B_(12)M_4(M=Li,Ti,Sc)结构及储氢性能的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气储量丰富,具有高的质量燃烧值且燃烧产物清洁无污染,被认为是替代化石燃料的新一代能源载体。但是氢气的存储却成为在运输行业中实际应用的“瓶颈”。作为理想的储氢材料,应该满足以下特定要求:高的储氢量(包括质量密度和体积密度)、温和条件下快速的吸/脱附动力学、合适的工作温度、可逆循环性能、材料成本低以及安全性好等。为了在温和的条件下完成充放氢气,氢气与储氢材料间的结合能应该介于物理吸附与化学吸附之间,而且氢气主要以分子形式存在。为此,人们研究和探索了很多储氢方法,包括压缩储氢、液化储氢以及利用金属或金属复合物吸附储氢。尽管这些方法在某些方面都有各自的优点,但都不足以满足氢能在交通运输方面的实际要求。
     本论文中,我们由早先研究的以B_(12)为核心的B_(12)CO_(12)得到启发,提出利用金属掺杂的B_(12)团进行储氢,其中研究的金属以碱金属Li和过渡金属Sc,Ti为主。所有异构体均使用高斯03程序,在密度泛函理论(DFT)下用B3LYP方法进行计算。使用标准劈裂共价基组6-31G (d, p)描述介入的所有原子轨道。几何优化没有对称制约。通过频率计算来确认它们是势能面的能量极小值。所有分析数据在B_3LYP/6-31G (d, p)水平下得到。平均结合能定义为:
     Ea= {E [B_(12)X_4-nH_2] - E [B_(12)X_4]–nE[H_2]} /n (X=Li, Ti, Sc)
     许多研究显示,MP2方法计算弱相互作用较好。因此,为得到准确性平均氢气结合能,在MP2下对各结构行单点计算以计算平均氢分子吸附能。计算中还考虑了基组重叠误差(BSSE)。
     对锂掺杂B12团的结构稳定性及其储氢性能系统研究结果表明,最佳掺杂方案为锂缀加在B12Li4的六元环上,在B12Li4团中,金属原子都倾向于束缚到B原子周围,而不是形成金属。每个锂原子至少可以吸附3个氢分子,物理吸附储氢量达到13.32 wt%,平均氢分子吸附能在0.033-0.089eV之间。自然电荷布局分析(NBO)显示B_(12)Li_4中平均锂原子所带电荷为0.727|e|,且在吸附氢气过程中,极化诱导作用最为关键。
     采用密度泛函理论对Ti掺杂B12团的结构稳定性及其储氢性能进行了理论计算,讨论了掺杂团的结构以及电荷转移。结果表明,我们研究的最稳定结构和次稳定结构均可避免金属团聚问题。其中D2d对称性的最稳定结构至多吸附8个H_2分子,平均结合能为0.521 eV。具有Td对称性的次稳定结构中强的M-B键将金属固定在六元环上,可以通过Kubas作用吸附16H_2,平均吸附能为0.434 eV/H2,相应质量分数为9.125 wt%。当每个Ti吸附3个H2时,平均吸附能为0.310 eV/H_2,可使H2在常温常压下容易吸附和脱附,相应质量分数为6.952 wt%。
     对Sc掺杂B_(12)团的结构稳定性及其储氢性能进行了理论计算,结果表明,B_(12)Sc_4可吸附12个H2分子,平均结合能为0.108 eV,非常有趣的是在提出的最稳定的B12Ti4和B12Sc4中,每个B3可以把视为一个具有s-,p-和d-轨道的超原子。B_(12)Sc_4中Sc主要是通过诱导作用吸附H2分子。
     本研究得到国家973预研究课题(210CB635110)和国家自然科学基金重点项目(21031003)基金的资助。
Hydrogen is widely viewed as the next generation of energycarrier to replace the fossil fuels due to its abundance, high chemicalenergy, and pollution-free burning. However, hydrogen storage is the“bottleneck”for the on-board application of hydrogen as energycarrier. Materials suitable for hydrogen storage of vehicularapplications must meet some rigid requirements, such as highvolumetric and gravimetric densities, fast kinetics for adsorption aswell as desorption of molecular hydrogen at ambient conditions,recyclability. To achieve the reversible hydrogen uptaking andreleasing at near ambient conditions, the H_2binding energy should besomewhat intermediate between that of physisorption andchemisorption where the hydrogen is stored mainly in molecular form.Several ways have been investigated and developed to store hydrogengas, involving its compression, liquefaction, and adsorption in severalmetals and metal alloys and so on. Unfortunately, none of thesetechnologies is good enough to satisfy the on-board application ofhydrogen energy, even though each way possesses desirablecharacteristics in certain areas.
     In this paper, inspired by our previous foundation of a B_(12)core in B_(12)CO_(12), we propose metal atoms doped B_(12)cluster, the metals weused in the paper are Li atoms (The Alkali Metal) and Ti, Sc atoms. Allthe isomers are optimized at the level of density functional theory(DFT) with Becke’s three-parameter exchange functional andLee-Yang-Parr correlation functional using the Gaussian 03 program.The standard split valence basis set 6-31G(d, p) is employed todescribe the orbital of all atoms involved. The geometry optimizationsare done with no symmetry restriction. Frequency calculations forselected structures are carried out to identify it an energy minima onthe potential energy surface. All the population analysis is also basedon the data obtained at B_3LYP/6-31G(d, p) level. The average bindingenergy per H_2(ABE/ H_2) is defined as
     Ea= {E [B_(12)X_4-n H_2]-E [B_(12)X_4]–n E [H_2]}/n (X=Li, Ti, Sc)
     Where, E [B_(12)X_4], E [H_2] and E [B_(12)X_4-n H_2] are the electronic energyof relaxed B_(12)X_4, H_2and B_(12)X_4-n H_2, respectively; and n is the number ofH2molecule. Many investigations demonstrate that MP2 method ismore efficient for calculating the weak interactions. So, to get theaccuracy ABE/H_2, single point energy calculations for all B12X4-n H2,the most stable B_(12)X_4and H_2are performed at MP2/6-311G(d, p) level.The basis set superposition error (BSSE) has been corrected usingthe full counterpoise method for all the B12X4-n H2complexes atMP2/6-311G(d, p) level.
     The density functional theory (DFT) has been performed toinvestigate the structures and stabilities of B12Li4clusters. The Liatoms prefer the hexagon sites. Once the metals are absorbed on B12,each can bring up to four hydrogen molecules with an average bindingenergy of 0.033-0.089 eV, corresponding to 13.32 wt%. The NBO analysis indicates that the charge of Li atom in B_(12)Li_4is 0.727|e|, andinductive interaction is important for Li to adsorb the H2molecules inB_(12)Li_4.
     We investigated hydrogen adsorption on Ti-doped B_(12)nanostructures. The results show that the lowest-energystructure(D2d) and the lower-lying structure(Td) of B_(12)Ti_4can avoidingthe notorious clustering problem. As for the B_(12)Ti_4with Tdsymmetry ,Ti can bind strongly to the hexagons of B_(12)to form regular tetrahedronstructure, thus it can store up to 16 H2molecules via the Kubasinteraction with an average binding energy of 0.434 eV/H2,corresponding to a gravimetric density of hydrogen storage of 9.125wt%. If each Ti adsorbs 3 H_2, the average adsorption energy is 0.26ev/H2, corresponding to a gravimetric density of hydrogen storage of6.952 wt%, while B_(12)Ti_4(D2d) can only host 8 H2molecules at mostwith an average binding energy of 0.521 eV per H2. We found that theKupas interaction dominates the attracting between Ti atoms andhydrogen molecules.
     The structure and hydrogen adsorption property of a B_(12)Sc4wasinvestigated with the first principle calculations. Like the B_(12)Ti_4(D2d),in B_(12)Sc4, Metal atoms prefer binding to B atoms other than forming Ticlusters. The B_(12)Sc4can bind up to 12 H_2molecules with an averagebinding energy of 0.108 eV per H_2, It is very interesting that we findthat in B_(12)Sc_4, every B3rings can be regarded as a super atom with s-,p- and d-like orbitals.
     This work was supported by National Basic Research (973)Program of China (No. 210CB635110) and National Natural ScienceFoundation of China (21031003).
引文
[1] L. Schlapbach, A.Züttel. Hydrogen-storage materials for mobile applications. Nature, 2001, 414:353-358.
    [2] Puru, Jena. Materials for Hydrogen Storage: Past, Present, and Future. J. Phys. Chem. Lett. 2011, 2:206–211.
    [3] V. Sudhakar, Alapati, J. Karl Johnson, David, S. Sholl. Identification of Destabilized MetalHydrides for Hydrogen Storage Using First Principles Calculations. J. Phys. Chem. B. 2006, 110:8769-8776
    [4]周素芹.金属储氢材料理论研究综述.淮阴工学院学报(Journal of Huaiyin Institute ofTechnology). 2009, 18: 3.73-76.
    [5] S. Billur, L. D.Farida, Michael H.. Metal hydride materials for solid hydrogen storage:Areview.International Journal of Hydrogen Energy. 2007, 32: 1121–1140.
    [6] A. Gilles, G. Mary, S. E. Sylviane. Bisσ-Bond Dihydrogen and Borane Ruthenium Complexes:Bonding Nature, Catalytic Applications, and Reversible Hydrogen Release. Accounts Of ChemicalResearch. 2009, 42: 1640-1649.
    [7]许炜,陶占良,陈军.储氢研究进展.化学进展(PROGRESS IN CHEMISTRY) 2006, 18: 2-3.
    [8]陶占良,彭博,梁静,程方益,陈军.高密度储氢材料研究进展.中国材料进展(MATERIALS CHINA). 2009,28: 7-8.
    [9] J. Liu, J. Yu, Q. Ge. Hydride-Asssisted Hydrogenation of Ti-Doped NaH/Al: A Density FunctionalTheory Study. J. Phys. Chem. C, 2011, 115: 2522-2528.
    [10] Hai-Wen Li, Yigang Yan, Shin-ichi Orimo, Andreas Züttel Craig M. Jensen. Recent Progress inMetal Borohydrides for Hydrogen Storage. Energies. 2011, 4:185-214.
    [11] Sesha Srinivasan, Elias (Lee) Stefanakos, Yogi Goswami. New Transition metal assisted complexborohydrides for hydrogen storage. WHEC. 2006, 16: 13-16.
    [12] Ming Au, Arthur Jurgensen. Modified Lithium Borohydrides for Reversible Hydrogen Storage. J.Phys. Chem. B. 2006, 110: 7062-7067.
    [13] Michiel J. van Setten, Gilles A. de Wijs, Maximilian Fichtner, Geert Brocks. A DensityFunctional Study ofα-Mg(BH4)2.Chem. Mater. 2008, 20:4952-4956.
    [14] Ji-Cheng Zhao, Douglas A. Knight, Gilbert M. Brown, Chul Kim, Son-Jong Hwang, Joseph W.Reiter, Robert C. Bowman, Jr., Jason A. Zan, James G. Kulleck. Study of AluminoboraneCompound AlB4H11for Hydrogen Storage. J. Phys. Chem. C. 2009,113: 2-11.
    [15] Qingfeng Ge. Structure and Energetics of LiBH4and Its Surfaces: A First-Principles Study. J.Phys. Chem. A. 2004, 108: 8682-8690.
    [16] X. B. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas. Hydrogen Adsorption on FunctionalizedNanoporous Activated Carbons. J. Phys. Chem. B.2005, 109 (18), pp 8880–8888.
    [17] S. Orimo, A. Züttel, L. Schlapbach, G. Majer, T. Fukunaga, H. Fujii, J. Hydrogen interaction withcarbon nanostructures: current situation and future prospects. Journal of Alloys and Compounds.Alloys Compd. 2003, 356–357, 716-719.
    [18] R. Str bel, J. Garche, P. T. Moseley, L. J rissen, G. Wolf. Hydrogen storage by carbon materials. J.Power Sources. 2006, 159:781-801.
    [19]赵敏.碳纳米管储氢的分子动力学模拟.合肥师范学院学报(Journal of Hefei NormalUniversity). 2010, 28: 3.
    [20]程锦荣,丁锐,刘遥,丁振峰,张立波.碳纳米管阵列储氢的分子动力学模拟.安徽大学学报(自然科学版)( Journal of Anhui University Natural Science Edition). 2006, 30:4.
    [21]杨子芹,谢自立,贺益胜.新型纳米结构炭材料的储氢研究新型炭材料. new carbonmaterials. 2003, 18: 1.
    [22]Jeffrey B. Martin, Ian A. Kinloch, Robert A. W. Dryfe. Are Carbon Nanotubes Viable Materialsfor the Electrochemical Storage of Hydrogen? J. Phys. Chem. C. 2010, 114:4693–4703.
    [23]B. Viswanathan, M. Sankaran. Hetero-atoms as activation centers for hydrogen absorption incarbon nanotubes. Diamond Relat. Mater. 2009, 18: 429.
    [24]Z. Zhou, X. Gao, J. Yan, D. Song. Doping effects of B and N on hydrogen adsorption insingle-walled carbon nanotubes through density functional calculations. Carbon. 2006, 44:939.
    [25]於刘民,姬广富.硼掺杂富勒烯储氢一从物理吸附到化学吸附的转变.原子与分子物理学报.2009, 26卷:6期.
    [26] Long-Wei Yin, Yoshio Bando, Dmitri Golberg, Alexandre Gloter, Mu-Sen Li, Xiaoli Yuan,Takashi Sekiguchi. Porous BCN Nanotubular Fibers: Growth and Spatially ResolvedCathodoluminescence. J. Am. Chem. Soc. 2005, 127:16354-16355.
    [27] Rogério J. Baierle, Paulo Piquini, ToméM. Schmidt, Adalberto Fazzio. Hydrogen Adsorption onCarbon-Doped Boron Nitride Nanotube.J. Phys. Chem. B. 2006, 110: 21184-21188.
    [28] Alfred Kleinhammes,Robert J. Anderson,Qian Chen,Youmi Jeong,T. C. Mike Chung,Yue Wu. Enhanced Binding Energy and Slow Kinetics of H2in Boron-Substituted GraphiticCarbon. J. Phys. Chem. C. 2010, 114: 13705–13708.
    [29] Z. H. Zhu, G. Q. Lu, H. Hatori. New Insights into the Interaction of Hydrogen Atoms withBoron-Substituted Carbon. J. Phys. Chem. .B 2006, 110: 1249-1255.
    [30] Lifeng Wang, Ralph T. Yang. Hydrogen Storage Properties of N-Doped Microporous Carbon. J.Phys. Chem. C. 2009, 113: 21883–21888.
    [31] Xianwei Sha, Alan C. Cooper, Wade H. Bailey, Hansong Cheng. Revisiting Hydrogen Storage inBulk BC3.J. Phys. Chem. C. 2010, 114: 3260–3264.
    [32] Renzhi Ma, Yoshio Bando, Hongwei Zhu, Tadao Sato, Cailu Xu, Dehai Wu. Hydrogen Uptake inBoron Nitride Nanotubes at Room Temperature.J. Am. Chem. Soc. 2002, 124:7672-7673.
    [33] X. Chen, X. P. Gao, H. Zhang, Z. Zhou, W. K. Hu, G. L. Pan, H. Y. Zhu, T. Y. Yan, D. Y. Song.Preparation and Electrochemical Hydrogen Storage of Boron Nitride Nanotubes. J. Phys. Chem.B. 2005, 109:11525-11529.
    [34] Hong Seok Kang. Theoretical Study of Boron Nitride Nanotubes with Defects in Nitrogen-RichSynthesis. J. Phys. Chem. B. 2006, 110: 4621-4628.
    [35] Zhen Zhou, Jijun Zhao, Zhongfang Chen, Xueping Gao, Tianying Yan, Bin Wen, Paul von RaguéSchleyer. Comparative Study of Hydrogen Adsorption on Carbon and BN Nanotubes. J. Phys.Chem. B. 2006, 110: 13363-13369.
    [36] S. A. Shevlin, Z. X. Guo. Hydrogen sorption in defective hexagonal BN sheets and BN nanotubes.Phy. Rev. B. 2007, 76: 024104.
    [37] Myrna H. Matus, Kevin D. Anderson, Donald M. Camaioni, S. Thomas Autrey, David A. Dixon.Reliable Predictions of the Thermochemistry of Boron-Nitrogen Hydrogen Storage. Compounds:BxNxHy, x=2, 3. J. Phys. Chem. A. 2007, 111: 4411-4421.
    [38] Hansong Cheng, Xianwei Sha, Liang Chen, Alan C. Cooper, Maw-Lin Foo, Garret C. Lau, WadeH. Bailey , Guido P. Pez. An Enhanced Hydrogen Adsorption Enthalpy for Fluoride IntercalatedGraphite Compounds. J. Am. Chem. Soc. 2009, 131: 17732–17733.
    [39]方兴,程锦荣,袁兴红.镍掺杂单壁碳纳米管阵列储氢的理论研究.安徽大学学报(自然科学版)( Journal of Anhui University(Natural Science Edition)). 2010, 34: 2.
    [40] S. A. Shevlin, Z. X. Guo. High-Capacity Room-Temperature Hydrogen Storage in CarbonNanotubes via Defect-Modulated Titanium Doping. J. Phys. Chem. C. 2008, 112: 17456–17464.
    [41] W. Liu, Y. H. Zhao, Y. Li, Q. Jiang, E. J. Lavernia. Enhanced Hydrogen Storage on Li-DispersedCarbon Nanotubes. J. Phys. Chem. C. 2009, 113: 2028–2033.
    [42] Giannis Mpourmpakis, Emmanuel Tylianakis, George E. Froudakis. Carbon Nanoscrolls: APromising Material for Hydrogen Storage.Nano Lett. 2007, 7:1893-1897.
    [43] Hoonkyung Lee, Jisoon Ihm, Marvin L. Cohen, Steven G. Louie. Calcium-DecoratedGraphene-Based Nanostructures for Hydrogen Storage. Nano Lett. 2010, 10:793–798.
    [44] ZhiGang Wang, MingGuang Yao, ShouFu Pan, MingXing Jin, BingBing Liu, HongXing Zhang.A Barrierless Process from Physisorption to Chemisorption of H2 Molecules onLight-Element-Doped Fullerenes. J. Phys. Chem. C. 2007, 111: 4473-4476.
    [45] T. Yildirim1, S. Ciraci. Titanium-Decorated Carbon Nanotubes as a Potential High-CapacityHydrogen Storage Medium. Phy. Rrv. Lett. 2005, 94: 175501.
    [46] Xiaolong Zou, Gang Zhou, Wenhui Duan, Keunsu Choi, Jisoon Ihm.A Chemical ModificationStrategy for Hydrogen Storage in Covalent Organic Frameworks. J. Phys. Chem. C. 2010, 114:13402–13407.
    [47] Emmanouel Klontzas, Emmanuel Tylianakis, George E. Froudakis. Hydrogen Storage in 3DCovalent Organic Frameworks. A Multiscale Theoretical Investigation. J. Phys. Chem. C. 2008,112: 9095–9098.
    [48] Pornjuk Srepusharawoot, Ralph H. Scheicher, C. Moysés Araújo, Andreas Blomqvist, UdomsilpPinsook, Rajeev Ahuja. Ab Initio Study of Molecular Hydrogen Adsorption in Covalent OrganicFramework. J. Phys. Chem. C. 2009, 113: 8498–8504.
    [49] Emmanouel Klontzas, Emmanuel Tylianakis, George E. Froudakis, Designing 3D COFs withEnhanced Hydrogen Storage Capacity. Nano Lett. 2010, 10: 452-454.
    [50] Jianhui Lan, Dapeng Cao, Wenchuan Wang. High Uptakes of Methane in Li-Doped 3D CovalentOrganic Frameworks. Langmuir. 2010, 26(1): 220–226.
    [51] Rowsel, J. L. C.; Yaghi, O. M. Effects of Functionalization, Catenation, and Variation of theMetal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties ofMetal-Organic Frameworks. J. Am. Chem. Soc. 2006, 128: 1304–1315.
    [52] Anna Grzech, Jie Yang, Theo J Dingemans, Subramanian Srinivasan, Pieter Magusin, Fokko M.Mulder. Irreversible high-temperature hydrogen interaction with the metal organic frameworkCu3(BTC)2. J. Phys. Chem. C. Just Accepted Manuscript.
    [53] Millar, M. A., Wang, C.-Y., Merrill, G. N. Experimental and Theoretical Investigation IntoHydrogen Storage via Spillover in IRMOF-8. J. Phys. Chem. C. 2009, 113: 3222–3231.
    [54] Sillar, K., Hofmann, A., Sauer. J. Ab Initio Study of Hydrogen Adsorption in MOF-5. J. Am.Chem. Soc. 2009, 131: 4143–4150.
    [55] Omar K. Farha, Alexander M. Spokoyny, Karen L. Mulfort, M. Frederick HawthorneChad A. Mirkin, Joseph T. Hupp. Synthesis and Hydrogen Sorption Properties of CarboraneBased Metal-Organic Framework Materials. J. Am. Chem. Soc. 2007, 129: 12680-12681.
    [56]程锦荣,方兴,袁兴红,王晓,汪志.锂掺杂单壁氮化硼纳米管阵列储氢的理论研究.计算物理. 2010, 27: No.3 .
    [57] Shu-Hao Wen, Wei-Qiao Deng, Ke-Li Han. Endohedral BN Metallofullerene M@B36N36Complex As Promising Hydrogen Storage Materials. J. Phys. Chem. C. 2008, 112: 12195–12200.
    [58] Xiaojun Wu, Yi Gao, X. C. Zeng. Hydrogen Storage in Pillared Li-Dispersed Boron CarbideNanotubes. J. Phys. Chem. C. 2008, 112: 8458–8463.
    [59] Hansong Cheng, Guido Pez, Georg Kern, Georg Kresse, Ju1rgen Hafner. Hydrogen Adsorption inPotassium-Intercalated Graphite of Second Stage: An ab Initio Molecular Dynamics Study. J.Phys. Chem. B. 2001, 105: 736-742.
    [60] Gyubong Kim, Seung-Hoon Jhi. Ca-Decorated Graphene-Based Three-Dimensional Structures forHigh-Capacity Hydrogen Storage. J. Phys. Chem. C. 2009, 113: 20499–20503.
    [61]李明,周震,李亚飞,申泮文.纳米结构储氢材料的计算研究与设计《.中国科学》杂志社.中国科学B辑:化学2009,第39卷第9期: 971-976
    [62] Yufeng Zhao, Yong-Hyun Kim, A. C. Dillon, M. J. Heben, S. B. Zhang. Hydrogen Storage inNovel Organometallic Buckyballs. Phys. Rev. Lett. 2005, 94:155504.
    [63] T. Yildirim, Jorgeíiguez, S. Ciraci. Molecular and dissociative adsorption of multiple hydrogenmolecules on transition metal decorated C60.Phy. Rev. B. 2005, 72: 153403.
    [64] Weon Ho Shin, Seong Ho Yang. Ni-dispersed fullerenes: Hydrogen storage and desorptionproperties. APPLIED PHYSICS LETTERS. 2006, 88: 053111.
    [65] G. J. Kubas. Metal–dihydrogen and s-bond coordination: the consummate extension of theDewar–Chatt–Duncanson model for metal–olefin p bonding. J. Organomet.Chem. 2001, 635:37-68.
    [66] Qiang Sun, Qian Wang, Puru Jena, Yoshiyuki Kawazoe. Clustering of Ti on a C60Surface and ItsEffect on Hydrogen Storage. J. Am. Chem. Soc. 2005, 127:14582-14583.
    [67] Qiang Sun, Puru Jena, Qian Wang, Manuel Marquez. First-Principles Study of Hydrogen Storageon Li12C60.J. Am. Chem. Soc. 2006, 128, 9741-9745.
    [68] K. R. S. Chandrakumar, Swapan K. Ghosh.Alkali-Metal-Induced Enhancement of HydrogenAdsorption in C60Fullerene: An ab Initio Study. Nano Lett. 2008, 8: 13-19.
    [69] Tunna Baruah, Mark R. Pederson, Rajendra R. Zope. Vibrational stability and electronic structureof a B80fullerene. Phys. Rev. B. 2008, 78: 045408.
    [70] K. Srinivasu , Swapan K. Ghosh. An ab Initio Investigation of Hydrogen Adsorptionin Li-Doped closo-Boranes. J. Phys. Chem. C. 2011, 115:1450–1456.
    [71] Li, M., Li, Y. F., Zhou, Z., Shen, P.W., Chen, Z.F. Ca-Coated Boron Fullerenes and Nanotubes asSuperior Hydrogen Storage Materials. Nano Lett. 2009,9: 1944.
    [72] Fen Li, Jijun Zhao, Zhongfang Chen. Hydrogen storage behavior of one-dimensional TiBxchains.Nanotechnology. 2010, 21:134006.
    [73] Süleyman Er, Gilles A. de Wijs, Geert Brocks. DFT Study of Planar Boron Sheets: A NewTemplate for Hydrogen Storage. J. Phys. Chem. C. 2009, 113: 18962–18967.
    [74] Abhishek K. Singh, Arta Sadrzadeh, Boris I. Yakobson. Metallacarboranes: Toward PromisingHydrogen Storage Metal Organic Frameworks. J. Am. Chem. Soc. 2010, 132: 14126–14129.
    [75] S. Bhattacharya, C. Majumder, G. P. Das. Ti-Decorated BC4N Sheet: A planar Nanostructure forHigh-Capacity Hydrogen Storage. J. Phys. Chem. C. 2009, 113: 15783-15787.
    [76] Jian Zhou, Qian Wang, Qiang Sun, Puru Jena. Enhanced Hydrogen Storage on Li FunctionalizedBC3Nanotube. J. Phys. Chem. C. 2011, 115: 6136–6140.
    [77] Yuanchang Li, Gang Zhou, Jia Li, Bin-Ling Gu, Wenhui Duan. Alkali-Metal-Doped B80 asHigh-Capacity Hydrogen Storage Media. Phys. Chem. C. 2008, 112: 19268.
    [78] Guangfen Wu, Jinlan Wang, Xiuyun Zhang, Liyan Zhu. Hydrogen Storage on Metal-Coated B80Buckyballs with Density Functional Theory. J. Phys. Chem. C. 2009, 113:, 7052–7057.
    [79] Meng S., Kaxiras E., Zhang Z.Y.. Metal-diboride nanotubes as High-Capacity Hydrogen Storagemedia. Nano Lett. 2007, 7: 663.
    [80] Yufeng Zhao, Mark T. Lusk , Anne C. Dillon, Michael J. Heben, Shengbai B. Zhang.Boron-Based Organometallic Nanostructures: Hydrogen Storage Properties and StructureStability. Nano Lett.. 2008, 8: 157-161.
    [81] Jijun Zhao, Lu Wang, Fengyu Li, Zhongfang Chen. B80and Other Medium-Sized Boron Clusters:Core-Shell Structures, Not Hollow Cages. J. Phys. Chem. A. 2010, 114: 9969–9972.
    [82] Kregg D. Quarles, Cherno B. Kah, Rosi N. Gunasinghe, Ryza N. Musin, Xiao-Qian Wang. FilledPentagons and Electron Counting Rule for Boron Fullerenes. J. Chem. Theory Comput. 2011, 7,2017–2020.
    [83]张晓清,贾建峰,武海顺,裴晓琴.羰基硼化合物(BCO)n(n=1-12)的理论研究.物理化学学报. 2006, 22(6): 684-690.
    [84] A. R. Leach. Molecular Modelling: Principles and Applications. 2nd ed. Prentice Hall(PearsonEducation): Harlow, 2001. p108-p300.
    [85] C. M ller, M. S. Plesset. Note on an approximate treatment for many-electron systems. Phys.Rev., 1934, 46: 618-622.
    [86] M. Head-Gordon, J. A. Pople, M. J. Frisch. MP2 energy evaluation by direct methods. Chem.Phys. Lett., 1988, 153: 503-506.
    [87] M. J. Frisch, M. Head-Gordon, J. A. Pople. A direct MP2 gradient method. Chem. Phys. Lett.1990, 166: 275-280.
    [88] M. J. Frisch, M. Head-Gordon, J. A. Pople. Semi-direct algorithms for the MP2 energy andgradient. Chem. Phys. Lett., 1990, 166: 281-289.
    [89] M. Head-Gordon, T. Head-Gordon. Analytic MP2 frequencies without fifth-order storage. Theoryand application to bifurcated hydrogen bonds in the water hexamer. Chem. Phys. Lett., 1994, 220:122-128.
    [90] S. Saebo, J. Almlof. Avoiding the integral storage bottleneck in LCAO calculations of electroncorrelation. Chem. Phys. Lett., 1989, 154: 83-89.
    [91] R. Krishnan. J. A. Pople. Approximate fourth-order perturbation theory of the electron correlationenergy. Int. J. Quant. Chem., 1978, 14: 91-100.
    [92] J. C. Slater. Atomic shielding constants. Phys. Rev., 1930, 36: 57-64.
    [93] W. J. Hehre, R. F. Stewart, J. A. Pople. Self-consistent molecular-orbital methods. I. Use ofGaussian expansions of Slater-Type atomic orbitals. J. Chem. Phys., 1969, 51: 2657-2664.
    [94] J. B. Collins, P. v. R. Schleyer, J. S. Binkley, J. A. Pople. Self-consistent molecular-orbitalmethods. XVII. Geometries and binding energies of second-row molecules. A comparison ofthree basis sets. J. Chem. Phys., 1976, 64: 5142-5151.
    [95] J. S. Binkley, J. A. Pople, W. J. Hehre. Self-consistent molecular-orbital methods. 21. Smallsplit-valence basis sets for first-row elements. J. Am. Chem. Soc., 1980, 102: 939-947.
    [96] M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, W. J. Hehre. Self-consistentmolecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am.Chem. Soc., 1982, 104: 2797-2803.
    [97] W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. Defrees, J. A. Pople, and J. S. Binkley.Self-consistent molecular-orbital methods. 24. Supplemented small split-valence basis sets forsecond-row elements. J. Am. Chem. Soc., 1982, 104: 5039-5048.
    [98] R. Ditchfield, W. J. Hehre, J. A. Pople. Self-consistent molecular-orbital methods. IX. Anextended Gaussian-Type basis for molecular-orbital studies of organic molecules. J. Chem. Phys.,1971, 54: 724-728.
    [99] W. J. Hehre, R. Ditchfield, J. A. Pople. Self-consistent molecular-orbital methods. XII. Furtherextensions of Gaussian-Type basis sets for use in molecular orbital studies of organic molecules.J. Chem. Phys., 1972, 56: 2257-2261.
    [100] J.-P. Blaudeau, M. P. McGrath, L. A. Curtiss, L. Radom. Extension of Gaussian-2 (G2) theoryto molecules containing third-row atoms K and Ca. J. Chem. Phys., 1997, 107: 5016-5021.
    [101] V. A. Rassolov, J. A. Pople, M. A. Ratner, T. L. Windus. 6-31G* basis set for atoms K throughZn. J. Chem. Phys., 1998, 109: 1223-1229.
    [102] V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L. A. Curtiss. 6-31G* basis set forthird-row atoms. J. Comp. Chem., 2001, 22: 976-984.
    [103] A. D. McLean, G. S. Chandler. Contracted Gaussian basis sets for molecular calculations. I.second row atoms, Z=11-18. J. Chem. Phys., 1980, 72: 5639-5648.
    [104] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople. Self-consistent molecular-orbital methods.XX. A basis set for correlated wave functions. J. Chem. Phys., 1980, 72: 650-654.
    [105] P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev., 1964, 136: B864-B871.
    [106] L. H.Thomas. The calculation of atomic fields. Proc. Camb. Phil. Soc., 1927, 23, 542-548
    [107] E. Fermi. Un metodo statistice per la determinazione di alcune proprieta dell’atomo. Accad. Naz.Lincei., 1927, 6: 602-607.
    [108] M. Levy. Universal variational functionals of electron densities, first-order density matrices, andnatural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. USA.1979, 76: 6062-6065.
    [109]徐印堂.利用量子拓扑化学方法对某些物质进行定量构效关系研究.南华大学.《学位论文》. 2009,5.P22-P25.
    [110] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys.Rev. A, 1965, 140: 1133-1138.
    [111] L. Hedin, B. I. Lundqvist. Explicit local exchange correlation potentials. J. Phys. C, 1971, 4:2064-2083.
    [112] D. M. Ceperley, B. J. Alder. Ground state of the electron gas by a stochastic method. Phys Rev.Lett., 1980, 45: 566-569.
    [113] S. Lundqvist, N. March. Eds. Theory of the Inhomogeneous Electron Gas. New York: Plenum,1983.
    [114] J. C. Slater. A simplification of the Hartree-Fock method. Phys. Rev., 1951, 81: 385-390.
    [115] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C.Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradientapproximation for exchange and correlation. Phys. Rev. B, 1992, 46: 6671-6687.
    [116] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation aade simple. Phys.Rev. Lett., 1996, 77: 3865-3868.
    [117] B. Hammer, L. B. Hansen, J. K. Norskov. Improved adsorption energetics withindensity-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B,1999, 59: 7413-7421.
    [118] A. D. Becke. Density-functional exchange-energy approximation with correct asymptoticbehavior. Phys. Rev. A, 1988, 38: 3098-3100.
    [119] C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula intoa functional of the electron density. Phys. Rev. B, 1988, 37: 785-789.
    [120] A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem.Phys. 1993, 98: 5648-5652.
    [121] L. A. Curtiss, K. Raghavachari, G. W. Trucks, J. A. Pople. Gaussian-2 theory for molecularenergies of first- and second-row compounds. J. Chem. Phys., 1991, 94: 7221-7230.
    [122] Karen L. Mulfort, Joseph T. Hupp. Alkali Metal Cation Effects on Hydrogen Uptake andBinding in Metal-Organic Frameworks. Inorg. Chem..2008, 47 (18):7936–7938.
    [123] Jianhui Lan, Dapeng Cao, Wenchuan Wang. Li-Doped and Nondoped Covalent OrganicBorosilicate Framework for Hydrogen Storage. J. Phys. Chem. C. 2010, 114: 3108–3114.
    [124] K. Srinivasu, Swapan K. Ghosh. An ab Initio Investigation of Hydrogen Adsorption inLi-Doped closo-Boranes. J. Phys. Chem. C 2011, 115, 1450–1456.
    [125] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Gaussian 03,reversion C. 01, Gaussian, Inc. Wallingford, CT, (2004).
    [126] Y. Zhao, D. G. Truhlar. Density Functionals with Broad Applicability in Chemistry J. Chem.Theory Comput. 2005, 1: 415-432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700