用户名: 密码: 验证码:
表面增强拉曼活性基底热点的构筑及其在有害物质检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从新型的表面增强拉曼光谱(SERS)超灵敏检测方法的开发着手,一方面通过SERS基底上“热点”的可控构筑制备了新型的SERS活性基底,使SERS作为分析手段具有稳定性高、增强能力高、重现性好等优点;另一方面通过SERS技术和其它与分析化学相关的辅助技术联用,建立基于SERS的实际样品分析的方法,应用到有害物质的检测当中。
     本论文创新点主要有以下几个方面:
     1.通过在基片上以可控的方式构筑纳米哑铃结构作为SERS活性基底,实现对2,4,6-三硝基甲苯(TNT)的超灵敏检测。这种纳米哑铃结构是由两个电性相反的金纳米粒子通过静电吸附作用构成。在两种纳米粒子连接处有强度很高的表面电磁场,此处被视为体系中的“热点”。位于此区域的标记分子的拉曼信号会被极大增强。通过体系中TNT分子浓度和构筑的纳米哑铃结构热点数量的对应关系我们间接的完成了对TNT分子的检测。
     2.通过磁性印迹表面增强拉曼光谱(MI-SERS)方法实现对混合体系中环丙沙星的超灵敏检测。这一新的MI-SERS方法是由磁性分离技术、分子印迹技术、SERS技术相结合的分析方法。该方法同时具备了对目标分子特异性提取、快速分离和检测灵敏度高的特点。使得整个检测过程可以在十分钟之内完成,最终的检测限度可以达到10-7摩尔每升。
     3.利用金纳米壳层芯片实现了对牛奶中三聚氰胺分子的一步SERS检测。通过自组装的方法将金纳米壳层粒子组装到基片表面制备出新型的SERS活性基底。由于在纳米粒子壳层上具有许多“热点”,使得该基底具有很高的SERS活性。再加上芯片基底的富集效果,可以大大提高对混合样品中三聚氰胺的检测能力。实验结果表明这种芯片对实际样品中三聚氰胺含量的监控具有很大的应用潜力。
Raman spectroscopy is a versatile tool to gain structural information of complexmolecules under in situ conditions. The intrinsically low Raman signal intensity canbe great enhanced for molecules attached to metallic/plasmonic surfaces by theinteraction of the oscillating electric field of the radiation and the surface plasmons ofthe metal. The resultant surface enhanced Raman phenomenon is associated with anincreased sensitivity, which is enhanced up to10-14orders of magnitude overconventional Raman spectroscopy. Thus surface enhanced Raman spectroscopy(SERS) is a desirable technique to selectively probe trace amounts of analyte in manykinds of system. SERS as an ultrasensitive detection method, has great potential forchemical and biological sensing and imaging applications not only because it isselective and sensitive, but also because it gives little interference from water. Inaddition, since Raman spectra are dominated by the characteristic vibrationalfingerprint of the target molecules SERS offers great advantages when it is applied tostudy complicated systems. Compared to fluorescence spectroscopy, Raman bands aremuch narrower than fluorescence emission bands. Thus, based on the unique Ramansignature of each molecule, SERS can be applied for the detection of several targets atthe same time. Due to its high surface sensitivity and discrimination ability SERScould be a promising analytical method for food safety analysis, drug analysis,explosive detection and environmental pollutant monitoring. However, for different target, differentstrategy of SERS method should be designed and conducted. Thefollowing parts which is included in the thesis, demonstrates how to apply a SERSmethods for hazard detection:
     (1) Ultrasensitive trace analysis for2,4,6-trinitrotoluene using nanodumbbellsurface-enhanced Raman scattering hot spotsWe develop an ultra-sensitive surface-enhanced Raman scattering (SERS)-baseddetection system for2,4,6-trinitrotoluene (TNT) using nano-dumbbell structuresformed by the electrostatic interaction between positively and negatively charged goldnanoparticles. First, Meisenheimer complexes were produced between TNT andL-cysteine on gold substrates, and4-mercaptopyridine (4-MPY) labeled goldnanoparticles (positively charged) were allowed to interact with the Meisenheimercomplexes through the electrostatic interaction between the negatively chargedaromatic ring of the complex molecules and the positively charged nanoparticles.Then, negatively charged gold nanoparticles were added in order to formnano-dumbbells. As a result, many hot junctions were generated by thedumbbellstructures, and the SERS signals were greatly enhanced. Our experimental resultsdemonstrate that the SERS-based assay system using nano-dumbbells provides anultra-sensitive approach for the detection of TNT explosives. It also shows a strongpotential for broad application in detecting various explosive materials used formilitarypurposes.
     (2) Magnetic imprinted surface enhanced Raman scattering (MI-SERS) basedultrasensitive detection of ciprofloxacin from a mixed sampleA new method for fast extraction and ultra-sensitive detection of ciprofloxacin basedon magneticimprinted surface-enhanced Raman scattering (MI-SERS) has beendeveloped in this part. This methodis a combination of three techniques, which are amagnetic separation technique, a molecular imprintingtechnique and asurface-enhanced Raman scattering technique. We designed and fabricatedcore–shellstructured magnetic molecularly imprinted polymers (MIPs) which can be applied to specificallyrecognise ciprofloxacin and extract it from a mixed system. Thewhole extraction and clean-upprocedures are assisted by a magnetic field, whichmakes it much easier than traditional centrifugalseparation. In addition to this,surface-enhanced Raman scattering (SERS) was applied as the detectiontool, whichmakes the detection limit for ciprofloxacin by this method as low as10-9molL-1.Furthermore, we integrated these core–shelled magnetic-MIPs on a magnet chipand detectedciprofloxacin from fetal bovine serum. The whole detection process canbe finished within ten minutesand the limit of detection by this chip can reach10-7mol L-1.
     (3) One-Step Detection of Melamine in Milk by Hollow Gold Chip Based onSurface-enhanced Raman ScatteringA hollow gold (HG) chip with high surface-enhanced Raman scattering (SERS)capability was fabricated and used to monitor the adulteration of milk with melamine.This chip was fabricated with self-assembled hollow gold nanospheres (HGNs) onglass wafers through electrostatic interaction. There are two important advantages forthe use of this HG chip as a detection platform. First, HGNs show a strong SERSenhancement from individual particles due to their capability to localize theelectromagnetic fields around the pinholes in hollow shells. Second, the HG chipimproves the limit of detection through the enrichment effect. The characteristicSERS peak of melamine was used to distinguish it from other kinds of proteins oramino acids, and its intensity was used to monitor the percentage of melamine in milk.With its simple detection procedure (no pretreatment or separation steps), decreasedprocessing time and low detection limit, this HG chip shows a strong potential forbroad applications in melamine detection from real samples.
引文
[1] Raman, C. V., A change of wavelength in light scattering. Nature1928,121,619.
    [2] Raman, C. V.; Krishman, K. S., A new type of secondary radiation. Nature1928,121,501-502.
    [3] Barron, L. D.; Buckingh, A., Rayleigh and Raman Scattering From OpticallyActive Molecules. Mol. Phys.1971,20,1111.
    [4] Jeanmaire, D. L.; VanDuyne, R. P., Surface Raman Spectroelectrochemistry Part I.Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized SilverElectrode. Journal of Electroanalytical Chemistry1977,84,1-20.
    [5] Albrecht, M. G.; Creighton, J. A., Anomalously Intense Raman Spectra ofPyridine at a Silver Electrode. J Am Chem Soc1977,99(15),5215-5217.
    [6] Lombardi, J. R.; Birke, R. L., A Unified Approach to Surface-Enhanced RamanSpectroscopy. Journal of Physical Chemistry C2008,112,5605-5617.
    [7] Chao, R. S.; Khanna, R. K.; Lippincott, E. R., Theoretical and experimentalresonance Raman intensities for the manganate ion. Journal of Raman Spectroscopy1975,3,121-131.
    [8] Smith, Z. J.; Berger, A. J., Integrated Raman-and angular-scattering microscopy.Optics Letters2008,33,714-716.
    [9] Barron, L. D.; Hecht, L.; McColl, I. H., Raman optical activity comes of age.Molecular Physics2004,102,731-744.
    [10]Hermann, P.; Hermelink, A.; Lausch, V.; Holland, G.; Moller, L.; Bannert, N.;Naumann, D., Evaluation of tip-enhanced Raman spectroscopy for characterizingdifferent virus strains. The Analyst2011,136(6),1148-1152.
    [11]Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridineadsorbed at a silver electrode. Chemical Physics Letters1974,26(2),163-166.
    [12]Moskovits, M., Surface roughness and the enhanced intensity of Ramanscattering by molecules adsorbed on metals. The Journal of Chemical Physics1978,69(9),4159.
    [13]Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-enhancednon-linear Raman scattering at the single-molecule level. Chemical Physics1999,247,155-162.
    [14]Kneipp, K.; Kneipp, H.; Manoharan, R.; Hanlon, E. B.; Itzkan, I.; Dasari, R. R.;Feld, M. S., Extremely Large Enhancement Factors in Surface-Enhanced RamanScattering for Molecules on Colloidal Gold Clusters. Applied Spectroscopy1998,52,1493-1497.
    [15]Kneipp, K.; Kneipp, H.; Kartha, V. B.; Manoharan, R.; Deinum, G.; Itzkan, I.;Dasari, R. R.; Feld, M. S., Detection and identification of a single DNA base moleculeusing surface-enhanced Raman scattering (SERS). Physical Review E1998,57,R6283.
    [16]Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld,M. S., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS).Physical Review Letters1997,78,1667-1670.
    [17]Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S.,Population Pumping of Excited Vibrational States by Spontaneous Surface-EnhancedRaman Scattering. Physical Review Letters1996,76,2444-2447.
    [18]Kneipp, K.; Kneipp, H.; Manoharan, R.; Itzkan, I.; Dasari, R. R.; Feld, M. S.,Near-Infrared Surface-Enhanced Raman Scattering Can Detect Single Molecules andObserve 'Hot' Vibrational Transitions. Journal of Raman Spectroscopy1998,29,743-747.
    [19]Krug, J. T.; Wang, G. D.; Emory, S. R.; Nie, S., Efficient Raman Enhancementand Intermittent Light Emission Observed in Single Gold Nanocrystals. Journal ofAmerican chemical Society1999,121,9208-9214.
    [20]Emory, S. R.; Haskins, W. E.; Nie, S., Direct Observation of Size-DependentOptical Enhancement in Single Metal Nanoparticles. Journal of American chemicalSociety1998,120,8009-8010.
    [21]Lyon, W. A.; Nie, S., Confinement and Detection of Single Molecules inSubmicrometer Channels. Analytical Chemistry1997,69,3400-3405.
    [22]Nie, S.; Emory, S. R., Probing Single Molecules and Single Nanoparticles bySurface-Enhanced Raman Scattering. Science1997,275,1102-1106.
    [23]Doering, W. E.; Nie, S., Single-Molecule and Single-Nanoparticle SERS:Examining the Roles of Surface Active Sites and Chemical Enhancement. Journal ofphysical Chemistry B2002,106,311-317.
    [24]Maxwell, D. J.; Emory, S. R.; Nie, S., Nanostructured Thin-Film Materials withSurface-Enhanced Optical Properties. Chemistry of Materials2001,13,1082-1088.
    [25]Moskovits, M., Surface-enhanced spectroscopy. Reviews of Modern Physics1985,57(3),783-826.
    [26]Paesler, M. A.; Moyer, P. J., Near-Field Optics: Theory, Instrumentation, andApplications. Wiley, New York,1996.
    [27]Halas, N. J., Plasmonics: Metallic Nanostructures and Their Optical Properties.SPIE,2003.
    [28]VanDuyne, R. P., Chemical and Biochemical Application of Lasers. AcademicPress, New York,1979; Vol.4.
    [29]Schatz, G. C., Theoretical studies of surface enhanced Raman scattering.Accounts of Chemical Research1984,17(10),370-376.
    [30]Brown, R. J. C.; Wang, J.; Tantra, R.; Yardley, R. E.; Milton, M. J. T.,Electromagnetic modelling of Raman enhancement from nanoscale substrates: a routeto estimation of the magnitude of the chemical enhancement mechanism in SERS.Faraday Discussions2006,132,201-213.
    [31]Moskovits, M., Surface-enhanced Raman spectroscopy: a brief retrospective.Journal of Raman Spectroscopy2005,36,485-496.
    [32]Otto, A., The ‘chemical’(electronic) contribution to surface-enhanced Ramanscattering. Journal of Raman Spectroscopy2005,36,497-509.
    [33]Sun, M.; Wan, S.; Liu, Y.; Jia, Y.; Xu, H., Chemical mechanism ofsurface-enhanced resonance Raman scattering via charge transfer in pyridine–Ag2complex. Journal of Raman Spectroscopy2008,39,402-408.
    [34]Gersten, J. I., The effect of surface roughness on surface enhanced Ramanscattering. The Journal of Chemical Physics1980,72(10),5779-5780.
    [35]Gersten, J. I., Rayleigh, Mie, and Raman scattering by molecules adsorbed onrough surfaces. The Journal of Chemical Physics1980,72(10),5780-5781.
    [36]Gersten, J.; Nitzan, A., Electromagnetic theory of enhanced Raman scattering bymolecules adsorbed on rough surfaces. The Journal of Chemical Physics1980,73(7),3023-3037.
    [37]Gersten, J., Spectroscopic properties of molecules interacting with smalldielectric particles. The Journal of Chemical Physics1981,75(3),1139-1152.
    [38]McCall, S.; Platzman, P., Raman scattering from chemisorbed molecules atsurfaces. Physical Review B1980,22(4),1660-1662.
    [39]McCall, S. L.; Platzman, P. M., Surface enhanced Raman scattering. PhysicsLetters A1980,77(5),381-383.
    [40]Kerker, M., Resonances in electromagnetic scattering by objects with negativeabsorption. Applied Optics1979,18(8),1180-1189.
    [41]Kerker, M.; Siiman, O.; Wang, D.-S., Effect of Aggregates on Extinction andSurface-Enhanced Raman Scattering Spectra of Colloidal Silver. The Journal ofPhysical Chemistry1984,88(15),3168-3170.
    [42]Kerker, M.; Wang, D.-S.; Chew, H., Surface enhanced Raman scattering (SERS)by molecules adsorbed at spherical particles: errata. Applied Optics1980,19(24),4159-4174.
    [43]Wang, D.-S.; Kerker, M., Enhanced Raman scattering by molecules adsorbed atthe surface of colloidal spheroids. Physical Review B1981,24(4),1777-1790.
    [44]Wang, D.-S.; Kerker, M., Absorption and luminescence of dye-coated silver andgold particles. Physical Review B1982,25(4),2433-2449.
    [45]Jackson, J. D., Electromagnetic Theory.3rd ed.; Wiley, New York,1998.
    [46]Xu, H. X.; Kall, M., Polarization-Dependent Surface-Enhanced RamanSpectroscopy of Isolated Silver Nanoaggregates. Chemphyschem2003,4,1001-1005.
    [47]Xu, H.; Aizpurua, J.; Kall, M.; Apell, P., Electromagnetic contributions tosingle-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E2000,62(3),4318-4324.
    [48]Chang, R. K.; Furtak, T. E., Surface Enhanced Raman Scattering. Plenum Press,New York,1982.
    [49]Demuth, J. E.; Christmann, K.; Sanda, P. N., The vibrations and structure ofpyridine chemisorbed on Ag(111): the occurrence of a compressional phasetransformation. Chemical Physics Letters1980,76(2),201-206.
    [50]Billmann, J.; Otto, A., Electronic surface state contribution to surface enhancedRaman scattering. Solid State Communications1982,44(2),105-107.
    [51]Otto, A., The ‘che’(electronic) contribution to surface-enhanced Ramanscattering. Journal of Raman Spectroscopy2005,36,497-509.
    [52]Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W., Surface-enhanced Ramanscattering. Journal of Physics: Condensed Matter1992,4,1143-1212.
    [53]Jensen, L.; Aikens, C. M.; Schatz, G. C., Electronic structure methods forstudying surface-enhanced Raman scattering. Chemical Society reviews2008,37,1061-1073.
    [54]Otto, A., Theory of First Layer and Single Molecule Surface Enhanced RamanScattering (SERS). Phys. Stat. Sol. A2001,188(4),1455-1470.
    [55]Abe, H.; Manzel, K.; Schulze, W.; Moskovits, M.; DiLella, D. P., Surface‐enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles. Journalof Chemical Physics1981,74(792-797).
    [56]Liang, E. J.; Kiefer, W., Chemical Effect of SERS with Near-Infrared Excitation.Journal of Raman Spectroscopy1996,27,879-885.
    [57]Zhao, L.; Jensen, L.; Schatz, G. C., Pyridine-Ag20Cluster: A Model System forStudying Surface-Enhanced Raman Scattering. Journal of American Chemical Society2006,128,2911-2919.
    [58]Nikoobakht, B.; Wang, J.; A.El-Sayed, M., Surface-enhanced Raman scattering ofmolecules adsorbed on gold nanorods: off-surface plasmon resonance condition.Chemical Physics Letters2002,366,17-23.
    [59]Cotton, T. M.; Kim, J.-H.; Uphaus, R. A., Spectroscopic and electrochemicalstudies of oriented monolayers on electrode surfaces. Microchemical Journal1990,42(1),44-71.
    [60]Brolo, A. G.; Germain, P.; Hager, G., Investigation of the Adsorption ofL-Cysteine on a Polycrystalline Silver Electrode by Surface-Enhanced RamanScattering (SERS) and Surface-Enhanced Second Harmonic Generation (SESHG).Journal of Physical Chemistry B2002,106,5982-5987.
    [61]Chen, S.-P.; Hosten, C. M.; Vivoni, A.; Birke, R. L.; Lombardi, J. R., SERSInvestigation of NAD+Adsorbed on a Silver Electrode. Langmuir2002,18,9888-9900.
    [62]Dick, L. A.; McFarland, A. D.; Haynes, C. L.; VanDuyne, R. P., Metal Film overNanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS):Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss.Journal of Physical Chemistry B2002,106,853-860.
    [63]Hoogvliet, J. C.; Dijksma, M.; Kamp, B.; vanBennekom, W. P., ElectrochemicalPretreatment of Polycrystalline Gold Electrodes To Produce a Reproducible SurfaceRoughness for Self-Assembly: A Study in Phosphate Buffer pH7.4. AnalyticalChemistry2000,72,2016-2021.
    [64]Ozeki, T.; Odziemkowski, M.; Irish, D. E., Study of Adsorption, Condensation,Orientation, and Reduction of Quinoline Molecules on a Pure Mercury ElectrodeUsing Raman Microprobe Spectroscopy. Journal of Solution Chemistry2000,29(10),861-878.
    [65]Zhang, R.-Y.; Pang, D.-W.; Zhang, Z.-L.; Yan, J.-W.; Yao, J.-L.; Tian, Z.-Q.; Mao,B.-W.; Sun, S.-G., Investigation of Ordered ds-DNA Monolayers on Gold Electrodes.Journal of Physical Chemistry B2002,106,11233-11239.
    [66]Junwei Zheng; Li, X.; Gu, R.; Lu, T., Comparison of the Surface Properties ofthe Assembled Silver Nanoparticle Electrode and Roughened Silver Electrode.Journal of Physical Chemistry B2002,106,1019-1023.
    [67]Leopold, N.; Lendl, B., A New Method for Fast Preparation of HighlySurface-Enhanced Raman Scattering (SERS) Active Silver Colloids at RoomTemperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride.Journal of Physical Chemistry B2003,107,5723-5727.
    [68]Alvarez-Puebla, R. A.; Aroca, R. F., Synthesis of Silver Nanoparticles withControllable Surface Charge and Their Application to Surface-Enhanced RamanScattering. Analytical Chemistry2009,81,2280-2285.
    [69]Bohn, J. E.; Ru, E. C. L.; Etchegoin, P. G., A Statistical Criterion for Evaluatingthe Single-Molecule Character of SERS Signals. Journal of Physical Chemistry C2010,114,7330-7335.
    [70]Camden, J. P.; Dieringer, J. A.; Wang, Y.; Masiello, D. J.; Marks, L. D.; Schatz, G.C.; VanDuyne, R. P., Probing the Structure of Single-Molecule Surface-EnhancedRaman Scattering Hot Spots. Journal of American Chemical Society2008,130,12616-12617.
    [71]Frens, G., Controlled Nucleation for the Regulation of the Particle Size inMonodisperse Gold Suspensions. Nature Physical Science1973,241,20-22.
    [72]Lee, P. C.; Meisel, D., Adsorption and Surface-Enhanced Raman of Dyes onSilver and Gold Sols. Journal of Physical Chemistry1982,86,3391-3395.
    [73]Schwartzberg, A. M.; Oshiro, T. Y.; Zhang, J. Z.; Huser, T.; Talley, C. E.,Improving Nanoprobes Using Surface-Enhanced Raman Scattering from30-nmHollow Gold Particles. Analytical Chemistry2006,78,4732-4736.
    [74]Liang, H.-P.; Wan, L.-J.; Bai, C.-L.; Jiang, L., Gold Hollow Nanospheres:Tunable Surface Plasmon Resonance Controlled by Interior-Cavity Sizes. Journal ofPhysical Chemistry B2005,109(7795-7800).
    [75]Schwartzberg, A. M.; Olson, T. Y.; Talley, C. E.; Zhang, J. Z., Synthesis,Characterization, and Tunable Optical Properties of Hollow Gold Nanospheres.Journal of Physical Chemistry B2006,110,19935-19944.
    [76]Guo, H.; Ruan, F.; Lu, L.; Hu, J.; Pan, J.; Yang, Z.; Ren, B., Correlating the Shape,Surface Plasmon Resonance, and Surface-Enhanced Raman Scattering of GoldNanorods. Journal of Physical Chemistry C2009,113,10459-10464.
    [77]Yoon, I.; Kang, T.; Choi, W.; Kim, J.; Yoo, Y.; Joo, S.-W.; Park, Q.-H.; Ihee, H.;Kim, B., Single Nanowire on a Film as an Efficient SERS-Active Platform. Journal ofAmerican chemical Society2009,131,758-762.
    [78]Mahmoud, M. A.; Tabor, C. E.; El-Sayed, M. A., Surface-Enhanced RamanScattering Enhancement by Aggregated Silver Nanocube Monolayers Assembled bythe Langmuir-Blodgett Technique at Different Surface Pressures. Journal of PhysicalChemistry C2009,113,5493-5501.
    [79]Rycenga, M.; Langille, M. R.; Personick, M. L.; Ozel, T.; Mirkin, C. A.,Chemically isolating hot spots on concave nanocubes. Nano letters2012,12,6218-6222.
    [80]Khoury, C. G.; Vo-Dinh, T., Gold Nanostars For Surface-Enhanced RamanScattering: Synthesis, Characterization and Optimization. Journal of PhysicalChemistry C2008,112,18849-18859.
    [81]Zhang, P.; Guo, Y., Surface-Enhanced Raman Scattering inside Metal Nanoshells.Journal of American Chemical Society2009,131,3808-3809.
    [82]Yang, Y.; Shi, J.; Kawamura, G.; Nogami, M., Preparation of Au–Ag, Ag–Aucore–shell bimetallic nanoparticles for surface-enhanced Raman scattering. ScriptaMaterialia2008,58,862-865.
    [83]Heck, K. N.; Janesko, B. G.; Scuseria, G. E.; Halas, N. J.; Wong, M. S., ObservingMetal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced RamanSpectroscopy on Pd-Au Nanoshells. Journal of American Chemical Society2008,130,16592-16600.
    [84]Zhai, Y.; Zhai, J.; Wang, Y.; Guo, S.; Ren, W.; Dong, S., Fabrication of Iron OxideCore/Gold Shell Submicrometer Spheres with Nanoscale Surface Roughness forEfficient Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C2009,113,7009-7014.
    [85]Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.;Zhang, W.; Zhou, Z. Y.; Wu de, Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q., Shell-isolatednanoparticle-enhanced Raman spectroscopy. Nature2010,464(18),392-395.
    [86]Lee, S.; Chon, H.; Yoon, S. Y.; Lee, E. K.; Chang, S. I.; Lim, D. W.; Choo, J.,Fabrication of SERS-fluorescence dual modal nanoprobes and application tomultiplex cancer cell imaging. Nanoscale2012,4,124-129.
    [87]Tian, Z. Q.; Ren, B., Adsorption and reaction at electrochemical interfaces asprobed by surface-enhanced Raman spectroscopy. Annual review of physicalchemistry2004,55,197-229.
    [88]Willets, K. A.; VanDuyne, R. P., Localized surface plasmon resonancespectroscopy and sensing. Annual review of physical chemistry2007,58,267-297.
    [89]Yang, L.; Ruan, W.; Jiang, X.; Zhao, B.; Xu, W.; Lombardi, J. R., Contribution ofZnO to Charge-Transfer Induced Surface-Enhanced Raman Scattering inAu/ZnO/PATP Assembly. Journal of Physical Chemistry C2009,113,117-120.
    [90]Wang, Y.; Zhang, J.; Jia, H.; Li, M.; Zeng, J.; Yang, B.; Zhao, B.; Xu, W.,Mercaptopyridine Surface-Functionalized CdTe Quantum Dots with Enhanced RamanScattering Properties. Journal of Physical Chemistry C2008,112,996-1000.
    [91]Yang, L.; Jiang, X.; Ruan, W.; Zhao, B.; Xu, W.; Lombardi, J. R., Observation ofEnhanced Raman Scattering for Molecules Adsorbed on TiO2Nanoparticles:Charge-Transfer Contribution. Journal of Physical Chemistry C2008,112,20095-20098.
    [92]Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin,D.; Rajh, T., SERS of semiconducting nanoparticles (TiO2hybrid composites).Journal of American Chemical Society2009,131,6040-6041.
    [93]Han, X. X.; Chen, L.; Kuhlmann, U.; Schulz, C.; Weidinger, I. M.; Hildebrandt, P.,Magnetic titanium dioxide nanocomposites for surface-enhanced resonance Ramanspectroscopic determination and degradation of toxic anilines and phenols. AngewChem Int Ed2014,53,2481-2484.
    [94]Pisarek, M.; Roguska, A.; Kudelski, A.; Andrzejczuk, M.; Janik-Czachor, M.;Kurzyd owski, K. J., The role of Ag particles deposited on TiO2orAl2O3self-organized nanoporous layers in their behavior as SERS-active andbiomedical substrates. Materials Chemistry and Physics2013,139,55-65.
    [95]Lei, Y.; Liu, X.; Yan, X.; Song, Y.; Kang, Z.; Luo, N.; Zhang, Y., Multicenter UricAcid Biosensor Based on Tetrapod-Shaped ZnO Nanostructures. Journal ofNanoscience and Nanotechnology2012,12,513-518.
    [96]Palaniappan, P. R.; Pramod, K. S., Raman spectroscopic investigation on themicroenvironment of the liver tissues of Zebrafish (Danio rerio) due to titaniumdioxide exposure. Vibrational Spectroscopy2011,56,146-153.
    [97]Ye, J.; Dorpe, P. V.; Roy, W. V.; Borghs, G.; Maes, G., Fabrication,Characterization, and Optical Properties of Gold Nanobowl Submonolayer Structures.Langmuir2009,25,1822-1827.
    [98]Mahajan, S.; Abdelsalam, M.; Suguwara, Y.; Cintra, S.; Russell, A.; Baumberg, J.;Bartlett, P., Tuning plasmons on nano-structured substrates for NIR-SERS. PhysicalChemistry Chemical Physics2007,9,104-109.
    [99]Farcau, C.; Astilean, S., Silver half-shell arrays with controlled plasmonicresponse for fluorescence enhancement optimization. Applied Physics Letters2009,95,193110.
    [100] Liu, X.; Linn, N. C.; Sun, C. H.; Jiang, P., Templated fabrication of metalhalf-shells for surface-enhanced Raman scattering. Physical Chemistry ChemicalPhysics2010,12,1379-1387.
    [101] Jensen, T. R.; Malinsky, M. D.; Haynes, C. L.; VanDuyne, R. P., NanosphereLithography: Tunable Localized Surface Plasmon Resonance Spectra of SilverNanoparticles. Journal of Physical Chemistry B2000,104,10549-10556.
    [102] Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; VanDuyne, R. P., NanosphereLithography: Effect of Substrate on the Localized Surface Plasmon ResonanceSpectrum of Silver Nanoparticles. Journal of Physical Chemistry B2001,105,2343-2350.
    [103] McFarland, A. D.; Young, M. A.; Dieringer, J. A.; VanDuyne, R. P.,Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy. Journal ofPhysical Chemistry B2005,109,11279-11285.
    [104] Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; VanDuyne, R. P., Surface-enhancedRaman spectroscopy. Annu. Rev. Anal. Chem.2008,1,601-626.
    [105] Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.;Zhang, W.; Zhou, Z. Y.; Wu de, Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q., Shell-isolatednanoparticle-enhanced Raman spectroscopy. Nature2010,464,392-395.
    [106] Anema, J. R.; Li, J. F.; Yang, Z. L.; Ren, B.; Tian, Z. Q., Shell-isolatednanoparticle-enhanced Raman spectroscopy: expanding the versatility ofsurface-enhanced Raman scattering. Annual review of analytical chemistry2011,4,129-150.
    [107] Li, J. F.; Ding, S. Y.; Yang, Z. L.; Bai, M. L.; Anema, J. R.; Wang, X.; Wang,A.; Wu, D. Y.; Ren, B.; Hou, S. M.; Wandlowski, T.; Tian, Z. Q., Extraordinaryenhancement of Raman scattering from pyridine on single crystal Au and Ptelectrodes by shell-isolated Au nanoparticles. Journal of American Chemical Society2011,133,15922-15925.
    [108] Liu, B.; Blaszczyk, A.; Mayor, M.; Wandlowski, T., Redox-Switching in aViologen-type Adlayer: An Electrochemical Shell-Isolated Nanoparticle EnhancedRaman Spectroscopy Study on Au(111)-(1x1) Single Crystal Electrodes. ACS Nano2011,5(7),5662-5672.
    [109] Uzayisenga, V.; Lin, X. D.; Li, L. M.; Anema, J. R.; Yang, Z. L.; Huang, Y. F.;Lin, H. X.; Li, S. B.; Li, J. F.; Tian, Z. Q., Synthesis, characterization, and3D-FDTDsimulation of Ag@SiO2nanoparticles for shell-isolated nanoparticle-enhanced Ramanspectroscopy. Langmuir2012,28,9140-9146.
    [110] Yang, D.; Xia, L.; Zhao, H.; Hu, X.; Liu, Y.; Li, J.; Wan, X., Preparation andcharacterization of an ultrathin carbon shell coating a silver core for shell-isolatednanoparticle-enhanced Raman spectroscopy. Chemical communications2011,47,5873-5875.
    [111] Cunningham, D.; Littleford, R. E.; Smith, W. E.; Lundahl, P. J.; Khan, I.;McComb, D. W.; Graham, D.; Laforest, N., Practical control of SERRS enhancement.Faraday Discussions2006,132,135-145.
    [112] Xu, H.; Bjerneld, E. J.; K ll, M.; B rjesson, L., Spectroscopy of SingleHemoglobin Molecules by Surface Enhanced Raman Scattering. Physical ReviewLetters1999,83(21),4357-4360.
    [113] McLaughlin, C.; MacMillan, D.; McCardle, C.; Smith, W. E., QuantitativeAnalysis of Mitoxantrone by Surface-Enhanced Resonance Raman Scattering.Analytical Chemistry2002,74,3160-3167.
    [114] McAnally, G.; McLaughlin, C.; Brown, R.; Robson, D. C.; Faulds, K.;Tackley, D. R.; Smith, W. E.; Graham, D., SERRS dyes. Part I. Synthesis ofbenzotriazole monoazo dyes as model analytes for surface enhanced resonanceRaman scattering. The Analyst2002,127,838-841.
    [115] Fruk, L.; Grondin, A.; Smith, W. E.; Graham, D., A new approach tooligonucleotide labelling using Diels–Alder cycloadditions and detection by SERRS.Chemical communications2002,2100-2101.
    [116] Graham, D.; Fruk, L.; Ewen Smith, W., Detection of DNA probes using DielsAlder cycloaddition and SERRS. The Analyst2003,128,692-699.
    [117] Munro, C. H.; Smith, W. E.; Garner, M.; Clarkson, J.; White, P. C.,Characterization of the Surface of a Citrate-Reduced Colloid Optimized for Use as aSubstrate for Surface-Enhanced Resonance Raman Scattering. Langmuir1995,11,3712-3720.
    [118] Faulds, K.; Littleford, R. E.; Graham, D.; Dent, G.; Smith, W. E., Comparisonof Surface-Enhanced Resonance Raman Scattering from Unaggregated andAggregated Nanoparticles. Analytical Chemistry2004,76,592-598.
    [119] Fruk, L.; Graham, D., The Electronic Effects on the Formation ofN-ArylMaleimides and Isomaleimides. Heterocycles2003,60(10),2305-2313.
    [120] McCabe, A. F.; Graham, D.; McKeown, D.; Smith, W. E., Benzotriazolerhodamine B: effect of adsorption on surface-enhanced resonance Raman scattering.Journal of Raman Spectroscopy2005,36,45-49.
    [121] Lyandres, O.; Shah, N. C.; Yonzon, C. R.; WalshJr., J. T.; Glucksberg, M. R.;VanDuyne, R. P., Real-Time Glucose Sensing by Surface-Enhanced RamanSpectroscopy in Bovine Plasma Facilitated by a Mixed Decanethiol/MercaptohexanolPartition Layer. Analytical Chemistry2005,77,6134-6139.
    [122] Norrod, K. L.; Sudnik, L. M.; Rousell, D.; Rowlen, K. L., QuantitativeComparison of Five SERS Substrates: Sensitivity and Limit of Detection. AppliedSpectroscopy1997,51(7),994-1001.
    [123] Mills, A.; Hill, G.; Stewart, M.; Graham, D.; Smith, W. E.; Hodgen, S.;Halfpenny, P. J.; Faulds, K.; Robertson, P., Characterization of Novel Ag on TiO2Films for Surface-Enhanced Raman Scattering. Applied Spectroscopy2004,58(8),922-928.
    [124] Keir, R.; Sadler, D.; Smith, W. E., Preparation of Stable, Reproducible SilverColloids for use as Surface-Enhanced Resonance Raman Scattering Substrates.Applied Spectroscopy2002,56(5),551-559.
    [125] Graham, D.; Smith, W. E.; Linacre, A. M. T.; Munro, C. H.; Watson, N. D.;White, P. C., Selective Detection of Deoxyribonucleic Acid at UltralowConcentrations by SERRS. Analytical Chemistry1997,69,4703-4707.
    [126] Faulds, K.; Smith, W. E.; Graham, D., Evaluation of Surface-EnhancedResonance Raman Scattering for Quantitative DNA Analysis. Analytical Chemistry2004,76,412-417.
    [127] Faulds, K.; Stewart, L.; Smith, W. E.; Graham, D., Quantitative detection ofdye labelled DNA using surface enhanced resonance Raman scattering (SERRS) fromsilver nanoparticles. Talanta2005,67,667-671.
    [128] Faulds, K.; Barbagallo, R. P.; Keer, J. T.; Smith, W. E.; Graham, D., SERRSas a more sensitive technique for the detection of labelled oligonucleotides comparedto fluorescence. The Analyst2004,129,567-568.
    [129] Graham, D.; Mallinder, B. J.; Whitcombe, D.; Smith, W. E., SurfaceEnhanced Resonance Raman Scattering (SERRS)DA First Example of its Use inMultiplex Genotyping. Chemphyschem: a European journal of chemical physics andphysical chemistry2001,2(12),746-748.
    [130] Docherty, F. T.; Monaghan, P. B.; Keir, R.; Graham, D.; Smith, W. E.; Cooper,J. M., The first SERRS multiplexing from labelled oligonucleotides in a microfluidicslab-on-a-chip. Chemical Communication2004,118-119.
    [131] Faulds, K.; Smith, W. E.; Graham, D.; Lacey, R. J., Assessment of silver andgold substrates for the detection of amphetamine sulfate by surface enhanced Ramanscattering (SERS). The Analyst2002,127,282-286.
    [132] McHugh, C. J.; Smith, W. E.; Lacey, R.; Graham, D., The first controlledreduction of the high explosive RDX. Chemical communications2002,2514-2515.
    [133] Caygill, J. S.; Davis, F.; Higson, S. P., Current trends in explosive detectiontechniques. Talanta2012,88,14-29.
    [134] Golightly, R. S.; Doering, W. E.; Natan, M. J., Surface-Enhanced RamanSpectroscopy and Homeland Security: A Perfect Match? ACS Nano2009,3(10),2859-2869.
    [135] Smith, K. D.; McCord, B. R.; MacCrehan, W. A.; Mount, K.; Rowe, W. F.,Detection of Smokeless Powder Residue on Pipe Bombs by Micellar ElectrokineticCapillary Electrophoresis. Journal of Forensic Sciences1999,44(4),789-794.
    [136] Charles, P. T.; Dingle, B. M.; Bergen, S. V.; Gauger, P. R.; Jr., C. H. P.;Kusterbeck, A. W., Enhanced biosensor performance for on-site field analysis ofexplosives in water using solid-phase extraction membranes. Field AnalyticalChemistry and Technology2001,5(6),272-280.
    [137] Belden, J. B.; Lotufo, G. R.; Chambliss, C. K.; Fisher, J. C.; Johnson, D. R.;Boyd, R. E.; Sims, J. G., Accumulation of14C-trinitrotoluene and relatednonextractable (bound) residues in Eisenia fetida. Environmental pollution2011,159(5),1363-1368.
    [138] Montgomery, M. T.; Coffin, R. B.; Boyd, T. J.; Smith, J. P.; Walker, S. E.;Osburn, C. L.,2,4,6-Trinitrotoluene mineralization and bacterial production rates ofnatural microbial assemblages from coastal sediments. Environmental pollution2011,159(12),3673-3680.
    [139] Qian, K.; Liu, H.; Yang, L.; Liu, J., Functionalized shell-isolatednanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene.The Analyst2012,137,4644-4646.
    [140] Yang, L.; Ma, L.; Chen, G.; Liu, J.; Tian, Z. Q., Ultrasensitive SERSdetection of TNT by imprinting molecular recognition using a new type of stablesubstrate. Chemistry A European Journal2010,16,12683-12693.
    [141] Shao, M. W.; Lu, L.; Wang, H.; Wang, S.; Zhang, M. L.; Ma, D. D.; Lee, S.T., An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticlesfrom beta-silver vanadate and copper. Chemical communications2008,2310-2312.
    [142] Ko, H.; Sehoon Chang; Tsukruk, V. V., Porous Substrates for Label-FreeMolecular Level Detection of Nonresonant Organic Molecules. ACS Nano2009,3(1),181-188.
    [143] Sun, Y.; Liu, K.; Miao, J.; Wang, Z.; Tian, B.; Zhang, L.; Li, Q.; Fan, S.;Jiang, K., Highly sensitive surface-enhanced Raman scattering substrate made fromsuperaligned carbon nanotubes. Nano letters2010,10,1747-1753.
    [144] Demeritte, T.; Kanchanapally, R.; Fan, Z.; Singh, A. K.; Senapati, D.; Dubey,M.; Zakar, E.; Ray, P. C., Highly efficient SERS substrate for direct detection ofexplosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT
    hybrid. The Analyst2012,137,5041-5045.[145] An, Q.; Zhang, P.; Li, J. M.; Ma, W. F.; Guo, J.; Hu, J.; Wang, C. C.,Silver-coated magnetite-carbon core-shell microspheres as substrate-enhanced SERSprobes for detection of trace persistent organic pollutants. Nanoscale2012,4,
    5210-5216.[146] Sajanlal, P. R.; Pradeep, T., Functional hybrid nickel nanostructures asrecyclable SERS substrates: detection of explosives and biowarfare agents. Nanoscale
    2012,4,3427-3437.[147] Zhou, H.; Zhang, Z.; Jiang, C.; Guan, G.; Zhang, K.; Mei, Q.; Liu, R.; Wang,S., Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonantmolecule on a top-closed silver nanotube array. Analytical Chemistry2011,83,
    6913-6917.[148] Xu, Z.; Hao, J.; Braida, W.; Strickland, D.; Li, F.; Meng, X.,Surface-enhanced Raman scattering spectroscopy of explosive2,4-dinitroanisole
    using modified silver nanoparticles. Langmuir2011,27,13773-13779.[149] Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H.; Ray, P. C., GoldNanoparticle Based Label-Free SERS Probe for Ultrasensitive and SelectiveDetection of Trinitrotoluene. Journal of American Chemical Society2009,131,
    13806-13812.[150] McHugh, C. J.; Kennedy, A. R.; Smith, W. E.; Graham, D., TNT stilbene
    derivatives as SERRS active species. The Analyst2007,132,986-988.[151] Zhou, X.; Liu, H.; Yang, L.; Liu, J., SERS and OWGS detection of dynamictrapping molecular TNT based on a functional self-assembly Au monolayer film. The
    Analyst2013,138,1858-1864.[152] Niidome, T.; Nakashima, K.; Takahashi, H.; Niidome, Y., Preparation ofprimary amine-modified gold nanoparticles and their transfection ability intocultivated cells. Chemical Communicaions2004,1978-1979.
    [153] Yang, W.; Gooding, J. J.; Hibbert, D. B., Characterisation of gold electrodesmodified with self-assembled monolayers of L-cysteine for the adsorptive strippinganalysis of copper. Journal of Electroanalytical Chemistry2001,516,10-16.
    [154] Fant, F.; Sloovere, A. D.; Matthijsen, K.; Marle, C.; Fantroussi, S. E.;Verstraete, W., The use of amino compounds for binding2,4,6-trinitrotoluene in water.Environmental pollution2001,111,503-507.
    [155] Lee, J. S.; Han, M. S.; Mirkin, C. A., Colorimetric detection of mercuric ion(Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew ChemInt Ed2007,46,4093-4096.
    [156] Du, Y.; Liu, R.; Liu, B.; Wang, S.; Han, M. Y.; Zhang, Z., Surface-enhancedRaman scattering chip for femtomolar detection of mercuric ion (II) by ligandexchange. Analytical Chemistry2013,85,3160-3165.
    [157] Kanda, V.; Kariuki, J. K.; Harrison, D. J.; McDermott, M. T., Label-FreeReading of Microarray-Based Immunoassays with Surface Plasmon ResonanceImaging. Analytical Chemistry2004,76,7257-7262.
    [158] Qian, X.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.;Yang, L.; Young, A. N.; Wang, M. D.; Nie, S., In vivo tumor targeting andspectroscopic detection with surface-enhanced Raman nanoparticle tags. Naturebiotechnology2008,26(1),83-90.
    [159] Mulvihill, M.; Tao, A.; Benjauthrit, K.; Arnold, J.; Yang, P.,Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminatedwater. Angew Chem Int Ed2008,47,6456-6460.
    [160] Ai, K.; Liu, Y.; Lu, L., Hydrogen-Bonding Recognition-Induced ColorChange of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk andInfant Formula. Journal of American Chemical Society2009,131,9496-9497.
    [161] Li, C.-L.; Liu, K.-T.; Lin, Y.-W.; Chang, H.-T., Fluorescence Detection ofLead(II) Ions Through Their Induced Catalytic Activity of DNAzymes. AnalyticalChemistry2011,83,225-230.
    [162] Du, J.; Hu, M.; Fan, J.; Peng, X., Fluorescent chemodosimeters using "mild"chemical events for the detection of small anions and cations in biological andenvironmental media. Chemical Society reviews2012,41,4511-4535.
    [163] Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R., SERSas a bioassay platform: fundamentals, design, and applications. Chemical Societyreviews2008,37,1001-1011.
    [164] Haupt, K.; Mosbach, K., Molecularly Imprinted Polymers and Their Use inBiomimetic Sensors. Chemical Reviews2000,100,2495-2504.
    [165] Sharma, P. S.; D’Souza, F.; Kutner, W., Molecular imprinting for selectivechemical sensing of hazardous compounds and drugs of abuse. Trends in AnalyticalChemistry2012,34,59-77.
    [166] Whitcombe, M. J.; Chianella, I.; Larcombe, L.; Piletsky, S. A.; Noble, J.;Porter, R.; Horgan, A., The rational development of molecularly imprintedpolymer-based sensors for protein detection. Chemical Society reviews2011,40,1547-1571.
    [167] Wulff, G., Enzyme-like Catalysis by Molecularly Imprinted Polymers.Chemical Reviews2002,102(1),1-27.
    [168] Chen, L.; Xu, S.; Li, J., Recent advances in molecular imprinting technology:current status, challenges and highlighted applications. Chemical Society reviews2011,40,2922-2942.
    [169] Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R.N., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization,Physicochemical Characterizations, and Biological Applications. Chemical Reviews2008,108,2064-2110.
    [170] Li, Y.; Huang, G.; Zhang, X.; Li, B.; Chen, Y.; Lu, T.; Lu, T. J.; Xu, F.,Magnetic Hydrogels and Their Potential Biomedical Applications. AdvancedFunctional Materials2013,23,660-672.
    [171] Gao, J.; Gu, H.; Xu, B., Multifunctional Magnetic Nanoparticles: Design,Synthesis, and Biomedical Applications. Accounts of Chemical Research2009,42(8),1097-1107.
    [172] Chen, L.; Liu, J.; Zeng, Q.; Wang, H.; Yu, A.; Zhang, H.; Ding, L.,Preparation of magnetic molecularly imprinted polymer for the separation oftetracycline antibiotics from egg and tissue samples. Journal of Chromatography A2009,1216,3710-3719.
    [173] Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D., SuperparamagneticHigh-Magnetization Microspheres with an Fe3O4@SiO2Core and PerpendicularlyAligned Mesoporous SiO2Shell for Removal of Microcystins. Journal of AmericanChemical Society2008,130,28-29.
    [174] Thompson, M.; Owen, L.; Wilkinson, K.; Woodc, R.; Damantd, A., Acomparison of the Kjeldahl and Dumas methods for the determination of protein infoods, using data from a proficiency testing scheme. The Analyst2002,127,1666-1668.
    [175] Brown, C. A.; Jeong, K. S.; Poppenga, R. H.; Puschner, B.; Miller, D. M.;Ellis, A. E.; Kang, K. I.; Sum, S.; Cistola, A. M.; Brown, S. A., Outbreaks of RenalFailure Associated with Melamine and Cyanuric Acid in Dogs and Cats in2004and2007. Journal of Veterinary Diagnostic Investigation2007,19,525-531.
    [176] Chan, E. Y.; Griffiths, S. M.; Chan, C. W., Public-health risks of melamine inmilk products. Lancet2008,372,1444-1445.
    [177] Garber, E. A. E., Detection of Melamine Using Commercial Enzyme-LinkedImmunosorbent Assay Technology. Journal of Food Protection2009,71(3),590-594.
    [178] Huang, G.; Ouyang, Z.; Cooks, R. G., High-throughput trace melamineanalysis in complex mixtures. Chemical communications2009,556-558.
    [179] Yang, S.; Ding, J.; Zheng, J.; Hu, B.; Li, J.; Chen, H.; Zhou, Z.; Qiao, X.,Detection of Melamine in Milk Products by Surface Desorption Atmospheric PressureChemical Ionization Mass Spectrometry. Analytical Chemistry2009,81,2426-2436.
    [180] Karbiwnyk, C. M.; Andersen, W. C.; Turnipseed, S. B.; Storey, J. M.;Madson, M. R.; Miller, K. E.; Gieseker, C. M.; Miller, R. A.; Rummel, N. G.;Reimschuessel, R., Determination of cyanuric acid residues in catfish, trout, tilapia,salmon and shrimp by liquid chromatography-tandem mass spectrometry. Analyticachimica acta2009,637,101-111.
    [181] Muniz-Valencia, R.; Ceballos-Magana, S. G.; Rosales-Martinez, D.;Gonzalo-Lumbreras, R.; Santos-Montes, A.; Cubedo-Fernandez-Trapiella, A.;Izquierdo-Hornillos, R. C., Method development and validation for melamine and itsderivatives in rice concentrates by liquid chromatography. Application to animal feedsamples. Analytical and bioanalytical chemistry2008,392,523-531.
    [182] Lin, M.; He, L.; Awika, J.; Yang, L.; Ledoux, D. R.; Li, H.; Mustapha, A.,Detection of melamine in gluten, chicken feed, and processed foods using surfaceenhanced Raman spectroscopy and HPLC. Journal of food science2008,73(8),T129-134.
    [183] Lou, T.; Wang, Y.; Li, J.; Peng, H.; Xiong, H.; Chen, L., Rapid detection ofmelamine with4-mercaptopyridine-modified gold nanoparticles by surface-enhancedRaman scattering. Analytical Bioanalytical Chemistry2011,401,333-338.
    [184] Robinson, A. M.; Harroun, S. G.; Bergman, J.; Brosseau, C. L., Portableelectrochemical surface-enhanced Raman spectroscopy system for routinespectroelectrochemical analysis. Analytical Chemistry2012,84,1760-1764.
    [185] Li, J. M.; Ma, W. F.; Wei, C.; You, L. J.; Guo, J.; Hu, J.; Wang, C. C.,Detecting trace melamine in solution by SERS using Ag nanoparticle coatedpoly(styrene-co-acrylic acid) nanospheres as novel active substrates. Langmuir2011,27,14539-14544.
    [186] Kim, A.; Barcelo, S. J.; Williams, R. S.; Li, Z., Melamine sensing in milkproducts by using surface enhanced Raman scattering. Analytical Chemistry2012,84,9303-9309.
    [187] Betz, J. F.; Cheng, Y.; Rubloff, G. W., Direct SERS detection of contaminantsin a complex mixture: rapid, single step screening for melamine in liquid infantformula. The Analyst2012,137,826-828.
    [188] Chi, H.; Liu, B.; Guan, G.; Zhang, Z.; Han, M. Y., A simple, reliable andsensitive colorimetric visualization of melamine in milk by unmodified goldnanoparticles. The Analyst2010,135,1070-1075.
    [189] Cao, Y. C.; Jin, R.; Mirkin, C. A., Nanoparticles with Raman SpectroscopicFingerprints for DNA and RNA Detection. Science2002,297,1536-1540.
    [190] Lim, D.-K.; Jeon, K.-S.; Kim, H. M.; Nam, J.-M.; Suh, Y. D.,Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection.Nature Materials2010,9,60-67.
    [191] Camden, J. P.; Dieringer, J. A.; Zhao, J.; VanDuyne, R. P., ControlledPlasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing. Accountsof Chemical Research2008,41(12),1653-1661.
    [192] Haynes, C. L.; McFarland, A. D.; Duyne, R. P. V., New substrates andsinglemolecule detection are just two of the advances that are fueling interest in SERS.Analytical Chemistry2005,338A-346A.
    [193] Le Ru, E. C.; Grand, J.; Sow, I.; Somerville, W. R.; Etchegoin, P. G.;Treguer-Delapierre, M.; Charron, G.; Felidj, N.; Levi, G.; Aubard, J., A scheme fordetecting every single target molecule with surface-enhanced Raman spectroscopy.Nano letters2011,11,5013-5019.
    [194] Oubre, C.; Nordlander, P., Finite-difference Time-domain Studies of theOptical Properties of Nanoshell Dimers. Journal of Physical Chemistry B2005,109,10042-10051.
    [195] Oubre, C.; Nordlander, P., Optical Properties of MetallodielectricNanostructures Calculated Using the Finite Difference Time Domain Method. Journalof Physical Chemistry B2004,108,17740-17747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700