. E. McKinzie, and R. E. Diaz, Broadband Antennas over Electronically Reconfigurable Artificial Magnetic Conductor Surfaces, in Proc. Antenna Applications Symp.2001. p.70-83.
    [60]Z. Li and Y. Rahmat-Samii, PBG, PMC and PEC Ground Planes:A Case Study of Dipole Antennas in Proc. Antennas Propagation Soc. Int. Symp.2000,2. p. 674-677.
    [61]Sang il Kwak, Dong-Uk Sim, Jong Hwa Kwon, Comparison of the SAR in the Human Head using the EBG structures applied to a Mobile Handset, Microwave Conference.2007. p.937-940.
    [62]Kwak Sang il, Sim Dong-Uk, Kwon Jong Hwa, Design of Wearable Communication Device for Body Protection from EM Wave Using the EBG Structure. Microwave Conference (EuMC),2010. p.1433-1436.
    [63]Zhong Li, Wang Guangming, Cao Yi, A low-Profile Equiangular Spiral Antenna Using a Novel EBG ground Plane. IEEE Antennas. Propagation and EM Theory International Symposium,2006. p.1-3.
    [64]Lin B.Q., Zheng Q.R., and Yuan N., A Novel Planar PBG Structure for Size Reduction. IEEE Microwave and Wireless Components Letters,2006,16(5). p. 269-271.
    [65]刘涛,曹祥玉,马嘉俊,一种新型紧凑宽带平面电磁结构.电子与信息学报,2009,31(4).
    [66]Li yang, Mingyan Fan, Fanglu Chen,Jingzhao She, and Zhenghe Feng, A Novel Compact Electromagnetic-bandgap(EBG) Structure and Its Applications for Microwave Circuits. IEEE Trans. Microwave Theory and Tech,2005,53(1). p. 183-190.
    [67]郑秋容,微波光子晶体带隙特性及其在天线中的应用.博士学位论文,2007.
    [68]龙泉,电磁带隙结构小型化的研究和它在天线上的应用.硕士学位论文,2007.
    [69]David Yang H-Y and Chengzhi Zhou, Characteristics of Microstrip Lines through a Metalized EBG Substrate. IEEE Microwave Symposium Digest,2006, 11(16). p.1655-1658.
    [70]Kem D, Wemer and Wilhelm M. Active Negative Impedance EBG Structures for the Realization of Ultra-Wideband Artificial Magnetic Conductors. IEEE Antennas and Propagation Society international Symposium,2003,2. p.427-430.
    [71]Alley. D, Interdigital Capacitors and Their Applications to Lumped-element Microwave Integrated Circuits. IEEE Trans on MTT,1970,18(12). p. 1028-1033.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700