面向生化网络的计算技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划的基本完成,生命科学研究进入了”后基因组”时代。在后基因组时代面临的一个重大挑战就是如何从整体层面上揭示生物系统中DNA、RNA、蛋白质和各种生物小分子通过相互作用而产生生命现象。在这一背景下产生了系统生物学,它是一门新兴交叉学科,其目的在于在系统层次上理解生物系统。由于生物系统的内在复杂性要成功地进行系统生物学研究,必须借助数学建模和计算机仿真的方法。建模和仿真生物体和细胞是非常困难的,其原因在于:首先,生物内在的复杂性和生物实验技术的限制,导致生物的知识和实验数据不足;其次,对于复杂的生物过程,发展新建模和仿真的方法来研究复杂的生物系统成为生物学面临的一个重要的挑战。针对当前的需求,本文提出多源数据整合与agent技术结合的方法来研究生化网络,主要研究内容包括:
     1.构建数据整合对于系统生物学研究是非常重要和有帮助的,本文提出一种以生化网络模型为中心的多源数据整合方法,基于此方法构建了一个面向具体生物问题的数据整合平台(BioDB)。它是面向生物具体的问题,围绕选定具体问题将相关的生物数据库进行整合。其次,它是以生物网络模型为中心来构建的数据整合系统,将相关的生物数据库、文献知识、专家知识、生物实验数据和仿真实验数据围绕生物模型来整合。实验显示BioDB为重构代谢网络提供一个有效的数据平台,使得重构不但拥有更好的结果,而且具有快速、高效的特点。
     2.针对生物数据标准无法共享应用的问题,本文提出一种将生物数据进行标准转换的方法(BioBridge),它为生物Pathway数据标准之间提供了一个稳定的桥梁,使得数据可以跨越标准进行共享和使用。数据联邦整合方法中数据访问的效率一直是研究的重要问题,我们提出一种基于有限记忆多LRU的web缓存替换算法来构建了基于web缓存的数据联邦系统(LinkDB),有效的提高了在线的获取数据的效率。
     3.现阶段对生物系统的建模和仿真技术和方法需要进一步的发展,大多数现有的方法致力于简单生物学过程的建模和仿真。本文提出了一种在分子尺度上基于agent的建模方法,基于此方法构建了一个基于agent技术的计算平台来分析生化网络。该方法通过研究agent行为自组织突生形成的复杂宏观现象,来揭示生物系统的内在机制和宏观复杂现象和微观分子行为之间的联系。
     4.通常的,实际的生物系统具有很高的复杂性,这给建模和仿真生化网络的方法提出了更高的计算要求。本文基于agent技术和并行化思想提出的一种分布式的随机仿真方法(DSSA),算法主要是通过将Gillespie的SSA算法有效的分解到基于多agent系统的分布式框架中,同时应用反应关系图来进一步的减少计算和通讯代价。实验显示DSSA算法在时间性能上带来很大的提升,特别是对于一些大型的生化网络系统。
     应用通过多源数据整合的基于agent建模的方法对于生化系统加以研究不仅具有巨大的理论价值,还具有广阔的应用前景,本文在通过多源数据整合来建模和仿真分析生化网络系统的体系下做了一些研究工作,如何进一步完善现有的方法和平台,研究生物系统内在的演进机制是我们未来的方向。
With the human genome project's basic completion, scientific research of life indicates that it has entered a "post-genomic" era. In the post-genome era facing a major challenge is how to reveal the phenomenon of life at the whole level, which arising from interactions among DNA, RNA, proteins and small molecules of various biological systems. Under this background systems biology are proposed, which is a new emerging interdisciplinary and its goal lies in understanding the biological system at system level. Because of inherent complexity of biological system to successfully carry out research of systems biology, we must use mathematical modeling and computer simulation methods for the inherent complexity of biological systems. Modeling and simulation of organisms and cells is very difficult. Several reasons are: Firstly, the inherent complexity of biological system and the constraints of the biological experiment technology, which causes the knowledge and the empirical datum is insufficient. Secondly, the study of molecular randomness of the biological systems and how the process from molecular behaviors in micro to the macro complex phenomenon become a huge challenge. This dissertation, the method of combining multi-source data integration and agent technology to study biochemical network, the main contents include:
     1. Data integration is very important and helps research on systems biology, this dissertation proposes a data integration method with biochemical network model as central and construct a data platform (BioDB), which faces to specific biological issues and integrates of biological databases related to the selected specific issues. We construct the data integration system with biochemical network model as central, and the others include the related biological databases, literature knowledge, expertise, experimental data and simulated data. Experiments showed that our BioDB provides an effective data platform for reconstruction of metabolic network, making reconstruction not only have better results, but also with rapid and efficient performances.
     2. For the problem of biological data standards cannot share their applications, this dissertation proposes a data conversion method among several biological stan-dards(BioBridge), which provide a bridge for several biological data standards and can share these standards and their applications. The efficiency of data access is an important issue of data federation. This dissertation proposes a limited history based multi-LRU web cache replacement algorithm and constructs a data federal system (LinkDB) with web cache, which effectively improving the efficiency of accessing data on-line.
     3. Mostly of the existing methods for modeling and simulation biological systems only fit to simple biological process, so modeling and simulation techniques and methods need further develop. In this dissertation, we propose an agent-based modeling method at molecular scale (ABMMS) and construct a computation platform based on agent technology to analyze biological networks. We can study their complex macro phenomenon emerge from behaviors of agents. It provides a new way to study and understand biological systems, which can reveal internal mechanisms of biological systems and the relation between complex macro phenomenon and molecular behaviors at micro.
     4. Usually, the actual biological systems with the very high complexity, we need the higher performance of computation for modeling and simulation biochemical network. Based on agent technology and parallel theory this dissertation proposes a new distributed-based stochastic simulation algorithms (DSSA) us(?) ing multi-agents system and distributed computing to improve computing performance SSA. DSSA mainly through decomposed SSA into the framework of based on distributed multi-agent system, and through reaction relationship to further reduce the cost of computing and communications. Experiments showed DSSA algorithm is able to improve time performance significantly, especially for some large-scale biochemical networks.
     The application of our method, studying the biochemical system through the multiple source data integration and agent-based modeling method, not only has great theoretical value, but also has broad application prospects. We has done some research work under the framework of study of biochemical network system by multi-source data integration and modeling and simulation. And our future directions are how to further improve the existing methods and platform system for the study of the evolution mechanism of biological systems.
引文
林永旺,张大江.2001.Web缓存的一种新的替换算法[J].软件学报,12(011):1710-1715.
    沈树泉,管又飞.2004.系统生物学——从生物分子到机体反应过程[J].生理科学进展,35(003):281-288.
    方美琪,张树人.2005.复杂系统建模与仿真[M].[S.1.]:中国人民大学出版社.
    卢大用,丁健.2005.21世纪的生物学——系统生物学[J].生物学杂志,22(001):60-60.
    罗若愚,李亦学.2007.系统生物学中建模方法的研究现状及展望[J].生命科学:03.
    李恒,郑浩然,钮俊清,李毅.2008.一种基于完全匹配和分词匹配的混合分词匹配算法[J].北京生物医学工程(已录用).
    王亚辉.2000.世纪之交生物学发展的主要趋势——“后基因组时代”生物学的几个问题[J].中国科学基金,14(003):167-169.
    吴家睿.2002.系统生物学面面观[J].科学(上海),54(006):22-24.
    许树成.2004.系统生物学[J].生物学杂志,21(003):8-11.
    杨胜利.2004.系统生物学研究进展[J].中国科学院院刊,19(001):31-34.
    陈竺.2005.系统生物学-21世纪医学和生物学发展的核心驱动力[J].世界科学,3(2).
    曹顺良,李荣,张忠平,等2003.BioDW:一个整合的生物信息学数据仓库平台[J].计算机科学,30:104-106.
    彭司华,周洪亮,彭小宁,等2004.系统生物学的分析与建模[J].信息与控制,33(004):457-462.
    贺琛,陈肇雄,黄河燕.2004.Web缓存技术综述[J].小型微型计算机系统,25(005):836-842.
    李石法,吴俊,夏小俊,等2005.基因调控数据自动处理系统的设计及实现[J].生物医学工程研究,24(1):1-3.
    骆婷婷,马文丽,姚文娟,等2005.一种通用的,基于Agent的生物资源整合架构[J].上海生物医学工程,26:141-146.
    庄永龙,马飞,周敏,等2005.基于多Agent的生物信息数据整合系统-BioAgent[J].电子学报,33(1):78-82.
    曹顺良,张忠平,李荣,等2005.BioDW-一个生物信息学数据集成系统[J].微计算机应用,26(1):59-62.
    何红波,陈蓉,李宾和李义兵.2005.基于FIPA与生物元数据的生物信息多Agent系统模型[J].中南大学学报(自然科学版),36(5):863-867.
    刘俊,郑浩然,钮俊清.2006.基于多agent系统的细菌趋药性仿真[J].计算机仿真,23(4):138-140.
    郑浩然,刘俊,钮俊清.2006.基于多Agent技术的生化网络仿真平台的实现[J].计算机工程,32(10):268-270.
    ADALSTEINSSON D,MCMILLEN D,ELSTON T C.2004.Biochemical Network Stochastic Simulator (BioNetS):software for stochastic modeling of biochemical networks[J].BMC Bioinformatics,5:24.
    AGGARWAL C,WOLF J,YU P.1999.Caching on the World Wide Web[J].Knowledge and Data Engineering,IEEE Transactions on,11(1):94-107.
    ALBERGHINA L,WESTERHOFF H.2005.Systems Biology:Definitions and Perspectives[M].[S.1.]:Springer.
    ALDHOUS P.1990.Human genome project.Database goes on-line.[J].Nature,347(9).
    ALUR BCIFKVMMPGRH,R.,SCHUG J.2001.Hybrid modeling and simulation of biomolecular networks[J].Hybrid Systems:Computation and Control,4th International Workshop,HSCC 2001:19-32.
    ARJUNAN T K T M,S.2003.Shared-memory multiprocessing of Gillespie's stochastic simulation algorithm on E-Cell3[C].[S.l.]:4th International Conference on Systems Biology in St.Louis.
    ASHBURNER M,BALL C,BLAKE J,et al.2000.Gene Ontology:tool for the unification of biology[J].Nature Genetics,25:25-29.
    AUGEN J.2001.Information technology to the rescue[J].Nature biotechnology,19:39-40.
    BAHN H.2005.Web cache management based on the expected cost of web objects[J].Information and Software Technology,47(9):609-621.
    BAILEY A,THORNE B,PEIRCE S.2007.Multi-cell Agent-based Simulation of the Microvasculature to Study the Dynamics of Circulating Inflammatory Cell Trafficking[J].Annals of Biomedical Engineering,35(6):916-936.
    BALAMASH A,KRUNZ M.2004.An Overview of Web Caching Replacement Algorithms[J].IEEE Communications Surveys & Tutorials,6(2):44-56.
    BALL C,SHERLOCK G,PARK1NSON H,et al.2002.Standards for Microarray Data[M].[S.1.]:[s.n.]:539-539.
    BENSON D,KARSCH-MIZRACHI I,LIPMAN D,et al.2000.GenBank[J].Nucleic Acids Research,28(1):15.
    BIoPAX.http://www.biopax.org[J].
    BIRNEY E,ANDREWS D,CACCAMO M,et al.Ensembl 2006[J].Nucleic Acids Research.
    Blake W, KAern M, Cantor C, et al. 2003. Noise in eukaryotic gene expression[J]. Nature,422(6932):633-637.
    
    Boccara N. 2004. Modeling Complex Systems[M].[S.l.]: Springer.
    
    BOCKMAYR A, COURTOIS A. July 2002. Using hybrid concurrent constraint programming to model dynamic biological systems[J]. 18th International Conference on Logic Programming,ICLP'02, Copenhagen Springer, LNCS, (2401):85-99.
    
    Brazma A, Hingamp P, Quackenbush J, et al. 2001. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data[J]. Nat Genet, 29(4):365-71.
    
    Brazma A, Krestyaninova M, Sarkans U. 2006. Standards for systems biology[J]. Nat Rev Genet, 7(8):593-605.
    
    Breslau L, Cao P, Fan L, et al. 1999. Web caching and Zipf-like distributions: evidence and implications[J]. INFOCOM'99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 1.
    
    Bundschuh R, Hayot F, Jayaprakash C. 2003. Fluctuations and slow variables in genetic networks[J]. Biophys J, 84(3): 1606-15.
    
    Burrage T T, K. 2003. Poisson - Runge - Kutta methods for chemical reaction systems[J]. Proc.Hong Kong Conf. Sci. Comput.
    
    Cannata N, Corradini F, Merelli E, et al. 2005. An agent-oriented conceptual framework for biological systems simulation[J]. Transaction on Computation System Biology, 3:105-122.
    
    Cao P, Irani S. 1997. Cost-aware WWW proxy caching algorithms[J]. Proceedings of the USENIX Symposium on Internet Technologies and Systems on USENIX Symposium on Internet Technologies and Systems table of contents: 18-18.
    
    Cao Y, Li H, Petzold L. 2004a. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems[J]. JChem Phys, 121(9):4059-67.
    
    Cao Y, Petzold L, Rathinam M, et al. 2004b. The numerical stability of leaping methods for stochastic simulation of chemically reacting systems[J]. J. Chem. Phys, 121:12169-12178.
    
    Cao Y, Gillespie D T, Petzold L R. 2005. The slow-scale stochastic simulation algorithm[J].J ChemPhys, 122(1): 14116.
    
    Carel R. 2003. Practical data integration in biopharmaceutical research and development[J].PharmaGenomics, 3:22-35.
    
    CELLML. http://www.cellml.org/[J].
    
    Cheng K, Kambayashi Y. 2000. LRU-SP: A Size-Adjusted and Popularity-Aware LRU Re-placement Algorithm for Web Caching[J]. IEEE Compsac: 48-53.
    DeAngelis D, Mooij W. 2005. Individual-Based Modeling of Ecological and Evolutionary Processes[J]. Annual Review of Ecology, Evolution and Systematics, 36:147-168.
    
    Dhar P, Meng T, Somani S, et al. 2004. Cellware - A multi-algorithmic software for computa- tional systems biology[J]. Bioinformatics, 20(8):1319—1321.
    
    Dhar P K, Meng T C, Somani S, et al. 2005. Grid cellware: the first grid-enabled tool for modelling and simulating cellular processes[J]. Bioinformatics, 21(7): 1284-7.
    
    DI Ventura B, Lemerle C, Michalodimitrakis K, et al. 2006. From in vivo to in silico biology and back.[J]. Nature, 443(7111):527-33.
    
    Duarte N C, Herrgrd M J, Palsson B. 2004. Reconstruction and Validation of Saccharomyces cerevisiae iND750, a Fully Compartmentalized Genome-Scale Metabolic Model[J]. Genome Research, 14:1298-1309.
    
    Dujon B. 1996. The yeast genome project: what did we learn?[J]. Trends in Genetics, 12(7):263-270.
    
    Elowitz M, Levine A, SIGGIA E, et al. 2002. Stochastic Gene Expression in a Single Cell[M].[S.I.]: [s.n.J: 1183-1186.
    
    Emonet T, Macal C, North M, et al. 2005. AgentCell: a digital single-cell assay for bacterial chemotaxis[J]. Bioinformatics, 21(11):2714-2721.
    
    Famili I, Forster J, Nielsen J, et al. 2003. Saccharomyces cerevisiae phenotypes can be pre-dicted by using constraint-based analysis of a genome-scale reconstructed metabolic network[J].Proc Natl Acad Sci U S A, 100(23): 13134-9.
    
    Finney A, Hucka M. 2002. Systems Biology Markup Language (SBML) Level 2: Structures and Facilities for Model Definitions[J]. Available via the World Wide Web at http://www.sbw-sbml.org.
    
    Forster J, Famili I, Fu P, et al. 2003. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network[J]. Genome Res, 13(2):244—53.
    
    ftp://ftp.digital.com/pub/DEC/traces/proxy/webtraces.html D D E C. 1996.
    
    Funahashi A, Morohashi M, Kitano H, et al. 2003. CellDesigner: a process diagram editor for gene-regulatory and biochemical networks[J]. Biosilico, 1(5): 159-162.
    
    Funahashi A, Matsuoka Y, Jouraku A, et al. 2006. CellDesigner: a modeling tool for biochemical networks[J]. Proceedings of the 37th conference on Winter simulation: 1707-1712.
    
    Galperin M. The Molecular Biology Database Collection: 2006 update[J]. Nucleic Acids Res,34:D3-D5.
    
    Galperin M. 2007. The Molecular Biology Database Collection: 2007 update[J]. Nucleic Acids Research, 35(1):D3-D4.
    Gasteiger E, Gattiker A, Hoogland C, et al. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research, 31(13):3784.
    
    Ge H, Walhout A, Vidal M. 2003. Integrating 'omic' information: a bridge between ge-nomics and systems biology[J]. Trends in Genetics, 19(10):551-560.
    
    Gibson B J, M. 2000. Efficient exact stochastic simulation of chemical systems with many species and many channels[J]. The Journal of Physical Chemistry, (A 104): 1876-1889.
    
    Gillespie D. 1977. Exact stochastic simulation of coupled chemical reactions[J]. Journal of Physical Chemistry, 81(25):234O-2361.
    
    Gillespie D. 1992. A rigorous derivation of the chemical master equation[C]. [S.I.]: [s.n.], 188:404-425.
    
    Gillespie D. 2000. The chemical Langevin equation[J]. The Journal of Physical Chemistry,113:297-306.
    
    Gillespie D. 2001. Approximate accelerated stochastic simulation of chemically reacting sys-tems[J]. The Journal of Physical Chemistry, 115:1716-1733.
    
    Gillespie D T. 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[J]. The Journal of Physical Chemistry, (22):403-434.
    
    Gillespie P L, D.T. 2003. Improved leap-size selection for accelerated stochastic simulation.[J].The Journal of Physical Chemistry, 119:8229-8234.
    
    GITTON Y, Dahmane N, Baik S, et al. 2002. A gene expression map of human chromosome 21 orthologues in the mouse[J].Mature, 420(6915):586-590.GO. http://www.geneontology.org/.
    
    Gonzalez P, Cardenas M, Camacho D, et al. 2003. Cellulat: an agent-based intracellular signalling model.[J]. Biosystems, 68(2-3): 171-85.
    
    Grimm V, Revilla E, Berger U, et al. 2005. Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology[J]. Science, 310(5750):987-991.
    
    Guido N, Wang X, Adalsteinsson D, et al. 2006. A bottom-up approach to gene regulation[J].Nature, 439(7078):856-860.
    
    Haseltine E L, Rawlings J B. 2002. Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics[J]. The Journal of Physical Chemistry, (117):6959-6969.
    
    HASSELBRING W. 2000. Information system integration[J]. Communications of the ACM,43(6):32-38.
    
    HASTY J, PRADINES J, DOLNIK M, et al. 2000. Noise-based switches and amplifiers for gene expression[J]. Proc Natl Acad Sci U S A,97(5):2075-80.
    Hermjakob H, Montecchi-Palazzi L, Bader G, et al. 2004. The HUPO PSI's Molecular In-teraction format community standard for the representation of protein interaction data[J]. Nature Biotechnology, 22(2):177-183.
    
    Herrgrd M J, Lee B S, Portnoy V, et al. 2006. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae[J]. Genome Re-search, 16(5):627-635.
    
    Hood L, Heath J, Phelps M, et al. 2004. Systems Biology and New Technologies Enable Predictive and Preventative Medicine[J]. Science, 306(5696):640-643.
    
    Hosseini-Khayat S. 2000. On optimal replacement of nonuniform cache objects[J]. IEEE Transactions on Computers, 49(8):769-778.
    
    Huang Y, NI T, Zhou L, et al. 2003. JXP4BIGI: a generalized, Java XML-based approach for biological information gathering and integration[J]. Bioinformatics, 19(18):2351-2358.
    
    Hubbard T, Andrews D, Caccamo M, et al. Ensembl 2005[J]. Nucleic Acids Research.Hucka M, Finney A, Sauro H M, et al. 2003. The systems biology markup language (SBML):a medium for representation and exchange of biochemical network models[J]. Bioinformatics,19(4):524-531.
    
    Ideker T. 2004. Systems biology 101—what you need to know[J]. Nature Biotechnology,22(4):473-475.
    
    Ideker T, Galitski T, Hood L. 2001a. AN EW A PPROACH TO D ECODING LIFE: Systems Biology[J]. Annual Reviews in Genomics and Human Genetics, 2(l):343-372.
    
    Ideker T, Thorsson V, Ranish J, et al. 2001b. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.[J]. Science, 292(5518):929—34.
    
    JADE. 2006. http://jade.tilab.com[J]. http://jade.tilab.com.
    
    Jin S, Bestavros A. 2001. GreedyDual Web caching algorithm: exploiting the two sources of temporal locality in Web request streams[J]. Computer Communications, 24(2): 174-183.
    
    Joshi-Tope G, Gillespie M, Vastrik I, et al. 2005. Reactome: a knowledgebase of biological pathways[J]. Nucl. Acids Res., 33(suppl_1):D428-432.
    
    Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes[J]. Nucleic Acids Research, 28(1):27-30.
    
    Kanehisa M, Goto S, Hattori M, et al. 2006. From genomics to chemical genomics: new developments in KEGG[J]. Nucleic Acids Research, 34(Database Issue):D354.
    
    Karasavvas K, Baldock R, Burger A. 2004. Bioinformatics integration and agent technol- ogy[J]. Journal of Biomedical Informatics, 37(3):205-219.
    
    Karp P. 2004. BioCyc Database[J]. World Wide Web. http://biocyc. org/BSUB/new-image.
    Karp P, Paley S, Zhu J. 2001. Database verification studies of SWISS-PROT and GenBank[J].Bioinformatics, 17(6):526-532.
    
    Kasprzyk A, Keefe D, Smedley D, et al. 2004. EnsMart: A Generic System for Fast and Flexible Access to Biological Data[J]. Genome Research, 14:160-169.
    
    Keane J, Bradley C, Ebeling C. 2004. A compiled accelerator for biological cell signal-ing simulations[C]ACM/SIGDA International Symposium on Field Programmable Gate Arrays - FPGA. Computer Science and Engineering, University of Washington, Seattle, WA, United States: [s.n.], 12:233-241.
    
    Keele J, Wray J. 2005. Software agents in molecular computational biology[J]. Briefings in Bioinformatics, 6(4):370-379.
    
    Keseler I, Collado-Vides J, Gama-Castro S, et al. 2005. EcoCyc: a comprehensive database resource for Escherichia coli[J]. Nucleic Acids Research, 33(Database Issue):D334.
    
    Khan S, Makkena R, McGeary F, et al. 2003. A multi-agent system for the quantitative simulation of biological networks[J]. Proceedings of the second international joint conference on Autonomous agents and multiagent systems: 385-392.
    
    KlEHL T R, MATTHEYSES R M, SIMMONS M K. 2004. Hybrid simulation of cellular behavior[J].Bioinformatics, 20(3):316-22.
    
    KlTANO H. 2001. Foundations of systems biology[M].[S.1.]: MIT Press Cambridge.Kitano H. 2002a. Computational systems biology[J]. Nature, 420(6912):206-210.
    KITANO H. 2002b. Systems biology: A brief overview[J]. Science, 295(5560): 1662-1664.
    Kitano H. 2003. Cancer robustness: Tumour tactics[J]. Nature, 426(6963):125-125.
    Kitano H. 2004a. Biological robustness[J]. Nature Reviews Genetics, 5(11):826-837.
    
    Kitano H. 2004b. Cancer as a robust system: implications for anticancer therapy.[J]. Nat Rev Cancer, 4(3):227-35.
    
    Klipp E, Herwig R, Kowald A, et al. Systems Biology in Practice-Concepts, Implementation and Application. 2005[M].[S.1.]: Wiley-VCH, Weinheim.
    
    KOHLER, J. AND SCHULZE-KREMER, S.. 2002. The Semantic Metadatabase (SEMEDA): On-tology Based Integration of Federated Molecular Biological Data Sources[J]. In Silico Biology,2(3):219-231.
    
    Kohler J, Philippi S, Lange M. 2003. SEMEDA: ontology based semantic integration of biological databases[J]. Bioinformatics, 19(18):2420-2427.
    
    KOHLER J. 2004. Integration of life science databases[J]. Drug Discovery Today: Biosilico,2(2):61-69.
    KOROBKOVA E, EMONET T, Vilar J, et al. 2004. From molecular noise to behavioural variability in a single bacterium[J]. Nature, 428:574-578.
    
    Krieger C, Zhang P, Mueller L, et al. 2004. MetaCyc: a multiorganism database of metabolic pathways and enzymes[J]. Nucleic Acids Research, 32(Database Issue):D438.
    
    Kriete A, ElLS R. 2006. Computational Systems Biology[M].[S.1.]: Academic Press.
    
    Krummenacker M, Paley S, Mueller L, et al. 2005. Querying and computing with BioCyc databases[J]. Bioinformatics, 21(16):3454-3455.
    
    Lander E, Linton L, Birren B, et al. 2001. Initial sequencing and analysis of the human genome[J]. Nature, 409(6822):860-921.
    
    Lansing J. 2003. Complex Adaptive Systems[J]. Annual Review of Anthropology, 32:183-204.
    
    Le Novere N, Bornstein B, Broicher A, et al. 2006. BioModels Database: a free, cen-tralized database of curated, published, quantitative kinetic models of biochemical and cellular systems[J]. Nucleic Acids Research, 34.D689-691.
    
    Lemerle C, DI Ventura B, Serrano L. 2005. Space as the final frontier in stochastic simula-tions of biological systems[J]. FEBS Lett, 579(8): 1789-1794.
    
    Levchenko A, Bruck J, Sternberg P W. 2000. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties[J]. PNAS,97(11):5818-5823.
    
    Lloyd C, Halstead M, Nielsen P. 2004. CellML: its future, present and past.[J]. Prog Biophys Mol Biol, 85(2-3):433-50.
    
    Lok L. 2004. The need for speed in stochastic simulation[J]. Nat Biotechnol, 22(8):964-5. 1087-0156 (Print) Comment News.
    
    Luciano J. 2005. PAX of mind for pathway researchers[J]. Drug Discovery Today, 10(13):937-942.
    
    LUCK M, MERELLI E. 2006. Agents in bioinformatics[J]. The Knowledge Engineering Review,20(02):117-125.
    
    Macy M, Willer R. 2002. From Factors to Actors: Computational Sociology and Agent-Based Modeling.[J]. Annual Review of Sociology: 143-167.
    
    Matsuno H, Doi A, Nagasaki M, et al. 2000. Hybrid Petri net representation of gene regulatory network[J]. Pac Symp Biocomput: 341-52.
    
    McAdams A, H. H. & Arkin. 1997. Stochastic mechanisms in gene expression[J]. Proc. Natl.Acad. Sci. USA, (94):814-819.
    McCollum J M, Peterson G D, Cox C D, et al. 2005. The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior[J]. Comput Biol Chem.
    
    Merelli E, Armano G, Cannata N, et al. 2007. Agents in bioinformatics, computational and systems biology[J]. Briefings in Bioinformatics, 8(1):45.
    
    Mewes H, Frishman D, Guldener U, et al. 2002. MIPS: a database for genomes and protein sequences[J]. Nucleic Acids Research, 30(1):31.
    
    Miyazaki S, Sugawara H, Ikeo K, et al. 2004. DDBJ in the stream of various biological data[J]. Nucleic Acids Research, 32(90001):W435-W440.
    
    Mo M, Herrgard M, Hannum G, et al. 2005. Connecting extracellular metabolomic profiles to intracellular metabolic states in yeast[J].
    
    Olivier B. 2004. Web-based kinetic modelling using JWS Online[J]. Bioinformatics,20(13):2143-2144.
    
    Palsson B. 2006. Systems Biology: Properties of Reconstructed Networks[M].[S.1.]: Cambridge University Press New York, NY, USA.
    
    PAULSSON J. 2004. Summing up the noise in gene networks[J]. Nature, 427:415-418.
    
    Pennisi E. 2005. How Will Big Pictures Emerge From a Sea of Biological Data?[J]. Science,309(5731):94-94.
    
    Philippi S, Kohler J. 2004. Using XML technology for the ontology-based semantic integration of life science databases[J]. Information Technology in Biomedicine, IEEE Transactions on,8(2):154-160.
    
    PHILIPPI S, KOHLER J. 2006. Addressing the problems with life-science databases for tradi-tional uses and systems biology[J]. Nature reviews. Genetics(Print), 7(6):482-488.
    
    PODLIPNIG S, BOSZORMENYI L. 2003. A Survey of Web Cache Replacement Strategies[J].ACM Computing Surveys, 35(4):374-398.
    
    Puchalka J, KlERZEK A M. 2004. Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks[J]. Biophys J, 86(3): 1357-72.
    
    Rao A A, C.V. 2003. Stochastic chemical kinetics and the quasisteady-state assumption: applica-tion to the Gillespie algorithm[J]. The Journal of Physical Chemistry, (118):4999-5010.
    
    RATHINAM E a, M. 2003. Stiffness in stochastic chemically reacting systems:the implicit tau-leaping method[J]. The Journal of Physical Chemistry, (119): 12784-12794.
    
    RIDWAN A M, Krishnan A, Dhar P. 2004. A Parallel Implementation of Gillespie's Direct Method[C]Computational Science - ICCS 2004, 4th International Conference.Krakow, Poland,June 6-9, 2004, Proceedings, Part II.[S.1.]: Springer. Lecture Notes in Computer Science, vol.3037.
    ROOS D. 2001. COMPUTATIONAL BIOLOGY: Bioinformatics-Trying to Swim in a Sea of Data.Vol.291.
    
    Saam N. 1999. Simulating the Micro-Macro Link: New Approaches to An Old Problem and An Application to Military Coups[J], Sociological Methodology, 29(1):43—79.
    
    Salwinski L, Eisenberg D. 2004. In silico simulation of biological network dynamics[J]. Nat Biotechnol,22(8):1017-9.
    
    Sauro H. 2004. An introduction to biochemical modeling using JDesigner[J]. Claremont, CA:Keck Graduate Institute.
    
    SBML. http://www.sbml.org.
    
    Schilstra M, LI L, Matthews J, et al. 2006. CellML2SBML: conversion of CellML into SBML[J]. Bioinformatics, 22(8):1018-1020.
    
    Schwehm M. 1996. Parallel stochastic simulation of whole-cell models[J]. Journal of Computa-tional Physics, 127(0168): 196-207.
    
    Setubal J, Meidanis J. 1997. Introduction to computational molecular biology[M].[S.1.]: PWS Publishing.
    
    Shah S, Huang Y, Xu T, et al. 2005. Atlas-a data warehouse for integrative bioinformatics[J].BMC Bioinformatics, 6(1):34.
    
    Sheth A, Larson J. 1990. Federated database systems for managing distributed, heterogeneous,and autonomous databases[J]. ACM Computing Surveys (CSUR), 22(3): 183-236.
    
    Simpson M L, Cox C D, Sayler G S. 2003. Frequency domain analysis of noise in autoregulated gene circuits[J]. Proc Natl Acad Sci U S A, 100(8):4551-6.
    
    Simpson M L, Cox C D, Sayler G S. 2004. Frequency domain chemical Langevin analysis of stochasticity in gene transcriptional regulation[J]. J Theor Biol, 229(3):383-94.
    
    Stein L. 2003. Integrating biological databases[J]. Nature Reviews Genetics, 4(5):337-345.
    
    Steinhauser D, Usadel B, Luedemann A, et al. 2004. CSB. DB: a comprehensive systems-biology database[J], Bioinformatics, 20(18):3647-3651.
    
    Stevens R, Goble R, Baker P, et al. 2001. A classification of tasks in bioinformatics[J].Bioinformatics, 17(2): 180-88.
    
    Stevens R, Bodenreider O, Lussier Y. 2006. Semantic webs for life sciences[J]. Pac. Symp.Biocomput: 112-115.
    
    Stromback, Lambrix P, Journals O. 2005. Representations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX[J]. Bioinformatics, 21(24):4401-4407.
    
    Sun R. 2006. Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social Simula-tion[M].[S.1.]: Cambridge University Press.
    Szallasi Z, Stelling J, Periwal V. 2006. System Modeling in Cellular Biology: From Concepts to Nuts and Bolts[M].[S.1.]: The MIT Press.
    
    Takahashi K, Arjunan S, Tomita M. 2005. Space in systems biology of signaling path-ways - towards intracellular molecular crowding in silico[J]. FEBS Lett, 579(8): 1783-1788.
    
    Tateno Y, Miyazaki S, Ota M, et al. 2000. DNA Data Bank of Japan (DDBJ) in collaboration with mass sequencing teams[J]. Nucleic Acids Research, 28(1):24.
    
    Thorne B, Bailey A, Peirce S. 2007. Combining experiments with multi-cell agent-based modeling to study biological tissue patterning[J], Briefings in Bioinformatics, 8(4):245.
    
    Tian T, Burrage K. 2004. Binomial leap methods for simulating stochastic chemical kinetics[J].J Chem Phys, 121(21):10356-64.
    
    Tianfield H. 2003. A Study on the Multi-agent Approach to Large Complex Systems[J].Knowledge-Based Intelligent Information and Engineering Systems. Springer-Verlag, Berlin Hei-delberg New York, Part I (2003): 438-444.
    
    TOLLE D, Le NoveRE N. 2006. Particle-Based Stochastic Simulation in Systems Biology[J].Current Bioinformatics, 1:315-320.
    
    Troisi A, Wong V, Ratner M. 2005. An agent-based approach for modeling molecular self-organization[J]. Proceedings of the National Academy of Sciences, 102(2):255—260.
    
    Uhrmacher A, Degenring D, Zeigler B. 2005. Discrete Event Multi-level Models for Sys-tems Biology[J]. differential equations, 7(8):9-10.
    
    Venter J, Adams M, Myers E, et al. 2001. The Sequence of the Human Genome[J]. Science,291(5507):1304-1351.
    
    Walker D, Hill G, Wood S, et al. 2004a. Agent-based computational modeling of wounded epithelial cell monolayers[J]. NanoBioscience, IEEE Transactions on, 3(3): 153-163.
    
    Walker D, Southgate J, Hill G, et al. 2004b. The epitheliome: agent-based modelling of the social behaviour of cells[J]. Biosystems, 76(1):89-100.
    
    Walker D, Sun T, Smallwood R, et al. 2005. An agent-based model of growth and regeneration in epithelial cell cultures[J]. culture, 3:4.
    
    Walker D, Wood S, Southgate J, et al. 2006. An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation.[J].J Theor Biol: -.
    
    Wang X, GORLITSKY R, Almeida J. 2005. From XML to RDF: how semantic web technologies will change the design of 'omic'standards[J]. Nature Biotechnology, 23:1099-1103.
    
    Webb K, White T. 2004. Cell modeling using agent-based formalisms[J]. Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004. Proceedings of the Third International Joint Con-ference on: 1190-1196.
    Weiss G. 2000. Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-gence[M].[S.1.]: MIT Press.
    
    Wilkinson D. 2006. Stochastic Modelling for Systems Biology[M].[S.1.]: CRC Press.
    
    Williams S, Abrams M, Strandridge C, et al. 1996. Removal policies in network caches for world-wide web documents[J]. Computer Communication Review, 26(4):293-305.
    
    Wong K. 2006. Web cache replacement policies: a pragmatic approach[J]. Network, IEEE,20(1):28-34.
    
    Wooldridge M. 2002. An introduction to multiagent systems[M].[S.1.]: Wiley.
    
    YI T, Huang Y, Simon M, et al. 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control[J], Proceedings of the National Academy of Sciences, 97(9):4649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700