鄱阳湖四种鲌形态与生长的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄱阳湖(Lake Poyang)位于长江中下游南岸,东经115°49’-116°46’,北纬28°24’-29°46’,是我国第一大淡水湖,汇纳赣江、抚河、信江、饶河、修水,于湖口注入长江,鱼类资源丰富。鲌是我国淡水常见肉食性鱼类,主要以小型鱼虾为食,具有较高的经济价值,对鄱阳湖鲌资源研究和利用具有十分重要的意义。目前,有关鄱阳湖鲌种群研究的报道较少。因此,本研究运用形态度量学和几何形态学方法,对鄱阳湖分布的翘嘴鲌(Culter alburnus)、蒙古鲌(C.mongolicus)、达氏鲌(C.dabryi)和红鳍原鲌(Cultrichthys erythropterus)体形、脑形态及生长特性进行比较研究,探讨鲌形态差异及资源利用状况,对蒙古鲌进行体形、鳃弓、鳞片形态多样性研究,推测鄱阳湖鱼类种群形态分离事件。本研究得到的主要结果如下:
     1、对633尾鲌分别按4个体长段分组,共16个组别,选取13个特征点运用Tps几何形态分析系列软件和STATISTICA 6.0统计软件进行体形比较分析。结果表明,4种鲌种间差异大于同种鲌不同生长时期间的差异。鲌生长过程中体形变化在翘嘴鲌、蒙古鲌、达氏鲌表现为头部和尾部长度增长相对较慢,达氏鲌在头后部至背鳍后体高增长速度快,增长幅度大,致使达氏鲌在头后部显著隆起成为物种区分的主要特征之一,红鳍原鲌随着体长的增长体高相对体长的增加幅度较小,躯干后部在体长处150mm至250mm时长度和高度增长较明显。
     2、选择48尾鲌标本,以Motic Images Advanced 3.2软件对脑21个形态性状进行度量,同时对34个特征点进行几何形态分析。形态度量和几何形态方法均表明,鲌属和原鲌属鱼类在小脑形态和嗅束长等方面差异明显,翘嘴鲌、蒙古鲌、达氏鲌的脑形态差异表现在小脑、端脑、中脑等各部分的细微差异。
     3、对采集于7个样本点的蒙古鲌,选取14个传统测量特征值、24个框架结构度量特征值进行测量,13个特征点进行几何形态分析。结果表明,鄱阳湖7个蒙古鲌样本可分为2个样本组,它们是:(1)鄱阳湖波阳水域+溪口湖+南北港+谷山湖;(2)鄱阳湖都昌水域+鄱阳湖星子水域+新妙湖。第一样本组可进一步区分为2个亚样本组,即“鄱阳湖波阳水域+溪口湖+南北港”亚样本组和“谷山湖”亚样本组,其中“谷山湖”亚样本组更接近于第二样本组,“鄱阳湖波阳水域+溪口湖+南北港”亚样本组内,“南北港”样本更接近于“谷山湖”亚样本组。鱼体高度(如头高、体高、尾部高度),头长(特别是吻长),眼的相对位置等是鄱阳湖7个蒙古鲌样本组群的主要差异特征。这一样本形态分离不是按人工大坝的位置区分的,根据采样点的地理纬度可能应联系到一些河流与鄱阳湖连通的位置,如南部的抚河、信江、昌江、饶河,中部的赣江、修河,北部的长江。选择南北港、新妙湖和溪口湖样本进行鳃耙计数、鳃弓和鳞片度量,建立鳃弓测量值与体长回归方程,进行判别函数分析,计算鳞片的6个形态因子和5个形态指数,并进行ANOVA显著性分析和主成分分析。蒙古鲌3个样本在鳃弓和鳞片形态上存在形态多样性,可以认为是种群分离或区分为不同种群。南北港和溪口湖样本鳃弓和鳞片形态相近。
     4、对4种鲌分别进行生长特性研究,翘嘴鲌、蒙古鲌、达氏鲌、红鳍原鲌样本年龄范围分别是0~+-4、0~+-5、0~+-7、0~+-6,比率较大的年龄段分别为0~+-1(65.9%)、2~+-3(33.1%)、1~+-2(29.1%)、2~+-3(32.2%)。鲌体长生长与鳞片生长呈正比关系,4种鲌体长与鳞径的回归方程分别为:翘嘴鲌L=10.4399+100.1273×SR、蒙古鲌L=52.8778+65.4337×SR、达氏鲌L=76.3400+43.1301×SR、红鳍原鲌L=40.0273+48.1733×SR。鲌生长可看作等距生长,4种鲌体长与体重的回归方程分别为:翘嘴鲌W=6.3×10~(-6)L~(3.1054)、蒙古鲌W=8.08015×10~(-6)L~(3.0893)、达氏鲌W=2.5×10~(-6)L~(3.3319)、红鳍原鲌W=3.1×10~(-6)L~(3.2975)。体重与体侧面积体厚的回归方程在反映体重与体维关系上较适宜,4种鲌体重-体侧面积体厚之间幂函数关系分别为:翘嘴鲌W=4.05051×10~(-3)×A~(0.66260)×T~(1.41994)、蒙古鲌W=3.18603×10~(-3)×A~(0.66845)×T~(1.44376)、达氏鲌W=1.99310×10~(-3)×A~(0.70982)×T~(1.47305)、红鳍原鲌W=3.58823×10~(-3)×A~(0.63253)×T~(1.49465)。
     5、4种鲌的体长生长方程、体重生长方程、渐近体长、渐近体重、拐点年龄、拐点时体长、体重分别为:翘嘴鲌Lt=872.04×[1.e~(-0.1667×(t+0.161))]、Wt=8528.64×[1-e~(-0.1667×(t+0.161))]~(3.1054)、L_∞=872.04mm、W_∞=8528.64g、6.96龄、L_t=606.08mm、W_t=2755.59g;蒙古鲌L_t=568.8247×[1.e~(-0.1856×(t+0.1634))]、W_t=2620.4407×[1-e~(-0.1856×(t+0.1634))]~(3.0893)、L_∞=568.82mm、W_∞=2620.44g、6.24龄、L_t=395.53mm、W_t=852.90g;达氏鲌Lt=353.6449×[1-e~(-0.2218×(t+0.6582))]、Wt=775.3749×[1-e~(-0.2218×(t+0.6582))]~(3.3319)、L_∞=353.64mm、W_∞=775.37g、6.08龄、L_t=274.30mm、W_t=332.54g;红鳍原鲌Lt=327.3487×[1-e~(-0.2112×(t+1.0745))]、Wt=-608.9887×[1-e~(-0.2112×(t+1.0745))]~(3.2975)、L_∞=327.35mm、W_∞=608.99g、4.57龄、L_t=228.08mm、W_t=184.98g。鄱阳湖鲌种群在天然渔业及对野杂鱼控制上具有一定的经济意义,种群控制适当。
     6、运用形态度量和几何形态分析检测鱼自属(Culter)9个种和亚种517尾标本,分析表明兴凯鲌(Culter dabryi shinkainensis Yih et Chu,1959)应从亚种水平提升到物种水平,也就是兴凯鲌(C.shinkainensis Yih et Chu,1959)。翘嘴鲌东北亚种[Erythroculter ilishaeformis sungarinensis Yih et Chu,1959(E.ilishaeformis=C.alburnus)]与翘嘴鲌其它种群在形态区分上有着显著差异,但它们间的差异应属不同地理种群水平上的差异,而不是亚种水平。
Poyang Lake, China's biggest freshwater lake, locates on the south riverside of the middle and lower reaches of Yangtze River (28°24'-29°46'N, 115°49'-116°46'E). The lake lies at the convergence of 5 rivers, such as Ganjiang River, Fuhe River, Xinhe River, Raohe River and Xiushui River, and helps regulate water in the Yangtze River by providing water through Hukou County. The fish resource in Poyang Lake is abundant. Culters is a popular and important economical carnivorous freshwater fish in China which feeds on small fish and shrimp. It is important to study and exploit the resource of Culter in Poyang Lake, however, little information is available about this field. Therefore, studies focused on the Culter population in Poyang Lake are meaningful.
     In the present study, we analyzed the differences of the body shape, brain shape, and growth characteristics among Culter alburnus, C. mongolicus, C. dabryi and Cultrichthys erythropterus, the diversities of body shape, gill arch and scale of C. mongolicus, and discussed the events about the morphometric separation of fish population in Poyang Lake. The results are shown as follows:
     1. A total of 633 samples of Culter were assigned into 16 groups according to 4 body length zone. 13 landmarks were used for geometric morphometric analysis of body shape through TPS Program and STATISTICA Program Version 6.0. The results showed the diversities of body shape among four species are more than among the growth phases. The changes of body shape depends on the slow growth of head length and caudal length in Culter alburnus, C. mongolicus, and C. dabryi, the distinct growth of the back of the body behind head as one of main characters in C. dabryi, the slow growth of body depth than standard length, but in the stage of standard length which between 150mm- 250mm, the obvious growth of the length and depth of the later trunk region in Cultrichthys erythropterus.
     2. The brain shape data were collected from 48 samples. 21 brain morphological characters were measured by using Motic Images Advanced Program Version 3.2, and 34 landmarks were used in geometric morphometrics analysis. There were the distinctions on shape of the cerebellum and length of the tractus olfactorius between genus Culter and genus Cultrichthys. The morphological differences of brain among Culter alburnus, C. mongolicus, and C. dabryi showed as the subtle differences in each brain section.
     3. A total of 126 Culter mongolicus Basilewsky were collected from 7 different sampling points. 14 traditional eigenvalues and 24 truss-based eigenvalues were measured. 13 landmarks were used for geometric morphometfic analysis. The multivariate discriminant function analysis and cluster analysis showed that there were significant differences in the body shape among 7 groups. In the region of the Lake Poyang, 7 groups should be divided into two sample-groups in the present study. They were: (1) PYH 1 + XKH + NBG + GSH. (2) PYH 2 + PYH 3 + XMH. Furthermore, first sample-group could be divided into two inferior sample-groups, PYH 1 + XKH + NBG sub-sample-group and GSH sub-sample-group. GSH sub-sample-group was more close to the second sample-group. Within PYH 1 + XKH + NBG sub-sample-group, NBG closes more near to GSH sub-sample-group than PYH 1 + XKH. The depths, such as head depth, body depth and caudal depth, and head length, especially snout length, and the eyes' relative position were related to the different characters among the 7 geographical groups. They are scattered in the order of the geographical latitude but not of the artificial dams' position. The populations of C. mongolicus in the Poyang Lake could be related to the sites of connection with some rivers, for example, Fuhe River, Xinjiang River, Changjiang River, the south of Raohe River, the middle of Ganjiang River and Xiuhe River , and the north of Yangtze River. The specimens, from NBG, XMH and XKH, were used for gill arch and scale morphometric analysis. The regression equations for standard length and the measurements of gill arch, such as gill-arch length, number of gill-raker, gill-raker length, mean gill-raker width, and mean gill-raker spacing, and 6 shape factors and 5 shape indices of scale were calculated. ANOVA, principal components analysis and discriminant function analysis showed that there were significant differences in the gill arch and the scale among 3 groups, and more similar between NBG and XKH. We thought there are two or more populations of C. mongolicus in Lake Poyang.
     4. All specimens, 232 Culter alburnus, 169 C. mongolicus, 79 C. dabryi and 121 Culterichthys erythropterus were collected from Lake Poyang and the age divided into 0~+-4、0~+-5、0~+-7、0~+-6 age groups. The higher percentage of the samples' age ranges were 0~+-l (65.9%) ,2~+-3 (33.1%) ,1~+-2 (29.1%) , 2~+-3 (32.2%) . The results showed that the scale-radium takes on linear relationship with standard length, L=10.4399+100.1273×SR, L=52.8778+65.4337×SR, L=76.3400+43.1301×SR,L=40.0273+48.1733×5R. The regression equation for standard length and body weight is W=6.3×10~(-6)L~(3.1054), W=8.08015×10~(-6)L~(3.0893), W=2.5×10~(-6)L~(3.3319), W=3.1×10~(-6)L~(3.2975), and growths of them take on a constant speed style. The regression equations for body weight, side area and width are feasible. In the present study, the power equations the can give better results are W=4.05051×100~(-2)×A~(0.66260)×T~(1.41994), W=3.18603×10~(-3)×~(0.66845)×T~(1.44376), W=1.99310×10~(-3)×A~(0.70982)×T~(1.47305), and W=3.58823×10~(-3)×A~(0.63253)×T~(1.49465)
     5. Growths of four species of Culter can be described with von Bertalanffy equations, namely standard length growth equation, body weight growth equation, body weight growth inflexion point, and with the corresponding standard length and body weight:C. alburnus: Lt=872.04×[1-e~(-0.1667×(t+0.161))], Wt=8528.64×[1-e~(-0.1667×(t+0.161))]~(3.1054), inflexionpoint 6.96 age, Lt=606.08mm、W_t=2755.59g; C.mongolicus:L_t=568.8247×[1-e~(-0.1856×(t+0.1634))], W_t=2620.4407×[1-e~(-.1856×(t+0.1634))]~(3.0893),inflexion point 6.24 age, L_t=395.53mm, W_t=852.90g; C. dabryi: Lt=353.6449×[1-e~(-0.2218×(t+0.6582))], Wt=775.3749×[1-e~(-0.2218×(t+0.6582))]~(3.3319),inflexion point 6.08 age, L_t=274.30mm, W_t=332.54g; C.erythropterus::t=327.3487×[1-e~(-0.2112×(t+1.0745)],Wt=608.9887×[1-e~(-0.2112×(t+1.0745))]~(3.2975),inflexion point 4.57 age, L_t=228.08mm, W_t=184.98g.
     6. A total of 517 specimens of genus Culter, 235 C. alburnus were collectd from different localities and were used for morphometric analysis. The results of discriminant analysis and cluster analysis indicated that four species-groups could be divided. C. dabryi shinkainensis was significantly different from C. dabryi dabryi in body forms, so C. dabryi shinkainensis should be changed to species, instead of subspecies, namely Culter shinkainensis (Yih et Chu), 1959. The 6 populations of C. alburnus (Basilewsky), from Lake Poyang, River Songhua, River Liaohe, River Jialing, River Lijiang and Lake Taihu, should be classified as different geographical populations, but not subspecies.
引文
1.秉志,鲍璿,陈进生.鲤鱼神经系统的初步观察.动物学报,1959,11(3):370-389
    
    2.常重杰,余其兴.七种鲌亚科鱼Ag-NORs的比较研究.遗传,1997,19(4):22-25
    
    3.车玉春. 尚屯水库红鳍鲌的生物学.淡水渔业,1978,(4):16-22
    
    4.陈建明,叶金云,潘茜,王友慧.翘嘴红鲌肌肉营养组成分析.浙江海洋学院学报(自然科学 版),2003,22(4):314-317
    
    5.陈湘粦,乐佩琦,林人端.鲤科的科下类群及其宗系发生关系.动物分类学报,1984,9(4): 424-440
    
    6.陈宜瑜.中国动物志.硬骨鱼纲.鲤形目(中卷).北京:科学出版社,1998:182-197
    
    7.陈银瑞,杨君兴,周伟,崔桂华,匡溥人,王勇,王瑛,王聪.滇池红鳍原鲌生物学及对太湖 新银鱼渔业的影响.动物学研究,1994,15(增刊):88-95
    
    8.蔡鸣俊,张敏莹,曾青兰.鲂属鱼类形态度量学研究.水生生物学报,2001,25(6):631-635
    
    9.成庆泰,郑葆珊.中国鱼类系统检索.北京:科学出版社,1987:134-135
    
    10.崔丽娟,赵欣胜.鄱阳湖湿地生态能值分析研究.生态学报,2004,24(7):1480-1485
    
    11.邓中粦,余志堂,许蕴玕.汉江主要经济鱼类的年龄和生长.鱼类学论文集(第一辑).北京: 科学出版社,1981:97-112
    
    12.丁瑞华.红鲌属鱼类一新亚种(鲤形目:鲤科).动物分类学报,1990,15(2):246-250
    
    13.方展强,邱玫,王春凤.剑尾鱼鳃结构的光镜、扫描和透射电镜观察. 电子显微学报,2004, 23(5):553-559
    
    14.方展强,郑文彪,肖智,何小嫒,叶艳艳.苏氏鱼芒鲶鳃超微结构观察.水产学报,2001,25(6): 489-491
    
    15.冯建新,常东州,惠筠,耿如意,穆磊,李睿,李自荣.南湾水库翘嘴红鲌的生长及种群控制 的研究.水利渔业,2003, 23(6):26-27
    
    16.龚世园,陈远富,陈晨.八汊水库翘嘴红鲌的生长及种群控制的研究.水利渔业,1990,10(1): 23-26
    
    17.郭水荣,孙利荣,张伟燕.翘嘴红鲌大规模冬片鱼种培育试验.水产科技情报,2003,30(3): 117-118
    
    18.郭宪光,张耀光,何舜平.中国石爬鮡属鱼类的形态变异及物种有效性研究.水生生物学报, 2004,28(3):260-268
    
    19.郭治之.鄱阳湖鱼类调查报告.江西大学学报(自然科学版),1964,(2):121-130
    
    20.韩德顺,刘德中.丹江口水库翘嘴红鲌网箱养殖试验.北京水产,2003,6:37
    
    21.韩英,王昕阳,尹海富.兴凯湖翘嘴红鲌生长式型的研究.大连水产学院学报,2005,20(3): 218-221
    
    22.何森.青梢红鲌体侧鳞片之研究.水产科学,1989,8(4):11-15
    
    23.何纪吕,刘振华.红鲌属的一新亚种.动物学研究,1980,1(4):483
    
    24.湖北省水生生物研究所鱼类研究室.长江鱼类.北京:科学出版社,1976:121-123
    
    25.胡茂林,吴志强,周辉明,张爱芳,宋炜,张重祉.鄱阳湖南矶山自然保护区渔业特点及资源 现状.长江流域资源与环境,2005,14(5):561-565
    
    26.胡秋元,陶仁勇,龚世园,王红辉,张训蒲,何绪刚,刘军,王广海.武湖翘嘴红鲌年龄和生 长的研究.水利渔业,2000,20(2):46-47
    
    27.华元渝,胡传林.鱼种重量与长度相关公式(W=aL~b)的生物学意义及其运用.鱼类学论文集(第 一辑).北京:科学出版社,1981:125-132.
    
    28.华元渝,阮景荣.鱼类的重量-身体维数关系的研究.水生生物学集刊,1983,8(1):45-61
    
    29.黄权,刘春力,赵静,陈颖.松花江水系翘嘴红鲌生长模型的研究.吉林农业大学学报,2003, 25(1):105-106
    
    30.黄玉玲,彭敏,何安尤,雷建军,施军,周解,李咏梅,张益峰.翘嘴红鲌胚胎发育研究.广 西科学院学报,2005,21(3):148-154
    
    31.黄真理,常剑波.鱼类体长与体重关系中的分形特征.水生生物学报,1999,23(4):330-335
    
    32.李大鹏,庄平,王明学.史氏鲟稚鱼的趋光性及不同光照周期对其生长的影响.华中农业大学 学报,2001,20:564-567
    
    33.李洪进,蔡建忠.河蟹与翘嘴红鲌混养技术初探.渔业致富指南,2003,9:52
    
    34.李家乐,李思发,李勇,王维明,朱泽闻.尼奥鱼[尼罗罗非鱼(♀)×奥利亚罗非鱼(♂)]同其亲 本的形态和判别.水产学报,1999,23:261-265
    
    35.李建林,吴婷婷.翘嘴红鲌苏州和宜兴养殖种群的遗传多样性分析.生物技术,2007,17(2): 26-29
    
    36.李思发,蔡完其,周碧云. 团头鲂种群间的形态差异和生化遗传差异.水产学报,1991,15: 204-211
    
    37.李思发,李晨虹,李家乐.尼罗罗非鱼品系间形态差异分析.动物学报,1998,44(4): 450-457
    
    38.李思发,周碧云,倪重匡,陈臻祺.长江、珠江、黑龙江鲢、鳙和草鱼原种种群形态差异.动 物学报,1989,35(4):390-398
    
    39.李文静,王剑伟,谢从新,谭德清.厚颌鲂的年龄结构及生长特性.中国水产科学,2007,14(2): 215-222
    
    40.李渝成,李康,周暾. 中国鲤科鱼类染色体组型的研究Ⅰ.鳊亚科10种鱼的染色体组型.遗传 学报,1983,10(3):216-222
    
    41.李仲辉.翘嘴红鲌Erythroculter ilishaeformis的头骨结构及其对捕食习性的适应.河南师范大 学学报(自然科学版),1990,(4):62-66
    
    42.梁前进,彭奕欣,余秋梅.野生鲫和五个金鱼品种的判别分析和聚类分析.水生生物学报, 1998,22:236-243
    
    43.刘勃,蒋国春,蒋加平,吉新如,蒋志新翘嘴红鲌不同夏片放养密度培育冬片的效果水产 养殖,2003,24(31:5-6
    
    44.刘勃,王惠平,蒋国春,杨暗芳,潘炳荣.翘嘴红鲌网箱人工繁殖技术.水产养殖,2004, 25(1):5-6
    
    45.刘彩霞,彭作刚,何舜平. 长臀鮠属鱼类多变量形态分析及物种有效性研究. 水生生物学报, 2005,29(5):507-512
    
    46.刘灯红,郭柏福,唐大明.翘嘴红鲌人工繁殖与苗种培育.中国水产,2002,11:81
    
    47.凌俊秀.八种鱼染色体组型的研究.武汉大学学报(自然科学版),1982,2:109-112
    
    48.路福泉.老江河蒙古红鲌和翘嘴红鲌的生长.水利渔业,1995,15(1):29-33
    
    49.路纪琪,李仲辉,陈勇,薛文黎.河南鲤科鱼类脑的形态学研究.河南师范大学学报(自然科学版), 1996,24(4):64-68
    
    50.罗泉笙,张耀光.长吻鮠脑和脑神经的形态观察.西南师范大学学报(自然科学版),1987,(3): 71-77
    
    51.罗云林.鲌属和红鲌属模式种的订正.水生生物学报,1994,18(1):45-49
    
    52.马徐发.道观河水库渔业资源、环境和生态学管理的研究. [博士学位论文].武汉:华中农业 大学,2003:116-126
    
    53.孟庆闻,苏锦祥,李婉端.鱼类比较解剖.北京:科学出版社,1987:285-297
    
    54.倪海儿.短吻舌鳎生长特性的研究.生物数学学报,2003,18(3):378-383
    
    55.潘康成,方静.齐口裂腹鱼端脑形态和组织学研究.四川农业大学学报,2002,20(2):144-147
    
    56.潘庭双,龙良启,吴小平,罗晓松,邹世平.蒙古红鲌肥胖基因cDNA的克隆与组织表达特异 性研究.水生生物学报,2007,31(1):94-98
    
    57.彭姜岚,曹振东,付世建.鲇鱼形态特征参数与体长关系及变异分析.重庆师范大学学报(自然 科学版),2007,24(1):69-75
    
    58.鄱阳湖研究编委会.鄱阳湖研究.上海:上海科学技术出版社,1988:123-125
    
    59.钱新娥,黄春根,王亚民.鄱阳湖渔业资源现状及其环境监测.水生生物学报,2002,26(6): 612-617
    
    60.任敏,段艳红.汲县城湖红鳍鲌食性及繁殖习性的初步研究.河南师范大学学报(自然科学版), 1998,26(2):90-92
    
    61.邵力,郏国生,卢建伟. 四明湖水库翘嘴红鲌年龄和生长的研究.浙江水产学院学报,1990, 9(2):95-102
    
    62.沈俊宝,王国瑞,范兆廷.蒙古红鲌染色体的组型研究.动物学杂志,1984,2:36-38
    
    63.沈智华,胡廷尖,尹文林,徐正奎.翘嘴红鲌对几种常用渔药的敏感性试验.浙江海洋学院学 报(自然科学版),2002,21(4):340-343
    
    64.Sneath P,Sokal R.数值分类学:数值分类的原理和应用.北京:科学出版社,赵铁桥译,1984: 2-8
    
    65.苏守德.鄱阳湖成因与演变的历史论证.湖泊科学,1992,4(1):40-47
    
    66.唐永凯,俞菊华,刘波,戈贤平.翘嘴红鲌肝脏G6Pase催化亚基的克隆以及摄食和饲料中碳 水化合物对其表达的影响.水产学报,2007,31(1):45-53
    
    67.王波,雷霁霖,张榭令,张春利,陈爱萍,张朝晖.工厂化养殖的大菱鲆生长特性.水产学报, 2003,27(4):358-363
    
    68.王典群.刺鮈(Acanthogobio guentheri)的脑和脑神经.兰州大学学报(自然科学版),1985,21(1): 65-73
    
    69.王典群.八种鲤科鱼类脑的形态构造观察.水产学报,1986a,10(1):95-106
    
    70.王典群.细鳞鲑神经系统的初步观察.兰州大学学报(自然科学版),1986b,22(3):106-113
    
    71.王典群.玛曲渔场几种裂腹鱼类脑的形态结构与真食性的相互关系.水产学报,1987a,11(2): 149-158
    
    72.王典群.青海湖裸鲤神经系统的解剖.兰州大学学报(自然科学版),1987b,23(3):906-103
    
    73.王国良.翘嘴红鲌多种养殖模式总结.科学养鱼,2003,9
    
    74.王银东,熊邦喜,马徐发,徐木生,张林林,王喜波,胡秋生.湖北道观河水库青梢鲌(Culter dabryi) 的个体生殖力.海洋与湖沼,2007,38(2):180-186
    
    75.夏重志,姜作发.镜泊湖蒙古红鲌的种群特征及其对放养鱼种的影响.淡水渔业,1993,23(3): 13-16
    
    76.伍献文.中国鲤科鱼类志(上卷).上海:科学技术出版社,1964:97-106
    
    77.伍献文,杨干荣,乐佩琦,黄宏金. 中国经济动物志.淡水鱼类(第二版).北京:科学出版社, 1979:57-64
    
    78.谢从新,程文平,陈敬德. 网湖三种鱼类的生长.水利渔业,1995,15(4):13-15
    
    79.谢仲桂,谢从新,张鹗.我国华鳊属鱼类形态差异及其物种有效性的研究.动物学研究,2003, 24(5):321-330
    
    80.谢仲桂,张鹗,何舜平.应用形态度量学方法对中华纹胸鮡和福建纹胸鮡物种有效性的研究. 华中农业大学学报,2001,20:169-172
    
    81.谢宗墉,王琦,金洪生,陈建明.真骨鱼类脑的研究.山东海洋学院学报,1987,17(1):142-158
    
    82.徐建瑜,崔绍荣,苗香雯,刘鹰.计算机视觉技术在水产养殖中的应用与展望.农业工程学报, 2005,21(8):174-178
    
    83.徐墨耕,任云峰.数种鱼脑的体积及比重.动物学杂志,1957,1(3):169-171
    
    84.许品诚.太湖翘嘴红鲌的生物学及其增殖问题的探讨.水产学报,1984,8(4):275-286
    
    85.薛正楷,何学福.黑尾近红鲌的年龄和生长研究.西南师范大学学报(自然科学版),2001,26: 712-717
    
    86.杨军山,陈毅峰.副沙鳅属的多变量形态分析.动物分类学报,2004,29(1):10-16
    
    87.杨秀平,刘焕章,刘炳印.宽鳍鱲Zacco platypus(Temminck et Schlegel)的形态变异.华中农 业大学学报,2002a,21(2):143-147
    
    88.杨秀平,张敏莹,刘焕章. 中国似鮈属鱼类的形态变异及地理分化研究.水生生物学报,2002b, 26(3):281-285
    
    89.杨秀平,张敏莹,刘焕章.蛇鮈属鱼类的形态度量学研究.水生生物学报,2003,27(2):164-169
    
    90.杨秀平,赵雅心,王宝泉,黄祥柱,张训蒲,金晓萍.鳜脑干组织学与重建研究.水生生物学 报,1998,22(2):148-157
    
    91.姚景龙,陈毅峰,李堃,严云志. 中华鮡与前臀鮡的形态差异和物种有效性.动物分类学报, 2006,31(1):11-17
    
    92.姚闻卿,胡菊英,吴先成.巢湖翘嘴红鲌的繁殖.水产学报,1987,11(2):101-109
    
    93.易伯鲁,朱志荣.中国的鲌属和红鲌属鱼类的研究.水生生物学集刊,1959,(2):170-199
    
    94.殷名称.太湖常见鱼类生态学特点和增殖措施探讨.湖泊科学,1991,3(1):25-34
    
    95.尹家胜,夏重志,徐伟. 兴凯湖翘嘴鲌种群结构的变化. 水生生物学报,2004,28(5):490-495
    
    96.喻达辉. 洪湖红鳍鲌生物学研究. 洪湖水体生物生产力综合开发及湖泊生态环境优化研究. 北京:海洋出版社,1991:172-178
    
    97.俞菊华,戈贤平,唐永凯,刘波.碳水化合物脂肪对翘嘴红鲌PEPCK基因表达的影响.水产 学报,2007, 31(3):369-373
    
    98.俞军贤.翘嘴红鲌(Erythroculter illshaeformis)和戴氏红鲌(Erythroculter dabryi)的口型比较及食 性分析.铁道师院学报,1988:70-77
    
    99.战培荣,赵吉伟,董崇智.兴凯湖翘嘴鲌(Culter albarnus)的生长特性.海洋与湖沼,2005, 36(2):146-150
    
    100.张本,王建华.鄱阳湖渔业自然资源及其保护利用的初步意见.淡水渔业,1982,(3):1-5
    
    101.张鹗,陈宜瑜.赣东北地区鱼类区系特征及我国东部地区动物地理区划.水生生物学报, 1997,21(3):254-261
    
    102.张鹗,谢仲桂,谢从新.大眼华鳊和伍氏华鳊的形态差异及其物种有效性.水生生物学报, 2004,28(5):511-518
    
    103.张家波. 丹江口水库凶猛鱼集团生长特性组型的聚类分析. 水生生物学报,1999,23(6): 689-695
    
    104.张甫英,胡炜,周永欣.武汉东湖鳜鱼生长速率及与其他几种养殖鱼类对水质影响的比较研究. 水生生物学报,2000,24:97-100
    
    105.张堂林,李钟杰.鄱阳湖鱼类资源及渔业利用.湖泊科学,2007, 19(4):434-444.
    
    106.张小谷.乌鳢脑及脑神经的形态观察.九江师专学报(自然科学版),1992,11(5):38-42
    
    107.张小谷,熊邦喜.鄱阳湖鲌属(Culter)和原鲌属(Culterichthys)鱼类体重与体维关系.湖泊科学, 2007,19(4):457-464
    
    108.张耀光.南方鲶脑和脑神经的观察.西南师范大学学报(自然科学版),1992,17(1):102-106
    
    109.赵磊,梁剑弦,龙天澄.鲇鱼延脑初级味觉中枢的比较研究. 中山大学学报(自然科学版), 2005,44(2):127-129
    
    110.郑惠芳,蓝春.三角鲤的繁殖与生长特性.动物学杂志,2004,39(5):73-77
    
    111.朱华平,黄樟翰,卢迈新.翘嘴红鲌和海南红鲌同工酶的比较研究.大连水产学院学报,2003, 18(3): 175-179
    
    112.朱居宏.梁子湖蒙古红鱼白的生物学.水生生物学集刊,1962,(1):14-21
    
    113.朱志荣,林永泰,方榕乐.武昌东湖蒙古红鲌和翘嘴红鲌的食性及种群控制问题的研究.水 生生物学集刊,1976,6(1):36-52
    
    114.庄平,曹文宣. 长江中、上游铜鱼的生长特征.水生生物学报,1999,23(增刊):577-583
    
    115. Able K W, Lamonaca J C. Scale formation in selected western North Atlantic flatfishes. Journal of Fish Biology, 2006,68: 1679-1692
    
    116. Adams D C. Methods for shape analysis of landmark data from articulated structures. Evolutionary Ecology Research, 1999,1: 959-970
    
    117. Adams D C, Rohlf F J, Slice D E. Geometric morphometrics: ten years of progress following the 'Revolution'. Italian Journal of Zoology, 2004, 71:5-16
    
    118. Aguirre W E, Shervette V R. Morphological diversity of the Cynoscion group (Perciformes: Sciaenidae) in the Gulf of Guayaquil region, Ecuador: A comparative approach. Environmental Biology of Fishes, 2005, 73: 403-413
    
    119. Alekseyev S S, Samusenok V P, Matveev A N, Pichugin M Y. Diversification, sympatric speciation, and trophic polymorphism of Arctic charr, Salvelinus alpinus complex, in Transbaikalia. Environmental Biology of Fishes, 2002, 64: 97-114
    
    120. Alibert P, Moureau B, Dommergues J L, David B. Differentiation at a microgeographical scale within two species of ground beetle, Carabus auronitens and C. nemoralis (Coleoptera, Carabidae): a geometrical morphometric approach. Zoologica Scripta, 2001, 30(4): 299-316
    
    121. Aytekin A M, Rasmont P, Cagatay N. Molecular and morphometric variation in Bombus terrestris lucoformis Kruger and Bombus terrestris dalmatinus Dalla Torre (Hymenoptera: Apidae). Mellifera, 2003, 3(6): 34-40
    
    122. Basilewsky S. Ichthyographia Chinae Borelis. Nouv. Mem. Soc. Nat. Moscou. 1855, Vol. 10
    
    123. Bauchot R, Ridet J M, Bauchot M L. The brain organization of butterflyfishes. Environmental Biology of Fishes, 1989, 25: 205-219
    
    124. Beamish R J, Fournier D A. A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38: 982-983
    
    125. Beddow T A, Ross L G. Predicting biomass of Atlantic salmon from morphometric lateral measurements. Journal of Fish Biology, 1996,49: 469-482
    
    126. Beddow T A, Ross L G. Merchant J A. Predicting salmon biomass remotely using a digital stereo-imaging technique. Aquaculture, 1996,146: 189-203
    
    127. Begg G A, Brown R W. Stock identification of haddock Melanogrammus aeglefinus on georges bank based on otolith shape analysis. Transactions of the American Fisheries Society, 2000,129: 935-945
    
    128. Berg C, Sibbing F A, Osse J W M, Hoogenboezem W. Structure, development and function of the branchial sieve of the common bream, Abramis brama, white bream, Blicca bjoerkna and roach, Rutilus rutilus. Environmental Biology of Fishes, 1992, 33: 105-124
    
    129. Berg L S. Fishes of the Amur River basin. Imp. Akad. Nauk St. Petersb. (Ser. 8) 1909, Vol. 24
    130. Bergenius M A M, Begg G A, Mapstone B D. The use otolish morphology to indicate the stock structure of common coral trout (Ptectropomus leopardus) on the great barrier reef, Australia. Fishery Bullletin, 2005,104:498-511
    
    131. Bolnick D I. Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks. Evolution, 2004, 58(3): 608-618
    
    132. Bookstein F L. Foundation of morphometrics. Annual Review of Ecology And Systematics, 1982, 13: 451-470
    
    133. Bookstein F.L. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press, Cambridge. 1991.
    
    134. Brown P, Green C, Sivakumaran K P, Stoessel D, Giles A. Validating otolith annuli for annual age determination of common carp. Transactions of the American Fisheries Society, 2004,133: 190-196
    
    135. Bruner E. Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. Journal of Human Evolution, 2004,47: 279-303
    
    136. Busack C, Knudsen C M, Hart G, Huffman P. Morphological differences between adult wild and first-generation hatchery upper Yakima river spring Chinook salmon. Transactions of the American Fisheries Society, 2007,136:1076-1087
    
    137. Bush V, Adams C E. Using phenotypic variation to determine conservation value: application of a novel approach to Arctic charr. Ecology of Freshwater Fish, 2007, 16: 29-33
    
    138. Cadrin S X. Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries, 2000, 10:91-112
    
    139. Cadrin S X, Friedland K D. The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research, 1999,43: 129-139
    
    140. Cavalcanti M J. Geometric morphometric analysis of head shape variation in four species of hammerhead sharks (Carcharhiniformes: Sphyrnidae). In: Ashraf M. T. Elewa. (Org.). Morphometrics: Applications in Biology and Paleontology. Heidelberg: Springer-Verlag, 2004, 97-113
    
    141. Cavalcanti M J, Monteiro L R, Lopes P R D. Landmark-based morphometric analysis in selected species of serranid fishes (Perciformes: Teleostei). Zoological Studies, 1999, 38(3): 287-294
    
    142. Chen W K, Chen P C, Liu K M, Wang S B. Age and growth estimates of the withespotted bamboo shark, Chiloscyllium plagiosum, in the northern waters of Taiwan. Zoological Studies, 2007, 46(1): 92-102
    
    143. Cheng Q Q, Han J D. Morphological variations and discriminant analysis of two populations of Coilia ectenes. Journal of Lake Sciences, 2004,16: 356-364
    
    144. Childress J J, Taylor S M, Cailliet G M, Price M H. Patterns of growth, energy utilization and reproduction in some meso- and bathypelagic fishes off southern Californis. Marine Biology, 1982, 61:27-40
    
    145. Collyer M L, Stackwell C A, Adams D C, Reiser M H. Phenotypic plasticity and contemporary evolution in introduced populations: evidence from translocated populations of white sands pupfish (Cyrpinodon tularosa). Ecological Research, 2007,
    146. Corti M, Loy A, Cataudella S. Form changes in the sea bass, Dicentrarchus labrax. (Moronidae: Teleostei), after acclimation to freshwater: an analysis using shape coordinates. Environmental Biology of Fishes, 1996,47: 165-175
    
    147. Costa C, Loy A, Cataudella S, Davis D, Scardi M. Extracting fish size using dual underwater cameras. Aquacultural Engineering, 2006, 35: 218-227
    
    148. Craigalbertson R, Kocher T D. Assessing morphological differences in an adaptive trait: a landmark-based morphometric approach. Journal of Experimental Zoology, 2001, 289: 385-403
    
    149. Cramon-Iaubadel N V, Ling E N, Coiier D, Wilkins N P. Determination of body shape variation in Irish hatchery-reared and wild Atlantic salmon. Journal of Fish Biology, 2005, 66: 1471-1482
    
    150. Crossin G T, Hinch S G, Farrell A P, Higgs D A, Lotto A G, Oakes J D, Healey M C. Energetics and morphology of sockeye salmon: effects of upriver migratory distance and elevation. Journal of Fish Biology, 2004, 65:788-810
    
    151. Cullen P, McCarthy T K, Doherty D. The coomasaharn char, a morphometrically highly specialized form of Salvelinus alpinus in Ireland. Ecology of Freshwater Fish, 2007,16:41-46
    
    152. Dai Y G, Yang J X, Chen Y R. Phylogeny and zoogeography of the subfamily cultrinae (Cyprinidae). Acta Zootaxonomica Sinica, 2005, 30(2): 213-233
    
    153. Dean G F, Jeffrey W N, Thomas N T, et al. Application of truss analysis for the quantification of changes in fish condition. Journal of Aquatic Ecosystem Stress and Recovery, 2002, 9: 115-125
    
    154. Doherty D, McCarthy T K. Morphometric and meristic characteristics analyses of two western Irish populations of arctic char, Salvelinus alpinus (L.). Biology and Environment, 2004,104B:75-85
    
    155. Eggold B T, Motta P J. Ontogenetic dietary shifts and morphological correlates in striped mullet, Mugil cephalus. Environmental Biology of Fishes, 1992,34: 139-158
    
    156. Emili G B, Ramon M A. Multivariate analysis of covariance in morphometric studies of the reproductive cycle. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50: 1394-1399
    
    157. Fitzgerald D G, Nanson J W, Todd T N, Davis B M. Application of truss analysis for the quantification of changes in fish condition. Journal of Aquatic Ecosystem Stress and Recovery, 2002, 9:115-125
    
    158. Foote C J, Moore K, Stenberg K, Craig K J, Wenburg J K, Wood C C. Genetic differentiation in gill raker number and length in sympatric anadromous and nonanadromous morphs of sockeye salmon, Oncorhynchus nerka. Environmental Biology of Fishes, 1999, 54: 263-274
    
    159. Franz S, Walter H. Growth, morphometrics, size at maturity, sexual dimorphism and condition index of Austropotamobius torrentium Schrank. Hydrobiologia, 2002,477: 201-208
    
    160. Fraser B A, Mandrak N E, McLaughlin R L. Lack of morphological differentiation in eastern (Rhinichthys atratulus) and western (Rhinichthys obtusus) blacknose dace in Canada. Canadian Journal of Zoology, 2005, 83: 1502-1509
    
    161. Galley E A, Wright P J, Gibb F M. Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic cod. Journal of Marine Science, 2006,63: 1710-1717
    162. Goldstein R M, Meador M R. Comparisons of fish species traits from small streams to large rivers. Transactions of the American Fisheries Society, 2004, 133: 971-983
    
    163. Gonzalez-Acosta A F, Cruz-Aguero J D, Castro-Aguirre J L. A review of eastern Pacific species of the genus Eugenes (percipormes: Gerreidae). Bulletin of Marine Science, 2005, 76(3): 661-673
    
    164. Gorgonio R C, Faustino C R, Alejandro V R, Sergio S G, Jorge R V. Morphometric variation of wild trout populations from northwestern Mexico (pisces: Salmonidae). Reviews in Fish Biology and Fisheries, 2003,13:91-110
    
    165. Guill J M, Heins D C, Hood C S. The effect of phylogeny on interspecific body shape variation in darters (Pisces: Percidae). Systematic Biology, 2003a, 52(4): 488-500
    
    166. Guill J M, Hood C S, Heins D C. Body shape variation within and among three species of darters (Perciformes: Percidae). Ecology of Freshwater Fish, 2003b, 12: 134-140
    
    167. Guler Y, Aytekin A M, Cagatay N. Systematical studies on Anthidiini (Hymenoptera: Megachilidae): A geometric morphometric approach. Acta Entomologica Sinica, 2006,49(3): 474-483
    
    168. Hard J J, Berejikian B A, Tezak E P, Schroder S L, Knudsen C M, Parker L T. Evidence for morphometric differentiation of wild and captively reared adult coho salmon: a geometric analysis.Environmental Biology of Fishes, 2000, 58: 61-73
    
    169. Hatfield T. Fluctuating asymmetry and reproductive isolation between two sticklebacks. Environmental Biology of Fishes, 1997,49: 63-69
    
    170. Hendry A P, Quinn T P. Variation in adult life history and morphology among Lake Washington sockeye salmon (Oncorhynchus nerka) populations in relation to habitat features and ancestral affinities. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54: 75-84
    
    171.Hennessy R J, Stringer C B. Geometric morphometric study of the regional variation of modern human craniofacial form. American Journal of Physical Anthropology, 2002,117: 37-48
    
    172. Hessen D O, Skurdal J, Vollestad L A, Berge D. Habitat use among size groups of monomorphic whitefish Coregonus lavaretus. Hydrobiologia, 1986,137: 185-192
    
    173. Hood C S, Heins D C. Ontogeny and allometry of body shape in the Blacktail Shiner, Cyprinella venusta. 2000, Copeia: 270-275
    
    174. Hospitaleche C A, Tambussi C. Skull morphometry of Pygoscelis (Sphenisciformes): inter and intraspecific variations. Polar Biol, 2006, 29: 728-734
    
    175. Howe J C. Standard length: not quite so standard. Fisheries Research, 2002, 56: 1-7
    
    176. Huber R, Rylander M K. Brain morphology and turbidity preference in Notropis and related genera (Cyprinidae, Teleostei). Environmental Biology of Fishes, 1992, 33: 153-165
    
    177. Hughes N F. Nile perch, hates niloticus, predation on the freshwater prawn, Caridina nilotica, in the Nyanza Gulf, Lake Victoria, East Africa. Environmental Biology of Fishes, 1992, 33: 307-309
    
    178. Hurlbut T, Clay D. Morphometric and meristic differences between shallow- and deep-water populations of white hake (Urophycis tenuis) in the southern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences, 1998,55: 2274-2282
    179. Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Journal of Structural Biology, 2003,142: 327-333
    
    180. Ismen A. Use of a discriminant function for the morphometric and meristic separation of whiting stocks, Merlangius merlangus euxinus, along the Turkish Black Sea coast. Turkish Journal of Zoology, 2001, 25: 297-304
    
    181. Jackson D A, Peres-Neto P R, Olden J D. What controls who is where in freshwater fish communities- the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 2001,58: 157-170
    
    182. Johansson F, Radman P, Andersson J. The relationship between ontogeny, morphology, and diet in the Chinese hook snout carp (Opsariichthys bidens). Ichthyological Research, 2006, 53: 63-69
    
    183. Joshi S, Srivastava A. A geometric approach to shape clustering and learning. IEEE Workshop on Statistical Signal Processing, 2003, pp302-305
    
    184. Kamilov B G Morphology of growth structures in silver carp Hypophthalmichthys molitrix, in relation to estimation of age and growth rate. Journal of Ichthyology, 1984,6: 1003-1013
    
    185. Kassam D D, Sato T, Yamaoka K. Landmark-based morphometric analysis of the body shape of two sympatric species, Ctenopharynx pictus and Otopharynx sp. "heterodon nankhumba" (Teleostei: Cichlidae), from Lake Malawi. lchthyological Research, 2002,49: 340-345
    
    186. Kennedy D N, Sacks J, Filipek P A, Caviness V S. Three dimensional fourier shape analysis in magnetic resonance imaging. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1990, 12(1): 78-79
    
    187. Kinnison M, Unwin M, Boustead N, et al. Population-specific variation in body dimensions of adult Chinook salmon (Oncorhynchus tshawytscha) from New Zealand and their source population, 90 years after introduction. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55: 554-563
    
    188. Klingenberg C P, Barluenga M, Meyer A. Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biological Journal of the Linnean Society, 2003, 80(3): 397-408
    
    189. Koc H T, Erdogan Z, Tinkci M, Treer T. Age, growth and reproductive characteristics of chub, Leuciscus cephalus (L. 1758) in the Ikizcetepeler dam lake (Balikesir), Turkey Journal of Applied Ichthyology, 2007,23: 19-24
    
    190. Kostow K E. Differences in juvenile phenotypes and survival between hatchery stocks and a natural population provide evidence for modified selection due to captive breeding. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61: 577-589
    
    191. Kotrschal K, Palzenberger M. Neuroecology of cyprinids: comparative qualitative histology reveals diverse brain patterns. Environmental Biology of Fishes, 1992, 33: 135-152
    
    192. Kott E, Fitzgerald D. Comparative morphology and taxonomic status of the ghost shiner, Notropic buchanani, in Canada. Environmental Biology of Fishes, 2000, 59: 385-392
    
    193. Kovac V, Copp G H, Francis M P. Morphometry of the stone loach, Barbatula barbatula: Do mensural characters reflect the species life history thresholds? Environmental Biology of Fishes, 1999, 56:105-115
    194. Kristjansson B K, Skulason S, Noakes DLG Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L.). Biological Journal of Linnean Society, 2002a, 76: 247-257
    
    195. Kristjansson B K, Skulason S, Noakes D L G. Rapid divergence in a recently isolated population of threespine stickleback {Gasterosteus aculeatus L.). Evol. Ecol. Res., 2002b, 4: 1-14
    
    196. Labropoulou M, Markakis G Morphological-relationships within two assemblages of marine demersal fishes. Environmental Biology of Fishes, 1998, 51: 309-319
    
    197. Langeland A, Nosi I. Gill raker structure and selective predation on zooplankton by particulate feeding fish. Journal of Fish Biology, 1995,47: 719-732
    
    198. Langerhans R B, Dewitt T J. Shared and unique features of evolutionary diversification. The American Naturalist, 2004,164:335-349
    
    199. Lattuca M E, Ortubay S, Battihi M A, Barriga J P, Cussac V E. Presumptive environmental effects on body shape of Aplochiton zebra (Pisces, Galaxiidae) in northern Patagonian lakes. Journal of Applied Ichthyology, 2007, 23: 25-33
    
    200. Lee D J, Schoenberger R, Shiozawa D, Xu X, Zhan P. Contour matching for a fish recognition and migration monitoring system. Conference on Two- and Three-Dimensional Vision Systems for Inspection, Control, and Metrology II, 2004, pp37-48
    
    201. Leinonen T, Cano J M, Makinen H, Merila J. Contrasting patterns of body shape and neutral genetic divergence in marin and lake populations of threespine sticklebacks. Journal of Evolutionary Biology, 2006,19: 1803-1812
    
    202. Letcher B H. Life history dependent morphometric variation in stream-dwelling Atlantic salmon. Oecologis, 2003, 137: 533-540
    
    203. Li S F, Lu W M, C D P, Zhao P. A genetic study of the growth performance of silver carp from the Changjiang and Zhujiang rivers. Aquaculture, 1987,65: 93-104
    
    204. Licandeo R R, Barrientos C A, Gonzalez M T. Age, growth rates, sex change and feeding habits of notothenioid fish Eleginops maclovinus from the central-southern Chilean coast. Environmental Biology of Fishes, 2006, 77: 51-61
    
    205. Lin Y S, Tzeng C S, Hwang J K. Reassessment of morphological characteristics in freshwater eels (genus Anguilla, Anguillidae) shows congruence with molecular phylogeny estimates. Zoologica Scripta, 2005, 34: 225-234
    
    206. Lines J A, Tillett R D, Ross L G Chan D, Hockaday S. McFarlane N J B. An automatic image-based system for estimating the mass of free-swimming fish. Computers and Electronics in Agriculture, 2001,31:151-168
    
    207. Lockwood C A, Lynch J M, Kimbel W H. Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometric. Journal of Anatomy, 2002, 201(6): 447-464
    
    208. Lopes M, Murta A G Cabral H N. Discrimination of snipefish Macroramphosus species and boarfish Capros aper morphotypes through multivariate analysis of body shape. Helgoland Marine Research, 2006,60: 18-24
    
    209. Lourie S A, Randall J E. A new pygmy seahorse, Hippocampus denise (Teleostei: Syngnathidae), from the Indo-Pacific. Zoological Studies, 2003,42: 284-291
    210. Loy A, Boglione C, Cataudella S. Geometric morphometrics and morpho-anatomy: a combined tool in the study of sea bream (Sparus aurata, sparidae) shape. Journal of Applied Ichthyology, 1999, 15(3): 104-110
    
    211. Loy A, Boglione C, Gagliardi F, Ferrucci L, Cataudella S. Geometric morphometrics and internal anatomy in sea bass shape analysis (Dicentrarchus labrax L., Moronidae). Aquaculture, 2000a, 186: 33-44
    
    212. Loy A, Busilacchi S, Costa C, Ferlin L, Cataudella S. Comparing geometric morphometrics and outline fitting methods to monitor fish shape variability of Diplodus puntazzo (Teleostea: Sparidae). Aquacultural Engineering, 2000b, 21: 271-283
    
    213. Marchetti M P, Nevitt G A. Effects of hatchery rearing on brain structures of rainbow trout, Oncorhynchus mykiss. Environmental Biology of Fishes, 2003,66: 9-14
    
    214. Matsumoto K, Kohda M. Differences in gill raker morphology between two local populations of a benthophagous filter-feeding fish, Goniistius zonatus (Cheilodactylidae). Ichthyoloyical Research, 2001,48:269-273
    
    215. Merigot B, Letourneur Y, Lecomte-Finiger R. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Marine Biology, 2007, 151: 997-1008
    
    216. Moodie G E E. Gill raker variation and the feeding niche of some temperate and tropical freshwater fishes. Environmental Biology of Fishes, 1985,13: 71-76
    
    217. Morgan D L. Distribution and biology of Galaxias truttaceus (Galaxiidae) in south-western Australia, including first evidence of parasitism of fishes in Western Australis by Ligula intestinalis (Cestoda). Environmental Biology of Fishes, 2003, 66: 155-167
    
    218. Mori S, Takamura N. Changes in morphological characteristics of an introduced population of the threespine stickleback Gasterosteus aculeatus in Lake Towada, northern Japan. Ichthyological Research, 2004, 51: 295-300
    
    219. Nakamura T. Meristic and morphometric variations in fluvial Japanese charr between river systems and among tributaries of a river system. Environmental Biology of Fishes, 2003, 66: 133-141
    
    220. Neves F M, Monteiro L R. Body shape and size divergence among populations of Poecilis vivipara in coastal lagoons of south-eastern Brazil. Journal of Fish Biology, 2003, 63: 928
    
    221. Odone F, Trucco E, Verri A. Visual learning of weight from shape using support vector machines. British Machine Vision Conference, 1998,469-477
    
    222. Onozato H, Watabe N. Studies on fish scale formation and resorption. Cell and Tissue Research, 1979, 201:409-422
    
    223. O'Reilly K M, Horn M H. Phenotypic variation among populations of Atherinops affinis (Atherinopsidae) with insights from a geometric morphometric analysis. Journal of Fish Biology, 2004,64:1117
    
    224. Palma J, Andrade J P. Morphological study of Diplodus sargus, Diplodus puntazzo, and Lithognathus mormyrus (Sparidae) in the Eastern Atlantic and Mediterranean Sea. Fisheries Research, 2002, 57: 1-8
    225. Paradis Y, Magnan P. Phenotypic variation of walleye, Sander vitreus, in Canadian Shield lakes: New insights on percid polymorphism. Environmental Biology of Fishes, 2005,73: 357-366
    
    226. Parsons K J, Robinson B W, Hrbek T. Getting into shape: An empirical comparison of traditional truss-based morphometric methods with a newer geometric method applied to New World cichlids. Environmental Biology of Fishes, 2003, 67: 417-431
    
    227. Partington J D, Mills C A. An electrophoretic and biometric study of Arctic charr, Salvelinm alpinus (1), from ten British lakes. Journal of Fish Biology, 1988, 33: 791-814
    
    228. Pearl R, Reed L J. On the rate of growth of the population of the United States since 1870 and its mathematic representation. Proceedings of the National Academy of Sciences of the United States of America, 1920,6:275-288
    
    229. Peres-Neto P R, Magnan P. The influence of swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species. Oecologia, 2004, 140: 36-45
    
    230. Phelps Q E, Edwards K R, Willis D W. Precision of five structures for estimating age of common carp. North American Journal of Fisheries Management, 2007, 27: 103-105
    
    231.Ponion D, Merigoux S. Comparative morphology and diet of young cichlids in the dammed Sinnamary river, French Guiana, South America. Journal of Fish Biology, 2000,56: 87-102
    
    232. Ponton D. Is geometric morphometrics efficient for comparing otolith shape of different fish species? Journal of Morphology, 2006, 267: 750-757
    
    233. Pontual H D, Prouzet P. Numerical analysis of scale morphology to discriminate between atlantic salmon stocks. Aquatic Living Resources, 1988,1: 17-27
    
    234. Pothin K, Gonzalez C S, Chabanet P, Lecomte R F. Distinction between Mulloidichthys flavolineatus juveniles from-Reunion Island and Mauritius Island (south-west Indian Ocean) based on otolith morphometrics. Journal of Fish Biology, 2006,69: 38-53
    
    235. Poulet N, Berrebi P, Crivelli A J, Lek S, Argillier C. Genetic and morphometric variations in the pikeperch (Sander lucioperca L.) of a fragmented delta. Archiv Fur Hydrobiologie, 2004, 159(4): 531-554
    
    236. Poulet N, Reyjol Y, Collier H, Lek S. Does fish scale morphology allow the identification of populations at a local scale? A case study for rostrum dace Leuciscus leuciscus burdigalensis in River Viaur (SW France). Aquatic Science, 2005,67: 122-127
    
    237. Reist J D. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Canadian Journal of Zoology, 1985,63: 1429-1439
    
    238. Reyment R A. Multivariate morphometrics and analysis of shape. Mathematical Geology, 1985, 17(6): 591-609
    
    239. Roberts N M, Rabeni C F, Stanovick J S. Distinguishing centrarchid genera by use of lateral line scales. North American Journal of Fisheries Management, 2007, 27: 215-219
    
    240. Rohlf F J. Relationships among eigenshape analysis, fourier analysis, and analysis of coordinates. Mathematical Geology, 1986, 18(8): 845-854
    241. Rohlf F J. Morphometrics. Annual Review of Ecological Systems, 1990,21: 299-316
    
    242. Sakakura Y, Noakes D L G Age, growth, and sexual development in the self-fertilizing hermaphroditic fish Rivulus marmoratus. Environment Biology of Fishes, 2000,59: 309-317
    
    243. Sardina P, Caxorla A L. Feeding interrelationships and comparative morphology of two young sciaenids co-occurring in South-western Atlantic waters. Hydrobiologia, 2005,548:41-49
    
    244. Schmittbuhl M, Minor J M, Schaaf A, Mangin P. The human mandible in lateral view: elliptical Fourier descriptors of the outline and their morphological analysis. Annals of Anatomy, 2002, 184: 199-207
    
    245. Schwartzberg M, Fryer J K. Identification of hatchery and naturally spawning stocks of Columbia basin spring Chinook Salmon by scale pattern analysis. North American Journal of Fisheries Management, 1993, 13: 263-271
    
    246. Sidlauskas B, Chernoff B, Machado-Allison A. Geographi and environmental variation in Bryconops sp. cf. melanurus (Ostariophysi: Characidae) from the Brazilian Pantanal. Ichthyology Research, 2006, 53: 24-33
    
    247. Sigursteinsdottir R J, Kristjansson B K. Parallel evolution, not always so parallel: comparison of small benthic charr, Salvelinus alpinus, from Grimsnes and Thingvallavatn, Iceland. Environmental Biology of Fishes, 2005, 74: 239-244
    
    248. Sikstrom C B. Otolith, pectoral fin ray, and scale age determinations for Arctic grayling. Progressive Fish Culturist, 1983,45: 220-223
    
    249. Silva A. Morphometric variation among sardin (Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. Journal of Marine Science, 2003, 60: 1352-1360
    
    250. Silva E A, Stewart D J. Age structure, growth and survival rates of the commercial fish Prochilodus nigricans (bocachico) in North-eastern Ecuador. Environmental Biology of Fishes, 2006, 77: 63-77
    
    251. Simoneau M, Casselman J M, Fortin R. Determining the effect of negative allometry (length/height relationship) on variation in otolith shape in lake trout (Salvelinus namaycush), using Fourier-series analysis. Canadian Journal of Zoology, 2000, 78: 1597-1603
    
    252. Stokesbury M J W, Lacroix G L, Price E L, Knox D, Dadswell M J. Identification by scale analysis of farmed Atlantic salmon juveniles in southwestern New Brunswick rivers. Transactions of the American Fishes Society, 2001,130: 815-822
    
    253. Stransky C, MacLellan S E. Species separation and zoogeography of redfish and rockfish (genus Sebases) by otolish shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62: 2265-2276
    
    254. Strauss R E, Bookstein F L. The truss: body form reconstruction in morphometrics. Systematic Zoology, 1982,31: 113-135
    
    255. Svanback R, Eklov P. Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia, 2002,131: 61-70
    
    256. Tanaka H, Lestrel P E, Uetake T, Kato S, Ohtsuki F. Sex differences in proximal humeral outline shape: elliptical Fourier functions. Journal of Forensic Sciences, 2000,45(2): 292-302
    257. Tattam T A, Whitesel T A, Pan Y. Scale pattern analysis of selected scale characteristics and the first annulus for distinguishing wild and hatchery steelhead in the Hood River, Oregon. North American Journal of Fisheries Management, 2003, 23: 856-868
    
    258. Taylor A B, Schaik C P. Variation in brain size and ecology in Pongo. Journal of Human Evolution, 2007, 52: 59-71
    
    259. Tillett R, McFarlane N, Lines J. Estimating dimensions of free-swimming fish using 3D point distribution models. Computer Vision and Image Understanding, 2000, 79: 123-141
    
    260. Trapani J. Geometric morphometric analysis of body-form variability in Cichlasoma minckleyi, the Cuatro Cienegas cichlid. Environmental Biology of Fishes, 2003,68: 357-369
    
    261.Turan C. A note on the examination of morphometric differentiation among fish populations: The Truss System. Turkish Journal of Zoology, 1999, 23: 259-263
    
    262. Turan C, Erguden D, Gurlek M, Basusta N, Turan F. Morphometric structuring of the anchovy (Engraulis encrasicolus L.) in the Black, Aegean and Northeastern Mediterranean Seas. Turkish Journal of Veterinary and Animal Sciences, 2004a, 28: 865-871
    
    263. Turan C, Erguden D, Turan F, Gurlek M. Genetic and morphologic structure of Liza abu (Heckel, 1843) populations from the rivers Orontes, Euphrates and Tigris. Turkish Journal of Veterinary and Animal Sciences, 2004b, 28: 729-734
    
    264. Tuset V M, Lombarte A, Gonzalez J A, Pertusa J F, Lorente M J. Comparative morphology of the sagittal otolith in Serranus spp. Journal of Fish Biology, 2003, 63: 1491-1504
    
    265. Tuset V M, Lozano I J, Gonzalez J A, Pertusa J F, Garcia-Diaz M M. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L. 1758). Journal of Applied Ichthyology, 2003,19: 88-93
    
    266. Unwin M J, Lucas D H. Scale characteristics of wild and hatchery chinook salmon {Oncorhynchus tshawytscha) in the Rakaia River, New Zealand, and their use in stock identification. Canadian Journal of Fisheries and Aquatic Sciences, 1993,50: 2475-2484
    
    267. Unwin M J, Kinnison M T, Quinn T P. Exceptions to semelparity: postmaturation survival, morphology, and energetics of male Chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 1999,56: 1172-1181
    
    268. Velasco G, Reis E G, Vieira J P. Calculating growth parameters of Genidens barbus (Siluriformes, Ariidae) using length composition and age data. Journal of Applied Ichthyology, 2007, 23: 64-69
    
    269. Villalobos H, Rodriguez-Sanchez R. Pattern of increase in gill raker number of the California sardine. Journal of Fish Biology, 2002,60: 256-259
    
    270. Waikinson D A, Gillis D M. Stock differentiation of walleye based on the fourier approximation of averaged scale outline signals. North American Journal of Fisheries Management, 2003, 23: 91-99
    
    271. Walker J A, Bell M A. Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus). Journal of Zoology (London), 2000, 252: 293-302
    272. Weber E D, Fausch K D. Interaction between hatchery and wild salmonids in streams: differences in biology and evidence for competition. Canadian Journal of Fisheries and Aquatic Sciences, 2003,60: 1018-1036
    
    273. Winans G A, Polloard S, Kuligowski D R. Two reproductive life history types of kokanee, Onchorynchus nerka, exhibit multivariate morphometric and protein genetic differentiation. Environmental Biology of Fishes, 2003, 77: 87-100
    
    274. Woody C A, Olsen J, Reynolds J, Bentzen P. Temporal variation in phenotypic and genotypic traits in two sockeye salmon populations, Tustumena Lake, Alaska. Transactions of the American Fisheries Society, 2000,129: 1031-1043
    
    275. Xie S, Cui Y, Li Z. Dietary-morphological relationships of fishes in Liangzi Lake, China. Journal of Fish Biology, 2001, 58: 1714-1729
    
    276. Xiong B X, Ma X F, Wang W M, Qian X Q, Chen Z F, Gao Y. Selecting and fitting on expressive growth equations for different body shapes of fishes. Asian Fisheries Science, 2001,14: 17-23
    
    277. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L. Geometric morphometrics for biologists: A primer. Elsevier Academic Press, San Diego, 2004: 113-119
    
    278. Zylberberg L, Bereiterhahn J. The distribution of tyr-microtubules and glu-microtubules during fish scale regeneration. European Journal of Cell Biology, 1991, 54: 132-139
    
    279. Zylberberg L, Nicolas G. Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freeze-fixation and freeze-substitution. Cell and Tissue Research, 1982,223: 349-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700