用于苯甲醇氧化反应中的高效金基双金属催化剂的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯甲酸及其钠盐是非常重要的精细化工产品,主要应用于医药、食品、染料、香料等方面。工业上制备苯甲酸及其钠盐的方法主要是通过用以乙酸、苯甲酸的钴盐或锰盐以及溴化物为催化剂,高温高压下催化氧化甲苯制得。目前的生产工艺存在很多问题,比如产品和均相催化剂分离困难,大量有毒废物的产生以及设备的腐蚀等等。本论文以负载型金基双金属材料作为催化剂,以常压空气为氧化剂,在较为温和的条件下无溶剂一锅法合成苯甲酸钠,为苯甲酸及其钠盐的合成提供了一条绿色、清洁并且高效的途径。
     负载在氧化物载体上的纳米金催化剂具有独特的催化活性,近年来引起了催化领域的广泛关注。在单金属催化剂中添加第二种金属,形成双金属催化剂,在保持良好催化活性的同时,提高了催化剂的稳定性。不同金属间的相互作用不仅可以改变两种金属的电子和几何性能,产生新的协同效应,而且能改变催化剂的配位效应和整体效应。双金属并不是各组分的简单加和,其性质会因加入别的金属形成合金而具有独特性能。研究表明,它们对化学吸附的强度、催化活性和选择性等都有影响,这使得双金属催化剂成为值得单独研究的一类催化剂。
     本论文合成的金基双金属催化剂在催化苯甲醇氧化反应中表现出很高的催化活性。通过对负载型金基双金属催化剂合成条件、载体、预处理方法和双金属组分的优化,得到了具有高催化活性和高稳定性的负载型金基双金属催化剂。本论文的主要工作及结果如下:
     1.对苯甲醇氧化制备苯甲酸的反应条件如催化剂用量、反应温度和反应时间进行了优化,得到的最佳反应条件为:苯甲醇1.08 g,NaOH 0.5g,催化剂与底物摩尔比0.004,反应温度200℃,反应时间10h。采用先负载Ag后负载金的方法和Au-Ag同时沉淀的方法制得了两种双金属催化剂,活性测试结果表明先负载Ag后负载金的方法相对Au-Ag同时沉淀的方法可以得到活性更高的催化剂。通过改变双金属催化剂预处理条件如干燥、还原和焙烧温度,最后选定催化剂的预处理条件为浸渍法负载Ag后在500℃焙烧,沉淀金之后在300℃焙烧来制备Au-Ag双金属催化剂。改变双金属催化剂中的Au和Ag的含量,发现双金属催化剂相比单金属的Au和Ag催化剂活性更高,且在金银比为1:3时活性达到最佳值,金银之间存在一定的协同作用。
     2.在AuPd/CeO2双金属催化剂应用于苯甲醇氧化制备苯甲酸及其钠盐的反应中,载体对Au-Pd双金属催化剂活性有显著影响,其中过渡金属氧化物载体相比于主族金属氧化物可以得到活性更高的Au-Pd双金属催化剂。在过渡金属氧化物中以CeO2为载体的AuPd/CeO2催化活性最高。Au-Pd的负载顺序对催化剂的活性也有影响。催化活性的高低顺序为AuPd/CeO2> Au-Pd/CeO2> PdAu/CeO2。在AuPd/CeO2双金属催化剂中,Au/Pd摩尔比会影响催化剂上活性物种的粒径大小和尺寸分布,改变表面金属物种组成,通过Au-Pd之间的电子效应和协同效应,从而影响其催化活性。相比于Ag/TiO2, AuPd/CeO2在催化剂金与底物的摩尔比例减少一半,降低温度和减少反应时间的条件下,产物得率仍可媲美。当Au/Pd摩尔比为1/3时,催化活性最高,得率达92%。同时,催化剂具有良好的稳定性,3Au1Pd/CeO2套用7次后仍然具有较高的催化活性,苯甲酸产物得率>79%。
Benzoic acid and sodium benzoate are important commodity chemicals, with wide use in food additive, preservative, spicery, plasticizer and mordant. The commercial production of benzoic acid and sodium benzoate via the catalytic oxidation of toluene is achieved by heating mixture of the substrate, cobalt acetate and bromide promoter in acetic acid to 250℃at high pressure. The process gives rise to problems such as difficult separation of products and homogeneous catalyst, large amount of toxic waste and equipment corrosion. In addition, requirement of expensive and specialized equipments also makes the cost of production very high, along with large amount of energy consumed by operation under extreme conditions. In this dissertation, the gold-based catalysts were used to catalyze the benzyl alcohol under one-pot solvent-free condition to find new and environmental-friendly routes, which is by performing the reaction under mild conditions using a variety of solid catalysts, ionic liquids or supercritical fluids.
     Nobel metal nanostructures have recently received much attention because of their unique optical, catalytic, and electrochemical properties which make them suitable materials for potential applications in various field. Supported bimetallic nanoclusters have been at the focus of interest for decades due to their unique catalytic properties. Gold-based bimetallic NPs exhibit interesting electronic, optical, chemical, and biological properties due to their new bifunctional or synergistic effects. The introduction of second metal into Au NPs has been expected to enhance the catalytic activity and selectivity.Their reactivity is affected by chemical compositions, for the addition of a second metallic element often modifies the stability and catalytic activity of the pure metal clusters by affecting both geometry and electronic properties.
     A novel efficient gold-based bimetallic catalysts were developed with high stability for one-pot solvent-free synthesis of sodium benzoate and benzoic acid from the green oxidation of benzyl alcohol using air as the oxidant under ambient pressure without any wastes emission. The preparation conditions of the catalysts, support crystal phase and the mole ratio of the two metal were optimized, and finally we prepared the gold-based bimetallic catalysts with high activity and stability were obtained. The conclusions are as follows:
     1. By optimizing the reaction temperature, reaction time and catalyst amount, the best reaction condition is as follows:1.08 g benzyl alcohol,0.5 g NaOH, bimetal: benzyl alcohol molar ratio 0.004,200℃,10 h. Precipitation order of An and Ag also has influence on the activity of gold catalysts. Activity results reveal that loading Ag before the precipitation of Au gives better catalytic activity than the catalyst obtained by precipitation of Au and Ag simutaneously. By altering the pretreatment temperature Au-Ag catalyst, e.g. drying, calcination and reduction, the AuAg/P25(500)-C catalyst which is calcined at 500℃after impregnation of Ag, followed by precipitation of Au and calcining at 300℃shows the highest activity. Au-Ag catalysts with different Au/Ag molar ratio are also prepared. It is found that the activity of Au-Ag bimetallic catalysts is better than that of monometallic ones. Meanwhile, catalyst with Au/Ag molar ratio of 1:3 shows the best activity. It is concluded that there is synergistic effect between Au and Ag.
     2. The AuPd/CeO2 bimetallic catalysts were prepared for the application in the oxidation of benzyl alcohol. In particular, the Pd promotional effects are studied through the systematic investigation set of AuPd/CeO2 bimetallic catalysts with a range of Au/Pd ratios. The addition, Pd nano-species show great influence on the gold catalysts, including changes in particle size, electronic structure and etc. The reaction activity increases with the increase of the Pd content. The optimum performance for the synthesis of benzoic acid from benzyl alcohol is observed over a catalyst with the Au/Pd of 3:1 molar ratio.
引文
[1]闵恩泽.21世纪石油化工催化材料的发展与对策[J].石油与天然气化工2000,29(005):215-220.
    [2]闵恩泽.绿色石化技术的科学与工程基础[M].中国石化出版社,2002.
    [3]可持续发展战略中的催化科学与技术:第十一届全国催化学术会议论文集[M].浙江大学出版社,2002.
    [4]Z. Hao, A. Lidum, J. Zhang. A supported gold catalyst for the elimination of hydrogen from CO2 feed gas in the production of urea [J]. Catal. Lett.,1996,59(2): 295-300.
    [5]郝郑平,安立敦,王弘立.负载型进催化剂的制备、催化性能及应用前景[J].分子催化,1996,10(3):235-240.
    [6]郝郑平,安立敦,王弘立.新型合成尿素CO2原料气消氢催化剂的研究[J].高等学校化学学报,2000,217):1098-1100.
    [7]D. Wang, Z. Hao, D. Cheng. Influences of pretreatment conditions on low-temperature CO oxidation over Au/MnOx/Al2O3 catalysts [J]. J. Mol. Catal. A, 2003,200(1-2):229-238.
    [8]G. Wang, W. Zhang, H. Lian. Effect of calcinations temperatures and precipitant on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances [J]. Appl. Catal. A:Gen.,2003,239:1-10.
    [9]张文详,陶玉国,贾明君.不同方法制备的纳米Au/NiO上CO常温常湿催化氧化性能的研究[J].高等学校化学学报,1998,19(8):1317-1319.
    [10]Lian H, Jia M, Pan W. Gold-base catalysts supported on carbonate for low-temperature CO oxidation [J]. Catal. Commun.,2005,6:47-51.
    [11]齐世学,邹旭华,徐秀峰.制备条件对Au/TiO2催化CO氧化性能的影响[J].分子催化,2002,16(4):139-143.
    [12]吴世华,黄伟平,张守民.溶剂化金属原子浸渍法制备高分散的Au/TiO_2低温CO氧化催化剂[J].催化学报,2000,21(5):419-422.
    [13]Wu S, Zheng X, Wang S. TiO2 supported nano-Au catalysts prepared via solvated metal atom impregnation for low-temperature CO oxidation [J]. Catal. Lett.,2004, 97(1-2):7-13.
    [14]张鑫,徐伯庆Au/ZrO2催化CO氧化反应中ZrO2纳米粒子的尺寸效应[J].化学学报.2005,63(1):86-90.
    [15]M. Haruta, N. Yamada, T. Kobayashi, S. Iijima. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J].J. Catal.,1989,115(2):301-309.
    [16]M. Haruta, S. Tsubota, T. Kobayashi. H. Kageyama. M.J. Genet, B. Delmon. Low-Temperature Oxidation of CO over Gold Supported on TiO2, [alpha]-Fe2O3, and CO3O4 [J]. J. Catal.,1993,144(1):175-192.
    [17]Hao Z, Cheng D, Guo Y. Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and caibon monoxide at ambient temperature [J].Appl. Catal. B:Environ.,2001,33:217-222.
    [18]Miao S, Deng Y. Au-Pt/Co3O4 catalyst for methane combustion [J]. Appl. Catal. B:Environ.,2001,31:L1-L4.
    [19]徐秀峰,崔怀娟,索掌怀Au/Mn2O3/Al2O3催化剂的制备及其deNO活性[J].燃料化学学报,2002,30(4):377-380.
    [20]翁端,徐鲁华,沈美庆.金符合LaCeMn稀土催化剂在富氧条件下NO、催化还原性能的研究[J].中国稀土学报,2001,19(5):402-405.
    [21]Jia M, Shen Y, Li C. Effect of supports on the gold catalyst activity for catalytic combustion of CO and HCHO. Catal. Lett.,2005,99(3-4):235-239.
    [22]D. Andreeva, V. Idakiev, T. Tabakova, A. Andreev. Low-Temperature Water-Gas Shift Reaction over Au/[alpha]-Fe2O3 [J]. J. Catal.,1996,158(1):354-355.
    [23]D. Andreeva, V. Idakiev, T. Tabakova, A. Andreev, R. Giovanoli. Low-temperature water-gas shift reaction on Au/[alpha]-Fe2O3 catalyst [J]. Appl. Catal. A,1996,134(2):275-283.
    [24]S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. A. Attard, G. J. Hutchings. Oxidation of Glycerol Using Supported Gold Catalysts [J]. Top. Catal., 2004,27:131-136.
    [25]C. Bianchi, F. Porta, L. Prati, M. Rossi. Selective liquid phase oxidation using gold catalysts [J]. Top. Catal.,2000,13(3):231-236.
    [26]S. Biella, M. Rossi. Gas phase oxidation of alcohols to aldehydes or ketones catalyzed by supported gold [J]. Chem. Commun.,2003,378-379.
    [27]T. Hayashi, K. Tanaka, M. Haruta. Selective Vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen [J]. J. Catal.,1998,178(2):566-575.
    [28]M. D. Hughes, Y. J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin, C. J. Kiely. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions [J]. Nature,2005,437(7062):1132-1135.
    [29]C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri, S. Galvagno. Selective hydrogenation of α,β-unsaturated ketone to a,β-unsaturated alcohol on gold-supported iron oxide catalysts:Role of the support [J]. J. Catal.,2005,236(1): 80-90.
    [30]J. Jia, K. Haraki, J. N. Kondo, K. Domen, K. Tamaru. Selective hydrogenation of acetylene over Au/Al2O3 catalyst [J]. J. Phys. Chem. B,2000,104(47):11153-11156.
    [31]T. V. Choudhary, C. Sivadinarayana, A. K. Datye, D. Kumar, D. W. Goodman. Acetylene hydrogenation on Au-based catalysts [J]. Catal. Lett.,2003,86(1):1-8.
    [32]刘迎新,孟令富,魏作君,时洪涛.La203助剂对Au/Ti02催化肉桂醛选择性加氢性能的影响[J].催化学报,2011,32:1269-1274.
    [33]谢冠群,刘西敬,陶丽萍,鲁继青,罗孟飞,李小年.不同晶相Ti02负载Au催化剂用于巴豆醛选择性加氢[J].催化学报,2009,30(6):543-548.
    [34]R. S. Yolles, B. J. Wood, H. Wise. Hydrogenation of alkenes on gold [J]. J. Catal., 1971,21(1):66-69.
    [35]G. C. Bond, P. Sermon. Gold catalysts for olefin hydrogenation--tansmutation of catalytic properties [J]. Gold Bull.,1973,6(4):102-105.
    [36]A. G. Sault, R. J. Madix, C. T. Campbell. Adsorption of oxygen and hydrogen on Au(110)-(1×2) [J]. Surf. Sci.,1986,169(2-3):347-356.
    [37]N. Saliba, D. H. Parker, B. E. Koel. Adsorption of oxygen on Au(111)by exposure to ozone [J]. Surf. Sci.,1998,410(2-3):270-282.
    [38]J. Wang, B. E. Koel. IRAS studies of NO2, N2O3, and N2O4 adsorbed on Au (111) surfaces and reactions with coadsorbed H2O [J]. J. Phys. Chem. A,1998,102(44): 8573-8579.
    [39]B. Hammer, J. K. Norskov. Why gold is the noblest of all the metals [J]. Nature, 1995,376(6537):238-240.
    [40]P. Buffat, J. P. Borel. Size effect on the melting temperature of gold particles [J]. Phys. Rev. A,1976,13(6):2287-2298.
    [41]R. Zanella, L. Delannoy, C. Louis. Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea [J]. Appl. Catal. A,2005,291(1-2):62-72.
    [42]M. Khoudiakov, M. C. Gupta, S. Deevi. Au/Fe2O3 nanocatalysts for CO oxidation:A comparative study of deposition-precipitation and coprecipitation techniques [J]. Appl. Catal. A,2005,291(1-2):151-161.
    [43]M. Haruta. Catalysis of gold nanoparticles deposited on metal oxide [J]. Cattech, 2002,6(3):102-115.
    [44]R. Zanella. S. Giorgio. C.-H. Shin. C. R. Henry. C. Louis. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea [J]. J. Catal.,2004,222(2):357-367.
    [45]J. Radnik, L. Wilde, M. Schneider, M. M. Pohl, D. Herein. Influence of the precipitation agent in the deposition-precipitation on the formation and properties of Au nanoparticles supported on A12O3 [J]. J. Phys. Chem. B,2006,110(47): 23688-23693.
    [46]F. Moreau, G. C. Bond, A. O. Taylor. Gold on titania catalysts for the oxidation of carbon monoxide:control of pH during preparation with various gold contents [J]. J. Catal.,2005,231(1):105-114.
    [47]S. Ivanova, V. Pitchon, C. Petit. Application of the direct exchange method in the preparation of gold catalysts supported on different oxide materials [J]. J. Mol. Catal. A:Chem.,2006,256(1-2):278-283.
    [48]S. Ivanova, C. Petit, V. Pitchon. A new preparation method for the formation of gold nanoparticles on an oxide support [J]. Appl. Catal. A,2004,267(1-2):191-201.
    [49]L. Delannoy, N. ElHassan, A. Musi, N. N. LeTo, J. M. Krafft, C. Louis. Preparation of Supported Gold Nanoparticles by a Modified Incipient Wetness Impregnation Method [J]. J. Phys. Chem. B,2006,110(45):22471-22478.
    [50]G. M. Veith, A. R. Lupini, S. J. Pennycook, G. W. Ownby, N. J. Dudney. Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering [J]. J. Catal., 2005,231(1):151-158.
    [51]G. M. Veith, A. R. Lupini, S. J. Pennycook, A. Villa, L. Prati, N. J. Dudney. Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon [J]. Catal. Today,2007,122(3-4):248-253.
    [52]M. Comotti, W. C. Li, B. Spliethoff, F. Schuth. Support effect in high activity gold catalysts for CO oxidation [J]. J. Am. Chem. Soc.,2006,128(3):917-924.
    [53]Z. Y. Zhong, J. Y. Lin, S. P. Teh, J. Teo, F. M. Dautzenberg. A rapid and efficient method to deposit gold particles onto catalyst supports and its application for CO oxidation at low temperatures [J]. Adv. Funct. Mater.,2007,17(8):1402-1408.
    [54]N. Zheng, G. D. Stucky. A general synthetic strategy for oxide-supported metal nanoparticle catalysts [J]. J. Am. Chem. Soc.,2006,128(44):14278-14280.
    [55]T. Kobayashi, M. Haruta, S. Tsubota, H. Sano, B. Delmon. Thin films of supported gold catalysts for CO detection [J]. Sens. Actuator B-Chem.,1990,1(1-6): 222-225.
    [56]M. Okumura, K. Tanaka, A. Ueda. M. Haruta. The reactivities of dimethylgold(III)-diketone on the surface of TiO2:A novel preparation method for An catalysts [J]. Solid State Ion.,1997,95(1-2):143-149.
    [57]R. Zanella, S. Giorgio, C. R. Henry, C. Louis. Alternative methods for the preparation of gold nanoparticles dupported on TiO2 [J]. J. Phys. Chem. B,2002, 106(31):7634-7642.
    [58]S.-H. Wu, X.-C. Zheng, S.-R. Wang, D.-Z. Han, W.-P. Huang, S.-M. Zhang. TiO2 supported nano—Au catalysts prepared via solvated metal atom impregnation for low-temperature CO oxidation [J]. Catal. Lett.,2004,97(1):17-23.
    [59]W. L. Huang, C. H. Chen, M. H. Huang. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates [J]. J. Phys. Chem. C,2007,111(6):2533-2538
    [60]R. J. H. Grisel, J. J. Slyconish, B. E. Nieuwenhuys. Oxidation reactions over multi-component catalysts:low-temperature CO Oxidation and the total oxidation of CH4[J]. Top. Catal.,2001,16-17(1):425-431.
    [61]A. Ueda, M. Haruta. Reduction of nitrogen monoxide with propene over Au/Al2O3 mixed mechanically with Mn2O3 [J]. Appl. Catal. B:Environ.,1998, 18(1-2):115-121.
    [62]N. Phonthammachai, Z. Ziyi, G. Jun, H. Y. Fan, T. J. White. Synthesis of high performance hydroxyapatite-gold catalysts for CO oxidation [J]. Gold Bull,2008, 41(1):42-50.
    [63]J. Gong, R. Ojifinni, T. Kim, J. Stiehl, S. McClure, J. White, C. Mullins. Low temperature CO oxidation on Au(111) and the role of adsorbed water [J]. Top. Catal., 2007,44(1):57-63.
    [64]M. Manzoli, G. Avgouropoulos, T. Tabakova, J. Papavasiliou, T. Ioannides, F. Boccuzzi. Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts [J]. Catal. Today,2008,138(3-4):239-243.
    [65]M. Haruta. Size-and support-dependency in the catalysis of gold [J]. Catal. Today,1997,36(1):153-166.
    [66]J. J. Spivey. Catalysis in the development of clean energy technologies [J]. Catal. Today,2005,100(1-2):171-180.
    [67]D. J. Suh, C. Kwak, J. H. Kim, S. M. Kwon, T. J. Park. Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts [J]. J. Power Sources,2005,142(1-2):70-74.
    [68]C. Mohr, H. Hofmeister. P. Claus. The influence of real structure of gold catalysts in the partial hydrogenation of acrolein [J]. J. Catal., 2003,213(1):86-94.
    [69]M. Okumura, T. Akita, M. Haruta. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts [J]. Catal. Today,2002,74(3-4): 265-269.
    [70]M. Conte, A. F. Carley, G. Attard, A. A. Herzing, C. J. Kiely, G. J. Hutchings. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts [J]. J. Catal.,2008,257(1):190-198.
    [71]M. Okumura, Y. Kitagawa, K. Yamagcuhi, T. Akita, S. Tsubota, M. Haruta. Direct production of hydrogen peroxide from H2 and O2 over highly dispersed An catalysts [J]. Chem. Lett.,2003,32(9):822-823.
    [72]P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely, G. J. Hutchings. Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst [J]. Chem. Commun.,2002, (18):2058-2059.
    [73]V. R. Choudhary, A. Dhar, P. Jana, R. Jha, B. S. Uphade. A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst [J]. Green. Chem.,2005, 7(11):768-770.
    [74]A. M. Farhan, R. M. Daadosh, A. M. Awwad. Viscosity B coefficients and partial molar volumes of tetrabutylammonium bromide in gamma-butyrolactone plus water at different temperatures [J]. J. Chem. Eng. Data,2008,53(3):667-669.
    [75]H. Berndt, I. Pitsch, S. Evert, K. Struve, M. M. Pohl, J. Radnik, A. Martin. Oxygen adsorption on AU/Al2O3 catalysts and relation to the catalytic oxidation of ethylene glycol to glycolic acid [J]. Appl. Catal. A,2003,244(1):169-179.
    [76]W. C. Ketchie, Y.-L. Fang, M. S. Wong, M. Murayama, R. J. Davis. Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol [J]. J. Catal.,2007,250(1):94-101.
    [77]F. Porta, L. Prati. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:an insight into reaction selectivity [J]. J. Catal.,2004,224(2): 397-403.
    [78]S. Biella, L. Prati, M. Rossi. Selective oxidation of D-glucose on gold catalyst [J]. J. Catal.,2002,206(2):242-247.
    [79]V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza, M. Baumer. Gold catalysts:Nanoporous gold foams [J]. Angew. Chem. Int. Ed.,2006, 45(48):8241-8244.
    [80]C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding. Low temperature CO oxidation over unsupported nanoporous gold [J]. J. Am. Chem. Soc.,2007,129(1): 42-43.
    [81]W. Hou, N. A. Dehm, R. W. J. Scott. Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts [J]. J. Catal.,2008,253(1): 22-27.
    [82]A. Q. Wang, C. M. Chang, C. Y. Mou. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation [J]. J. Phys. Chem. B,2005,109(40):18860-18867.
    [83]H. Tsunoyama, H. Sakurai, N. Ichikuni, Y. Negishi, T. Tsukuda. Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation:Application to aerobic homocoupling of phenylboronic acid in water [J]. Langmuir,2004,20(26): 11293-11296.
    [84]H. Wu, Z. Liu, X. Wang, B. Zhao, J. Zhang, C. Li. Preparation of hollow capsule-stabilized gold nanoparticles through the encapsulation of the dendrimer [J]. J. Colloid Interf. Sci.,2006,302(1):142-148.
    [85]J. Ni, W. J. Yu, L. He, H. Sun, Y. Cao, H. Y. He, K. N. Fan. A green and efficient oxidation of alcohols by supported gold catalysts using aqueous H2O2 under organic solvent-free conditions [J]. Green Chem.,2009,11(6):756-759.
    [86]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer. Nanoporous gold catalysts for selective gas-phase oxidative coipling of methanol at low temperature [J]. Science,327(5963):319-322.
    [87]牟志刚,杨平,杜玉扣.高分子保护的铂金属催化加氢制备高纯间苯氧基苯甲醇[J].石油化工,2002,31(0):795-798.
    [88]易丽丽,国海光,唐浩东.贵金属纳米的独特性能及其制备方法[J].浙江工业大学学报,2003,11(12):44-48.
    [89]徐娇珍,杨平,华南平.Pt/Au双金属纳米粒子的制备及表征[J].化学研究及应用,2003,15(6):848-850.
    [90]陈志坚.纳米贵金属催化剂的制备及其在催化加氢中的应用[M].北京:化学工业出版社,2006.
    [91]杜玉扣.Pt/A u双金属纳米微粒的催化性能[J].化学研究,2003,14(3).42-43.
    [92]B. S. Wan, S. J. Liao, Y. Xu, D. R. Yu. Synergic effect of palladium-based bimetallic catalyst s for the hydrogenation of nitroaromatics [J]. React. Kineti. Catal.Lett.,1998,63(2):397-401.
    [93]吴洪达,黄咉恒.过氧化氢的分解反应[J].河池师专学报:自然科学版,2002(2):27-30.
    [94]James J. Storhoff, Anne A. Lazarides, Robert C. Mucic, Chad A. Mirkin. What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies[J]. J. Am. Chem. Soc.,2000,122 (19):4640-4650.
    [95]Y onezawa T, Toshim a N.Mechanistic consideration of formation of polym er-protected nanoscopic bimetallic clusters [J]. J. Chem. Soc. Faraday Trans.,1995, 91(22):4111-4119.
    [96]Fendler, J. H. Nanoparticles and nanostructured films Preparation, Characterization and Applications [M]. Weinheim:Wiley-VCH,1998,12.
    [97]M. Conte, A. F. Carley, G. Attard, A. A. Herzing, C. J. Kiely, G. J. Hutchings. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts [J]. J. Catal.,2008,257(1):190-198.
    [98]N. K. Chaki, H. Tsunoyama, Y. Negishi, H. Sakurai, T. Tsukuda, Effect of Ag-Doping on the Catalytic Activity of Polymer-Stabilized Au Clusters in Aerobic Oxidation of Alcohol [J]. J. Phys. Chem. C,2007,111(13):4885-4888.
    [99]Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, Y. Maeda. Characterization and Catalytic Activity of Core-Shell Structured Gold/Palladium Bimetallic Nanoparticles Synthesized by the Sonochemical Method [J]. J. Phys. Chem. B,2000, 104 (25):6028-6032.
    [100]M. Moskovits, I. Srnova-Sloufova, B. Vlckova. Bimetallic Ag-Au nanoparticles:extracting meaningful optical constants from the surface-plasmon extinction spectrum [J]. J. Chem. Phys.,2002,116:10435-10446.
    [101]H. Shi, L. Zhang, W. Cai. Composition modulation of optical absorption in AgxAul-x alloy nanocrystals in situ formed within pores of mesoporous silica [J]. J. Appl. Phys.,2000,87:1572-1574.
    [102]N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. H. Lin, C. M. Wang, M. H. Engelhard, Composition-controlled synthesis of bimetallic gold-silver nanoparticles [J]. Langmuir,2004,20:11240-11246.
    [103]M. J. Kim, H. J. Na, K. C. Lee, E. A. Yoo, M. Y. Lee, Preparation and characterization of Au-Ag and Au-Cu alloy nanoparticles in chloroform [J]. J. Mater. Chem.,2003,13:1789-1792.
    [104]C. D. Pina, E. Falletta, L. Prati, M. Rossi. Selective oxidation using gold [J]. Chem. Soc. Rev.,2008.37:2077-2095.
    [105]T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei and M. Haruta. Influence of the Support and the Size of Gold Clusters on Catalytic Activity for Glucose Oxidation [J]. Angew. Chem. Int. Ed.,2008,47:9265-9268.
    [106]J. H. Liu, A. Q. Wang, Y. S. Chi, H. P. Lin, C. Y. Mou. Synergistic Effect in an Au-Ag Alloy Nanocatalyst:CO Oxidation [J]. J. Phys. Chem. B,2005,109(1): 40-43.
    [107]X. Y. Liu, A. Q. Wang, X. F. Yang, T. Zhang, C. Y. Mou, D. S. Su, J. Li. Synthesis of Thermally Stable and Highly Active Bimetallic Au-Ag Nanoparticles on Inert Supports [J]. Chem. Mater.,2009,21(2):410-418.
    [108]A. Q. Wang, C. M. Chang, C. Y. Mou. Evolution of Catalytic Activity of Au-Ag Bimetallic Nanoparticles on Mesoporous Support for CO Oxidation [J]. J. Phys. Chem. B,2005,109(40):18860-18867.
    [109]A. Q. Wang, Y. Hsieh, Y. F. Chen, C. Y. Mou. Au-Ag alloy nanoparticle as catalyst for CO oxidation:Effect of Si/Al ratio of mesoporous support [J]. J. Catal., 2006,237:197-206.
    [110]A. Q. Wang, J. H. Liu, S. D. Lin, T. S. Lin, C. Y. Mou. CO Oxidation over Au-Ag Alloy Supported on Mesoporous Materials [J]. J. Catal.,2005,233:186-197.
    [111]C. W. Yen, M. L. Lin, A. Q. Wang, S. A. Chen, J. M. Chen, C. Y. Mou. CO oxidation catalyzed by Au-Ag alloy nanoparticle confined in mesoporous silica [J]. J. Phys. Chem. C,2009,113:17831-17839.
    [112]J. K. Edwards, B. Solsona-Espriu, P. Landon, A. F. Carley, A. A. Herzing, C. J. Kiel, G. J. Hutchings. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts [J]. J. Catal.2005,236(1):69-79.
    [113]C. Bianchi, P. Canton, N. Dimitratos, F. Porta, L. Prati. Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals [J]. Catal. Today,2005,102:203-212.
    [114]L. Prati, M. Rossi. Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols [J]. J. Catal.,1998,176(2):552-560.
    [115]A. M. Venezi, V. La Parola, V. Nicol. Effect of Gold on the HDS Activity of Supposed Palladium Catalysts [J]. J. Catal.,2002,2002,212:56-62.
    [116]庄家俊.我国苯甲酸钠生产应用及市场趋势[J].上海化工,2000,13:30-32.
    [1]Brunauer S., Emmett P. H., Teller E. Adsorption of gases in multimolecular layers [J]. J.Am. Chem. Soc,1938,60(2):309-319.
    [2]Robertson S. D., McNicol B. D., De Baas J. H., Kloet S. C., Jenkins J. W. Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction [J]. J. Catal,1975,37:424-431.
    [3]Boudeville Y., Figueras F., Forissier M., Portefaix J. L., Vedrine J. C. Correlations between X-ray photoelectron spectroscopy data and catalytic properties in selective oxidation on Sb-Sn-O catalysts [J]. J Catal,1979,58(1):52-60.
    [1]A. Wolf, F. Schuth. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts [J]. Appl. Catal. A,2002,226:1-13.
    [2]R. Zanella, L. Delannoy, C. Louis. Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea [J]. Appl. Catal. A,2005,291(1-2):62-72.
    [3]N. Dimitratos, A. Villa, C. L. Bianchi, L. Prati, M. Makkee. Gold on titania:Effect of preparation method in the liquid phase oxidation [J]. Appl. Catal. A,2006,311: 185-192.
    [4]A. Q. Wang, J. H. Liu, S. D. Lin, T. S. Lin, C. Y. Mou. CO Oxidation over Au-Ag Alloy Supported on Mesoporous Materials [J]. J. Catal.,2005,233:186-197.
    [5]J. H. Liu, A. Q. Wang, Y. S. Chi, H. P. Lin, C. Y. Mou. Synergistic Effect in an Au-Ag Alloy Nanocatalyst:CO Oxidation [J]. J. Phys. Chem. B,2005,109(1): 40-43.
    [6]X. Y. Liu, A. Q. Wang, X. F. Yang, T. Zhang, C. Y. Mou, D. S. Su, J. Li. Synthesis of Thermally Stable and Highly Active Bimetallic Au-Ag Nanoparticles on Inert Supports [J]. Chem. Mater.,2009,21(2):410-418.
    [7]A. Q. Wang, C. M. Chang, C. Y. Mou. Evolution of Catalytic Activity of Au-Ag Bimetallic Nanoparticles on Mesoporous Support for CO oxidation [J]. J. Phys. Chem. B,2005,109:18860-18867.
    [8]A. Q. Wang, Y. Hsieh, Y. F. Chen, C. Y. Mou. Au-Ag alloy nanoparticle as catalyst for CO oxidation:Effect of Si/Al ratio of mesoporous support [J]. J. Catal., 2006,237:197-206.
    [9]C. W. Yen, M. L. Lin, A. Q. Wang, S. A. Chen, J. M. Chen, C. Y. Mou. CO oxidation catalyzed by Au-Ag alloy nanoparticle confined in mesoporous silica [J]. J. Phys. Chem. C,2009,113:17831-17839.
    [10]L. J. Liu, J. Chan, T. K. Sham. Calcination-Induced Phase Transformation and Accompanying Optical Luminescence of TiO2 Nanotubes:An X-ray Absorption Near-Edge Structures and X-ray Excited Optical Luminescence Study [J]. J. Phys. Chem. C,2010,114:21353-21359
    [11]J. Zhang, M. Li, Z. Feng, J. Chen, C. Li. UV raman spectroscopic study on TiO2 phase transformation at the surface [J]. J. Phys. Chem. B 2006,110 (2):927-935.
    [12]T. B. Ghosh, S. Dhabal, A. K. Datta. On crystallite size dependence of phase stability of nanocrystalline TiO2 [J]. J. Appl. Phys.,2003,94(7):4577-4582.
    [13]R. D. Shannon. J. A. Pask. Kinetics of the Anatase-Rutile Transformation [J]. J. Am. Ceram. Soc.,1965,48(8):391-398.
    [14]A. A. Gribb, J. F. Banfield. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 [J]. Am. Mineral.,1997,82(7-8):717-728.
    [15]J. M. McHale, A. Auroux, A. J. Perrotta,A. Navrotsky. Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas [J]. science,1997,277: 788-791.
    [16]L. L. Wang, Z. L. Meng, Y. L. Yu, Q. W. Meng, D.Z. Chen. Synthesis of Hybrid Linear-Dendritic Block Copolymers with Carboxylic Functional Groups for the Biomimetic Mineralization of Calcium Carbonate [J]. Polymer,2008,49(5): 1199-1210.
    [17]F. Boccuzzi, A.hiorino, M.Manzoli, P.Lu, T.kita, S. Ichikawa, M.Haruta. Au/TiO2 nanosized samples:a catalytic,TEM,and FTIR study of the effect of calcination temperature on the CO oxidation[J]. J. Catal.,2001,202(2):256-267.
    [18]S. Arrii, F. Morfin, A. J. Renouprez, J. L. Rousset. Oxidation of CO on Gold Supported Catalysts Prepared by Laser Vaporization:Direct Evidence of Support Contribution [J]. J. Am. Chem. Soc.,2004,126(4):199-1205.
    [19]G. J. Hutchings. Gold catalysis in chemical processing [J]. Catal. Today,2002, 72:11-17.
    [20]J. N. Anker, W. P. Hall, O. Lyandres, J. Zhao. Biosensing with plasmonic nanosensors [J]. Nat. Mater.,2008,7:442-453.
    [21]D. I. Kondarides, X. E. Verykios. Interaction of Oxygen with Supported Ag-Au Alloy Catalysts [J].J. Catal.,1996,158 (2):363-377.
    [1]A. Fujishima, X. T. Zhang, D. A. Tryk. TiO2 photocatalysis and related surface phenomena [J]. Surf. Sci. Rep.,2008,63(12); 515-582.
    [2]L. Zhang, M. Kuhn, U. Diebold. Thermal Stability of Ultrathin Cr Films on Pt(111) [J]. J. Phys. Chem. B,1997,101(23):4588-4596.
    [3]F. Studt, F. Pedersen, T. Bligaard, R. Z. S(?)rensen, C. H. Christensen, J. K. N(?)rskov. Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene [J]. Science,2008,320(5881):1320-1322.
    [4]L. Kesavan, R. Tiruvalam, M. H. Ab Rahim, D. I. Enachel, Robert L. Jenkins 1, N. Dimitratos. Solvent-Free Oxidation of Primary Carbon-Hydrogen Bonds in Toluene Using Au-Pd Alloy Nanoparticles [J]. Science,2011,331(6014):195-199.
    [5]B. Hammer, J. K. Norskov, Theoretical surface science and catalysis-calculations and concepts [J]. Adv. Catal.,2000,45:71-129.
    [6]F. Maroun, F. Ozanam, O. M. Magnussen, R. J. Behm. The Role of Atomic Ensembles in the Reactivity of Bimetallic Electrocatalysts [J]. Science,2001,293 (5536):1811-1814.
    [7]Z. Ma, F. Zaera. Competitive Chemisorption between Pairs of Cinchona Alkaloids and Related Compounds from Solution onto Platinum Surfaces[J]. J. Am. Chem. Soc., 2006,128(51):16414-16415.
    [8]V. V. Gorodetskii, A. V. Matveev, E. A. Podgornov, F. Zaera. Study of the Low Temperature Reaction Between CO and O2 over Pd and Pt Surfaces [J].Top. Catal., 2005,32(1-2):17-28.
    [9]M. Chen, D. Kumar, C.W. Yi, D. W. Goodman. The Promotional Effect of Gold in Catalysis by Palladium-Gold [J]. Science,2005,310 (5746):291-293.
    [10]D. I. Enache, J. K. Edwards, P. Landon, A. F. Carley. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts [J]. Science,2006, 311(5759):362-365.
    [11]H. Tiznado, S. Fuentes, F. Zaera, Infrared Study of CO Adsorbed on Pd/Al2O3-ZrO2:Effect of Zirconia Added by Impregnation [J].Langmuir, 2004,20(24):10490-10497.
    [12]E. Gross, I. Popov, M. Asscher.. Chemical Reactivity of Pd-Au Bimetallic Nanoclusters Grown via Amorphous Solid Wateras Buffer Layer[J]. J. Phys. Chem. C 2009,113:18341-18346.
    [13]J. Rebelli, M. Detwiler, S. Ma, C.r T. Williams, J. R. Monnier. Synthesis and characterization of Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition [J].J. Catal.,270(21):224-233.
    [14]W. Chu, Y. Ooka, Y. Kamiya, T.Okuhara. Reaction path for oxidation of ethylene to acetic acid over Pd/WO3-ZrO2 in the presence of water [J].Catal. Lett., 2005,101(3-4):225-228.
    [15]F. Menegazzo, M.Signoretto, M. Manzoli, Fl. Boccuzzi, G. Cruciani, F. Pinna, G. Strukul. Influence of the preparation method on the morphological and composition properties of Pd-Au/ZrO2 catalysts and their effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen [J]. J. Catal.,268(1):122-130.
    [16]Y. F. Han, J. H. Wang, D. Kumar, Z. Yan, D.W. Goodman. Synergetic effect of gold in Au/Pd catalysts during hydrodesulfurization reactions of model compounds [J]. J. Catal.,215(2):317-325.
    [17]F. C. Lizana, S. G. Quero, A. Hugon, L.t Delannoy, C. Louis, M. A. Keane. Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au [J]. J. Catal.,2009,262(2):235-243.
    [18]J. Xu, T. White, P. Li, C. He, J. Yu, W. Yuan, Y. Han. Biphasic Pd-Au Alloy Catalyst for Low-Temperature CO Oxidation [J]. J. Am. Chem. Soc.,2010,13: 10398-10406.
    [19]J.Xu, P. Li, X. Song, Z. Qi, J. Yu, W. Yuan, Y. Han. Kinetic Study of H2 Oxidation in the Preferential Oxidation of CO on a Nanosized Au/CeO2 Catalyst[J]. Ind. Eng. Chem. Res.,2010,49:4149-4155
    [20]P. Li, C. He, S. Campestrini, B. Corain, W. Yuan, Y. Han. Synthesis of Hydrogen Peroxide from H2 and O2 in Water and Ethanol Catalyzed by Nanoclustered PdO on Silica:Strong Selectivity Enhancement Exerted by the Addition of Ionic Liquids [J]. Phys. Chem.Chem.Phys.,2010,12:2170-2176.
    [21]A. Staykov, T.Kamachi, T. Ishihara, K. Yoshizawa. Theoretical Study of the Direct Synthesis of H2O2 on Pd and Pd/Au Surfaces [J]. J. Phys. Chem. C,2008,112 (49):19501-19505.
    [22]T.Wei, J. Wang, D. W. Goodman. Characterization and Chemical Properties of Pd-Au Alloy Surfaces [J]. J. Phys. Chem. C,2007,111 (25):8781-8788.
    [23]M. Bonarowska, B. Burda, W. Juszczyk, J. Pielaszek, Z. Kowalczyk, Z. Karpinski. Hydrodechlorination of CCl2F2 (CFC-12) over Pd-Au/C catalysts [J]. Applied Catalysis B:Environmental,2001,35(1)10:13-20.
    [24]K. Qian, W. Huang. Au-Pd alloying-promoted thermal decomposition of PdO supported on SiO2 and its effect on the catalytic performance in CO oxidation [J]. Catalysis Today,2011,164(1):320-324.
    [25]J. Steidtner, F. Hernandez, H. Baltruschat. Electrocatalytic Reactivity of Pd Monolayers and Monatomic Chains on Au [J]. J. Phys. Chem. C,2007,111 (33):12320-12327.
    [26]M. A. Bollinger, M. A. Vannice. A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au/TiO2 catalysts [J]. Appl. Catal. B:Environ.,1996, 8(4):417-443.
    [27]M. Comotti, W. C. Li, B. Spliethoff, F. Schuth. Support effect in high activity gold catalysts for CO oxidation [J]. J. Am. Chem. Soc.,2006,128(3):917-924.
    [28]B. E. Solsona, T. Garcia, C. Jones, S. H. Taylor, A. F. Carley, G. J. Hutchings. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide [J]. Appl. Catal. A,2006,312:67-76.
    [29]L. C. Wang, Q. Liu, X. S. Huang, Y. M. Liu, Y. Cao, K. N. Fan. Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation [J]. Appl. Catal. B-Environ.,2009,88(1-2):204-212.
    [30]V. R. Choudhary, V. P. Patil, P. Jana, B. S. Uphade. Nano-gold supported on Fe2O3:A highly active catalyst for low temperature oxidative destruction of methane green house gas from exhaust/waste gases [J]. Appl. Catal. A,2008,350(2):186-190.
    [31]V. Idakiev, T. Tabakova, A. Naydenov, Z. Y. Yuan, B. L. Su. Gold catalysts supported on mesoporous zirconia for low-temperature water-gas shift reaction [J]. Appl. Catal. B:Environ.,2006,63(3-4):178-186.
    [32]D. Widmann, R. Leppelt, R. J. Behm. Activation of a Au/CeO2 catalyst for the CO oxidation reaction by surface oxygen removal/oxygen vacancy formation [J]. J. Catal.,2007,251(2):437-442.
    [33]C. K. Costello, J. H. Yang, H. Y. Law, Y. Wang, J. N. Lin, L. D. Marks, M. C. Kung, H. H. Kung. On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3 [J]. Appl. Catal. A,2003,243(1):15-24.
    [34]D. Wang, Z. Hao, D. Cheng, X. Shi, C. Hu. Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts [J]. J. Mol. Catal. A: Chem.,2003,200(1-2):229-238.
    [35]M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, R. J. Behm. CO oxidation over supported gold catalysts—"Inerf" and "Active" support materials and their role for the oxygen supply during reaction [J]. J. Catal.,2001, 197(1):113-122.
    [36]F. Moreau, G. C. Bond. CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component [J]. Catal. Today,2006,114(4):362-368.
    [37]M. M. Schubert, V. Plzak, J. Garche, R. J. Behm. Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas [J]. Catal. Lett.,2001,76(3-4):143-150.
    [38]A. C. Gluhoi, N. Bogdanchikova, B. E. Nieuwenhuys. The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria [J]. J. Catal.,2005,229(1):154-162.
    [39]D. Niakolas, C. Andronikou, C. Papadopoulou, H. Matralis. Influence of metal oxides on the catalytic behavior of Au/Al2O3 for the selective reduction of NOx by hydrocarbons [J]. Catal. Today,2006,112(1-4):184-187.
    [40]T. Tabakova, V. Idakiev, D. Andreeva, I. Mitov. Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction [J]. Appl. Catal. A, 2000,202(1):91-97.
    [41]N. S. Patil, B. S. Uphade, D. G. McCulloh, S. K. Bhargava, V. R. Choudhary. Styrene epoxidation over gold supported on different transition metal oxides prepared by homogeneous deposition-precipitation [J]. Catal. Commun.,2004,5:681-685.
    [42]D. I. Enache, D. W. Knight, G. J. Hutchings. Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts [J]. Catal. Lett.,2005,103: 43-52.
    [43]D. H. Kim, J. E. Cha. CuO-CeO2 mixed-oxide catalyst for CO clean-up by selectiveoxidation in hydrogen-rich mixtures[J]. Catalysis Letters,2003,86:107-110.
    [44]朱兆武,龙志奇,崔大立.超细CeO2粉体的制备及其紫外线吸收性能[J].中国有色金属学报,2005,15(3):435-439.
    [45]N. Izu, W. S.Norimitsu. Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder [J]. Sensors and Actuators B,2003,93:449-453.
    [46]D. J. Brett, A. Atkinson, D. Cumming, R. C. lvia, R. Robert. Brandon NP. Methanol as a direct fuel in intermediate temperature(500-600℃) solid oxide fuel cells with copper based anodes [J]. Chemical Engineering Science,2005,60:5649-5662.
    [47]X. D. Feng, D. C. Sayle, Z. L. Wang, P. M. Sharon, B. Santora. Converting ceria polyhedral nanoparticles into single-crystal nanospheres [J]. Science,2006,3(12): 1504-1510.
    [48]袁慎忠,肖彦,张燕.(Ce-zr-Pr)O2在三效催化剂中的应用[J].中国稀土学报,2006,24(增刊):66-68.
    [49]郭家秀,袁书华,龚茂初.CeO2-ZrO2-Y2O3对Pt-Rh型三效催化剂性能的影响[J].中国稀土学报,2006,24(2):174-178.
    [50]E. S. Bickford, S. Velu, C. S. Song. Nano-structures CeO2 supported Cu-Pd bimetallic catalysts for the oxygen-assisted water-gasshift reaction [J]. Catal Today,2005,99(3-4):347-351.
    [51]Lai S. Y., Qiu F., Wang S. J., Effects of the structure of ceria on the activity of gold/CeO2 catalysts for the oxidation of carbon mon-oxide and benzene [J]. J. Catal.,2006,237(2):303-308.
    [52]B. Campo, M. Volpe, S. Ivanova, R. Touroude. Selective hydrogenation of crotonaldehyde on Au/HAS-CeO2 catalysts [J]. J. Catal.,2006,242(1):162-166.
    [53]D. Jana, A. Dandapat, G. De. Au@Pd Core-Shell Nanoparticle Incorporated Alumina Sols and Coatings:Transformation of Au@Pd to Au-Pd Alloy Nanoparticles [J]. J. Phys. Chem. C,2009,113 (21):9101-9107.
    [54]G. Zhang, Y.Wang, X.Wang, Y. Chen, Y. Zhou, Y. Tang, L. Lu, J. Bao, T.Lu. Preparation of Pd-Au/C catalysts with different alloying degree and their electrocatalytic performance for formic acid oxidation [J]. Applied Catalysis B: Environmental,2011,102(3-4)22:614-619.
    [55]M. O. Nutt, K. N. Heck, P. Alvarez, Mi. S. Wong. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination [J]. Applied Catalysis B:Environmental,2006,69(1-2):115-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700