青海沙蜥成体神经发生的特征描述
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成体神经发生(adult neurogenesis)是指在成年动物的中枢神经系统中某些特定部位的前体细胞终生不断产生神经元和胶质细胞,新产生的神经元能发育分化为功能性神经元并与其它已经存在的神经元形成突触联系,融合到原有的神经通路中。成体神经发生在物种之间表现出很大差异性。在过去的十年中,有关成体神经发生的调控和功能的研究取得了显著进步,但是对具有自发再生能力的羊膜动物爬行类来说,成体神经发生所发挥的功能仍然知之甚少。本研究以我国青藏高原典型的爬行动物——青海沙蜥为动物模型,对蜥蜴中枢神经系统成体神经发生的基本规律和特征进行观察和研究。利用BrdU活体注射标记分裂细胞,应用免疫组化DAB显色法和免疫组化荧光标记法结合激光共聚焦显微照相技术观察和分析青海沙蜥端脑成体神经干细胞的分布部位和增殖速率。利用经典高尔基染色法描述了青海沙蜥内皮质中主要神经细胞的形态。DCX和GFAP免疫荧光染色分别显示蜥蜴大脑新生神经元和胶质细胞系的总体模式。研究结果表明:
     1.与哺乳动物相比,青海沙蜥的大脑皮层构筑较简单,呈典型的三层结构:一条密集的细胞带被两侧的丛状层夹在中间。蜥蜴端脑不具有海马结构。主嗅球和副嗅球都不呈典型的层状结构,细胞排列不规则。
     2.最后一次注射BrdU24小时后,标记的新生细胞绝大多数分布于侧脑室的室带,但其它端脑分区中也分布有少量BrdU阳性细胞,其中前嗅核是细胞增殖活动最丰富的区域。中脑和间脑未见BrdU阳性细胞。
     3.蜥蜴端脑的内皮质中主要为投射神经元,它们的胞体形态和突起投射各异,或是伸出多条分枝伸向两侧的丛状层,或是聚集成纤维向邻近的背皮质区延伸。
     4.DCX免疫组化染色结果表明未成熟神经元不仅广泛分布于端脑,而且一些已经迁移进入端脑内皮质中的内丛状层,它们表现出的正在迁移新生神经元的典型特征,一些新生神经元在细胞带中排成一排。
     5.青海沙蜥的端脑、间脑和中脑都含有大量GFAP阳性的放射状结构,包括伸长细胞和放射状胶质细胞。它们细长的放射状突起贯穿整个皮层区域,最终形成足板锚定在软脑膜下区。嗅球中的GFAP阳性的波浪状纤维较粗,它们彼此交织成网状结构。游离的星型胶质细胞只存在于蜥蜴的中脑。
     青海沙蜥的成体神经发生有其自身特征,新生细胞的增殖、分布和胶质细胞家族的分布模式与种系发育密切相关,这种种系差异主要取决于不同环境刺激和感觉系统生长之间的协同作用。总之,由于爬行类是首先出现星型胶质细胞成分的脊椎动物群,所以其大脑为我们提供了很好的模型来研究神经元的再生和营养信号以及细胞命运分化。因此,这些发现不仅有利于理解不同季节和生态环境对爬行类成体神经发生的影响,而且能帮助我们阐明哺乳动物成年大脑的内源性神经再生能力和兼容性。
Adult neurogenesis, a process of giving rise to neurons and glia continually from progenitors residing in restricted regions of the adult central nervous system (CNS) throughout life, varies considerably across species. Although remarkable progress has been made over the past decade in unraveling the regulation and function of adult neurogenesis, the role of adult neurogenesis in reptiles, the amniotic vertebrates that possess spontaneous regenerative capacity is less known. In the present study, we used Phrynocephalus vlangalii--typical reptile in Qinghai-Tibetan Plateau of China to investigate the general pattern and characteristics of adult neurogenesis.
     Lizards were intraperitoneally injected with Bromodeoxyuridine (BrdU) in order to label dividing cells. Distinct immunocytochemistry were performed:DAB-immunostaining and fluorescence-immunostaining, combined with microscope imaging to observe the location and proliferation of newborn cells. Golgi staining technology was used in order to describe the morphology structure of principal neurons in medial cortex of the lizard. DCX-immunostaining and GFAP-immunostaining were carried out to display the general pattern of immature neurons and glial lineage. Our results showed that:
     1. Compared with mammals, the brains of P. vlangalii own simpler cytoarchitectonical patterns, but still characteristic of three-laminated fashion:most somata are packed into a cell layer sandwiched between the inner and outer plexiform layers. The cells both in MOB and in AOB of P. vlangalii are irregularly distributed, instead of having laminar organization.
     2. Three days after BrdU injection, BrdU-labeled cells were mostly distributed in the ventricular zone of lateral ventricle with cell proliferation highest in region referred to anterior olfactory nucleus (AON).
     3. The majority of neurons populating the medial cortex were projection neurons, displaying various soma morphologies. Their projecting processes either reached adjacent dorsal cortical areas and/or the bilateral septum.
     4. Immunostaining against DCX showed immature neurons were not only widely distributed in telencephalon, but also had migrated into inner plexiform layer. Some immature neurons orderly arrayed in a line in cell layer of MC and displayed typical migrating newborn neurons.
     5. GFAP-immunostaining in telencephalon, diencephalon and mesencephalon were fundamentally represented by radial glial structures, including tanycytes and radial glial cells. Radial GFAP-positive fibers spreaded throughout the entire cortex and terminated with swollen endfeet anchoring the submeningeal surface. The thicker sinuous fibers in OB appeared to interweave together forming a mesh network. An intriguing finding was the emergence of GFAP-positive, star-shaped cells in the mesencephalon.
     In conclusion, the adult neurogenesis in lizard is possessed of its own characteristics, which are closely related with phylogenetic differences dependent on the coordinated interaction between different environmental cues and growth of sensory systems. Lizard brain provides us an excellent access to investigate the neuronal regeneration and neurotrophic signals, and cell fate specification, since reptiles represent the first vertebrate group presenting astrocytes proper. Therefore, these findings may not only have implications for understanding the effect of distinctive seasons and ecological environment on the adult neurogenesis of reptiles, but also could favor the elucidation of potential mechanism regulating the endogenous neurogenetic capacity and compatibility in mammalian adult brain.
引文
[1]Ming, G.L., Song, H. Adult neurogenesis in the mammalian central nervous system[J]. Annual review of neuroscience.2005,28:223-250.
    [2]Zhao, C., Deng, W., Gage, F.H. Mechanisms and functional implications of adult neurogenesis[J]. Cell.2008,132(4):645-660.
    [3]Ming, G.L., Song, H. Adult neurogenesis in the mammalian brain:significant answers and significant questions[J]. Neuron.2011,70(4):687-702.
    [4]van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D., Gage, F.H. Functional neurogenesis in the adult hippocampus[J]. Nature.2002, 415(6875):1030-1034.
    [5]Kempermann, G., Kuhn, H.G., Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment[J]. Nature.1997,386(6624):493-495.
    [6]Brown, J., Cooper-Kuhn, C.M., Kempermann, G., Van Praag, H., Winkler, J., Gage, F.H., Kuhn, H.G. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis [J]. The European journal of neuroscience.2003, 17(10):2042-2046.
    [7]Alvarez-Buylla, A., Lim, D.A. For the long run:maintaining germinal niches in the adult brain[J]. Neuron.2004,41(5):683-686.
    [8]Lledo, P.M., Alonso, M., Grubb, M.S. Adult neurogenesis and functional plasticity in neuronal circuits[J]. Nature reviews. Neuroscience.2006,7(3):179-193.
    [9]Duan, X., Kang, E., Liu, C.Y., Ming, G.L., Song, H. Development of neural stem cell in the adult brain[J]. Current opinion in neurobiology.2008,18(1):108-115.
    [10]Deng, W., Aimone, J.B., Gage, F.H. New neurons and new memories:how does adult hippocampal neurogenesis affect learning and memory?[J]. Nature reviews. Neuroscience.2010, 11(5):339-350.
    [11]Paton, J.A., Nottebohm, F.N. Neurons generated in the adult brain are recruited into functional circuits[J]. Science.1984,225(4666):1046-1048.
    [12]Reynolds, B.A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science.1992,255(5052):1707-1710.
    [13]Richards, L.J., Kilpatrick, T.J., Bartlett, P.F. De novo generation of neuronal cells from the adult mouse brain[J]. Proceedings of the National Academy of Sciences of the United States of America.1992,89(18):8591-8595.
    [14]Kuhn, H.G., Dickinson-Anson, H., Gage, F.H. Neurogenesis in the dentate gyrus of the adult rat:age-related decrease of neuronal progenitor proliferation[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience.1996, 16(6):2027-2033.
    [15]Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., Gage, F.H. Neurogenesis in the adult human hippocampus[J]. Nature medicine. 1998,4(11):1313-1317.
    [16]Gould, E. How widespread is adult neurogenesis in mammals?[J]. Nature reviews. Neuroscience.2007,8(6):481-488.
    [17]Doetsch, F., Scharff, C. Challenges for brain repair:insights from adult neurogenesis in birds and mammals[J]. Brain, behavior and evolution.2001,58(5):306-322.
    [18]Zupanc, G.K. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish[J]. Brain, behavior and evolution.2001,58(5):250-275.
    [19]Garcia-Verdugo, J.M., Ferron, S., Flames, N., Collado, L., Desfilis, E., Font, E. The proliferative ventricular zone in adult vertebrates:a comparative study using reptiles, birds, and mammals[J]. Brain research bulletin.2002,57(6):765-775.
    [20]Goldman, S.A., Nottebohm, F. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain [J]. Proceedings of the National Academy of Sciences of the United States of America.1983,80(8):2390-2394.
    [21]Alvarez-Buylla, A., Ling, C.Y., Yu, W.S. Contribution of neurons born during embryonic, juvenile, and adult life to the brain of adult canaries:regional specificity and delayed birth of neurons in the song-control nuclei[J]. The Journal of comparative neurology. 1994,347(2):233-248.
    [22]Alvarez-Buylla, A., Theelen, M., Nottebohm, F. Mapping of radial glia and of a new cell type in adult canary brain[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience.1988,8(8):2707-2712.
    [23]Kirn, J.R., Alvarez-Buylla, A., Nottebohm, F. Production and survival of projection neurons in a forebrain vocal center of adult male canaries[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience.1991, 11 (6):1756-1762.
    [24]Nottebohm, F., O'Loughlin, B., Gould, K., Yohay, K., Alvarez-Buylla, A. The life span of new neurons in a song control nucleus of the adult canary brain depends on time of year when these cells are born[J]. Proceedings of the National Academy of Sciences of the United States of America.1994,91(17):7849-7853.
    [25]Alvarez-Buylla, A., Theelen, M., Nottebohm, F. Proliferation "hot spots" in adult avian ventricular zone reveal radial cell division[J]. Neuron.1990,5(1):101-109.
    [26]Alvarez-Buylla, A., Kirn, J.R. Birth, migration, incorporation, and death of vocal control neurons in adult songbirds[J]. Journal of neurobiology.1997,33(5):585-601.
    [27]Barnea, A., Nottebohm, F. Recruitment and replacement of hippocampal neurons in young and adult chickadees:an addition to the theory of hippocampal learning[J]. Proceedings of the National Academy of Sciences of the United States of America.1996, 93(2):714-718.
    [28]Ling, C., Zuo, M., Alvarez-Buylla, A., Cheng, M.F. Neurogenesis in juvenile and adult ring doves[J]. The Journal of comparative neurology.1997,379(2):300-312.
    [29]Kirn, J.R., Fishman, Y., Sasportas, K., Alvarez-Buylla, A., Nottebohm, F. Fate of new neurons in adult canary high vocal center during the first 30 days after their formation[J]. The Journal of comparative neurology.1999,411(3):487-494.
    [30]Scharff, C., Kirn, J.R., Grossman, M., Macklis, J.D., Nottebohm, F. Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds[J]. Neuron. 2000,25(2):481-492.
    [31]Bernocchi, G., Scherini, E., Nano, R. Developmental patterns in the rat cerebellum after cis-dichlorodiammineplatinum treatment[J]. Neuroscience.1990,39(1):179-188.
    [32]Chetverukhin, V.K., Polenov, A.L. Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus of the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus. Ⅰ. Ventricular zone cell proliferation[J]. Cell and tissue research.1993,271(2):341-350.
    [33]Polenov, A.L., Chetverukhin, V.K. Ultrastructural radioautographic analysis of neurogenesis in the hypothalamus of the adult frog, Rana temporaria, with special reference to physiological regeneration of the preoptic nucleus. Ⅱ. Types of neuronal cells produced[J]. Cell and tissue research.1993,271(2):351-362.
    [34]Dawley, E.M., Fingerlin, A., Hwang, D., John, S.S., Stankiewicz, C.A. Seasonal cell proliferation in the chemosensory epithelium and brain of red-backed salamanders, Plethodon cinereus[J]. Brain, behavior and evolution.2000,56(1):1-13.
    [35]Raucci, F., Di Fiore, M.M., Pinelli, C., D'Aniello, B., Luongo, L., Polese, G, Rastogi, R.K. Proliferative activity in the frog brain:a PCNA-immunohistochemistry analysis[J]. Journal of chemical neuroanatomy.2006,32(2-4):127-142.
    [36]Vidal Pizarro, I., Swain, G.P., Selzer, M.E. Cell proliferation in the lamprey central nervous system[J]. The Journal of comparative neurology.2004,469(2):298-310.
    [37]Zupanc, G.K., Horschke, I. Proliferation zones in the brain of adult gymnotiform fish:a quantitative mapping study[J]. The Journal of comparative neurology.1995, 353(2):213-233.
    [38]Zikopoulos, B., Kentouri, M., Dermon, C.R. Proliferation zones in the adult brain of a sequential hermaphrodite teleost species (Sparus aurata)[J]. Brain, behavior and evolution.2000,56(6):310-322.
    [39]Ekstrom, P., Johnsson, C.M., Ohlin, L.M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones[J]. The Journal of comparative neurology.2001,436(1):92-110.
    [40]Zupanc, G.K., Hinsch, K., Gage, F.H. Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain[J]. The Journal of comparative neurology.2005,488(3):290-319.
    [41]Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., Brand, M. Neural stem cells and neurogenesis in the adult zebrafish brain:origin, proliferation dynamics, migration and cell fate[J]. Developmental biology.2006,295(1):263-277.
    [42]Soutschek, J., Zupanc, G.K. Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus[J]. Brain research. Developmental brain research.1996, 97(2):279-286.
    [43]Zupanc, G.K., Horschke, I., Ott, R., Rascher, G.B. Postembryonic development of the cerebellum in gymnotiform fish[J]. The Journal of comparative neurology.1996, 370(4):443-464.
    [44]Adolf, B., Chapouton, P., Lam, C.S., Topp, S., Tannhauser, B., Strahle, U., Gotz, M., Bally-Cuif, L. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon[J]. Developmental biology.2006,295(1):278-293.
    [45]Chapouton, P., Jagasia, R., Bally-Cuif, L. Adult neurogenesis in non-mammalian vertebrates[J]. Bioessays.2007,29(8):745-757.
    [46]Delgado-Gonzalez, F.J., Alonso-Fuentes, A., Delgado-Fumero, A., Garcia-Verdugo, J.M., Gonzalez-Granero, S., Trujillo-Trujillo, C.M., Damas-Hernandez, M.C. Seasonal differences in ventricular proliferation of adult Gallotia galloti lizards[J]. Brain research. 2008,1191:39-46.
    [47]Delgado-Gonzalez, F.J., Gonzalez-Granero, S., Trujillo-Trujillo, C.M., Garcia-Verdugo, J.M., Damas-Hernandez, M.C. Study of adult neurogenesis in the Gallotia galloti lizard during different seasons[J]. Brain research.2011,1390:50-58.
    [48]王香亭.1991.甘肃脊椎动物志.甘肃科学技术出版社,兰州.
    [49]Tineo, P.L., Planelles, M.D., Del-Corral, J. Modifications in cortical ependyma of the lizard, Podarcis hispanica, during postnatal development[J]. Journal fur Hirnforschung. 1987,28(5):485-489.
    [50]Wouterlood, F.G. The structure of the mediodorsal cerebral cortex in the lizard Agama agama:a Golgi study[J]. The Journal of comparative neurology.1981,196(3):443-458.
    [51]Lazzari, M., Franceschini, V. Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of adult Podarcis sicula (Squamata, Lacertidae)[J]. Journal of anatomy.2001,198(Pt 1):67-75.
    [52]Font, E., Desfilis, E., Perez-Canellas, M.M., Garcia-Verdugo, J.M. Neurogenesis and neuronal regeneration in the adult reptilian brain[J]. Brain, behavior and evolution.2001, 58(5):276-295.
    [53]Zupanc, GK., Ott, R. Cell proliferation after lesions in the cerebellum of adult teleost fish:time course, origin, and type of new cells produced[J]. Experimental neurology. 1999,160(1):78-87.
    [54]Kaslin, J., Ganz, J., Brand, M. Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain[J]. Philosophical transactions of the Royal Society of London. Series B, Biological sciences.2008,363(1489):101-122.
    [55]Dawson, M.R., Levine, J.M., Reynolds, R. NG2-expressing cells in the central nervous system:are they oligodendroglial progenitors?[J]. Journal of neuroscience research. 2000,61(5):471-479.
    [56]Levine, J.M., Reynolds, R., Fawcett, J.W. The oligodendrocyte precursor cell in health and disease[J]. Trends in neurosciences.2001,24(1):39-47.
    [57]Dawson, M.R., Polito, A., Levine, J.M., Reynolds, R. NG2-expressing glial progenitor cells:an abundant and widespread population of cycling cells in the adult rat CNS[J]. Molecular and cellular neurosciences.2003,24(2):476-488.
    [58]Hampton, D.W., Rhodes, K.E., Zhao, C., Franklin, R.J., Fawcett, J.W. The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain[J]. Neuroscience.2004,127(4):813-820.
    [59]Haberly, L.B., Price, J.L. Association and commissural fiber systems of the olfactory cortex of the rat[J]. The Journal of comparative neurology.1978,178(4):711-740.
    [60]Haberly, L.B., Price, J.L. Association and commissural fiber systems of the olfactory cortex of the rat. Ⅱ. Systems originating in the olfactory peduncle[J]. The Journal of comparative neurology.1978,181(4):781-807.
    [61]Brunjes, P.C., Illig, K.R., Meyer, E.A. A field guide to the anterior olfactory nucleus (cortex)[J]. Brain research. Brain research reviews.2005,50(2):305-335.
    [62]Perez-Canellas, M.M., Garcia-Verdugo, J.M. Adult neurogenesis in the telencephalon of a lizard:a [3H]thymidine autoradiographic and bromodeoxyuridine immunocytochemical study[J]. Brain research. Developmental brain research.1996, 93(1-2):49-61.
    [63]Lopez Garcia, M.J., Sorribes Monrabal, I., Fernandez-Delgado Cerda, R. Accidental intravenous administration of semi-elemental formula in an infant[J]. Clin Pediatr (Phila).1992,31(12):757-758.
    [64]Nacher, J., Ramirez, C., Molowny, A., Lopez-Garcia, C. Ontogeny of somatostatin immunoreactive neurons in the medial cerebral cortex and other cortical areas of the lizard Podarcis hispanica[J]. The Journal of comparative neurology.1996, 374(1):118-135.
    [65]Day, L.B., Crews, D., Wilczynski, W. Effects of medial and dorsal cortex lesions on spatial memory in lizards[J]. Behavioural brain research.2001,118(1):27-42.
    [66]Rodriguez, F., Lopez, J.C., Vargas, J.P., Gomez, Y., Broglio, C., Salas, C. Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience.2002, 22(7):2894-2903.
    [67]Perez-Canellas, M.M., Font, E., Garcia-Verdugo, J.M. Postnatal neurogenesis in the telencephalon of turtles:evidence for nonradial migration of new neurons from distant proliferative ventricular zones to the olfactory bulbs[J]. Brain research. Developmental brain research.1997,101(1-2):125-137.
    [68]Cameron, H.A., Woolley, C.S., McEwen, B.S., Gould, E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat[J]. Neuroscience.1993, 56(2):337-344.
    [69]Gould, E., Beylin, A., Tanapat, P., Reeves, A., Shors, T.J. Learning enhances adult neurogenesis in the hippocampal formation[J]. Nature neuroscience.1999, 2(3):260-265.
    [70]Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. Ⅳ. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb[J]. The Journal of comparative neurology.1969, 137(4):433-457.
    [71]Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A., Lledo, P.M. Becoming a new neuron in the adult olfactory bulb[J]. Nature neuroscience.2003,6(5):507-518.
    [72]Pencea, V., Bingaman, K.D., Freedman, L.J., Luskin, M.B. Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain[J]. Experimental neurology.2001,172(1):1-16.
    [73]Pencea, V., Bingaman, K.D., Wiegand, S.J., Luskin, M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience.2001, 21(17):6706-6717.
    [74]Dahl, D., Crosby, C.J., Sethi, J.S., Bignami, A. Glial fibrillary acidic (GFA) protein in vertebrates:immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies[J]. The Journal of comparative neurology.1985,239(1):75-88.
    [75]Wasowicz, M., Pierre, J., Reperant, J., Ward, R., Vesselkin, N.P., Versaux-Botteri, C. Immunoreactivity to glial fibrillary acid protein (GFAP) in the brain and spinal cord of the lamprey (Lampetra fluviatilis)[J]. Journal fur Hirnforschung.1994,35(1):71-78.
    [76]Ahboucha, S., Laalaoui, A., Didier-Bazes, M., Montange, M., Cooper, H.M., Gamrani, H. Differential patterns of glial fibrillary acidic protein-immunolabeling in the brain of adult lizards[J]. The Journal of comparative neurology.2003,464(2):159-171.
    [77]Lazzari, M., Franceschini, V. Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of the African lungfish, Protopterus annectens (Dipnoi:Lepidosirenidae)[J]. Journal of morphology.2004, 262(3):741-749.
    [78]Huang, Q., Zhao, S., Gaudin, A., Quennedey, B., Gascuel, J. Glial fibrillary acidic protein and vimentin expression in the frog olfactory system during metamorphosis[J]. Neuroreport.2005,16(13):1439-1442.
    [79]Gleeson, J.G, Allen, K.M., Fox, J.W., Lamperti, E.D., Berkovic, S., Scheffer, I., Cooper, E.C., Dobyns, W.B., Minnerath, S.R., Ross, M.E., Walsh, C.A. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein[J]. Cell.1998,92(1):63-72.
    [80]Koizumi, H., Higginbotham, H., Poon, T., Tanaka, T., Brinkman, B.C., Gleeson, J.G. Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain[J]. Nature neuroscience.2006,9(6):779-786.
    [81]von Bohlen Und Halbach, O. Immunohistological markers for staging neurogenesis in adult hippocampus[J]. Cell and tissue research.2007,329(3):409-420.
    [82]Gdalyahu, A., Ghosh, I., Levy, T., Sapir, T., Sapoznik, S., Fishler, Y., Azoulai, D., Reiner, O. DCX, a new mediator of the JNK pathway[J]. The EMBO journal.2004, 23(4):823-832.
    [83]Moores, C.A., Perderiset, M., Francis, F., Chelly, J., Houdusse, A., Milligan, R.A. Mechanism of microtubule stabilization by doublecortin[J]. Molecular cell.2004, 14(6):833-839.
    [84]des Portes, V., Francis, F., Pinard, J.M., Desguerre, I., Moutard, M.L., Snoeck, I., Meiners, L.C., Capron, F., Cusmai, R., Ricci, S., Motte, J., Echenne, B., Ponsot, G., Dulac, O., Chelly, J., Beldjord, C. doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH)[J]. Hum Mol Genet.1998,7(7):1063-1070.
    [85]Moores, C.A., Perderiset, M., Kappeler, C., Kain, S., Drummond, D., Perkins, S.J., Chelly, J., Cross, R., Houdusse, A., Francis, F. Distinct roles of doublecortin modulating the microtubule cytoskeleton[J]. The EMBO journal.2006,25(19):4448-4457.
    [86]Mattson, M.P. Establishment and plasticity of neuronal polarity[J]. Journal of neuroscience research.1999,57(5):577-589.
    [87]Feng, Y., Walsh, C.A. Protein-protein interactions, cytoskeletal regulation and neuronal migration[J]. Nature reviews. Neuroscience.2001,2(6):408-416.
    [88]Nacher, J., Crespo, C., McEwen, B.S. Doublecortin expression in the adult rat telencephalon[J]. The European journal of neuroscience.2001,14(4):629-644.
    [89]Rao, M.S., Shetty, A.K. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus[J]. The European journal of neuroscience.2004,19(2):234-246.
    [90]Dayer, A.G., Ford, A.A., Cleaver, K.M., Yassaee, M., Cameron, H.A. Short-term and long-term survival of new neurons in the rat dentate gyrus[J]. The Journal of comparative neurology.2003,460(4):563-572.
    [91]Garcia-Verdugo, J.M., Llahi, S., Ferrer, I., Lopez-Garcia, C. Postnatal neurogenesis in the olfactory bulbs of a lizard. A tritiated thymidine autoradiographic study[J]. Neuroscience letters.1989,98(3):247-252.
    [92]Perez-Sanchez, F., Molowny, A., Garcia-Verdugo, J.M., Lopez-Garcia, C. Postnatal neurogenesis in the nucleus sphericus of the lizard, Podarcis hispanica[J]. Neuroscience letters.1989,106(1-2):71-75.
    [93]Elmquist, J.K., Swanson, J.J., Sakaguchi, D.S., Ross, L.R., Jacobson, C.D. Developmental distribution of GFAP and vimentin in the Brazilian opossum brain[J]. J Comp Neurol.1994,344(2):283-296.
    [94]Monzon-Mayor, M., Yanes, C., De Barry, J., Capdevilla-Carbonell, C., Renau-Piqueras, J., Tholey, G., Gombos, G. Heterogeneous immunoreactivity of glial cells in the mesencephalon of a lizard:a double labeling immunohistochemical study[J]. Journal of morphology.1998,235(2):109-119.
    [95]Culican, S.M., Baumrind, N.L., Yamamoto, M., Pearlman, A.L. Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience.1990, 10(2):684-692.
    [96]Tuba, A., Kallai, L., Kalman, M. A rapid replacement of vimentin-containing radial glia by glial fibrillary acidic protein-containing astrocytes in transplanted telencephalon[J]. J Neural Transplant Plast.1997,6(1):21-29.
    [97]Lazzari, M., Franceschini, V., Ciani, F. Glial fibrillary acidic protein and vimentin in radial glia of Ambystoma mexicanum and Triturus carnifex:an immunocytochemical study[J]. Journal fur Hirnforschung.1997,38(2):187-194.
    [98]Campbell, K., Gotz, M. Radial glia:multi-purpose cells for vertebrate brain development[J]. Trends in neurosciences.2002,25(5):235-238.
    [99]Weissman, T., Noctor, S.C., Clinton, B.K., Honig, L.S., Kriegstein, A.R. Neurogenic radial glial cells in reptile, rodent and human:from mitosis to migration[J]. Cereb Cortex.2003,13(6):550-559.
    [100]Bittman, K., Owens, D.F., Kriegstein, A.R., LoTurco, J.J. Cell coupling and uncoupling in the ventricular zone of developing neocortex[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience.1997,17(18):7037-7044.
    [101]Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S., Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex[J]. Nature.2001, 409(6821):714-720.
    [102]Gotz, M., Hartfuss, E., Malatesta, P. Radial glial cells as neuronal precursors:a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice[J]. Brain research bulletin.2002,57(6):777-788.
    [103]Pollard, S., Conti, L., Smith, A. Exploitation of adherent neural stem cells in basic and applied neurobiology[J]. Regen Med.2006,1(1):111-118.
    [104]Pollard, S.M., Conti, L. Investigating radial glia in vitro[J]. Prog Neurobiol.2007, 83(1):53-67.
    [105]Gotz, M., Stoykova, A., Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex[J]. Neuron.1998,21(5):1031-1044.
    [106]Hartfuss, E., Galli, R., Heins, N., Gotz, M. Characterization of CNS precursor subtypes and radial glia[J]. Developmental biology.2001,229(1):15-30.
    [107]Jiang, J., McMurtry, J., Niedzwiecki, D., Goldman, S.A. Insulin-like growth factor-1 is a radial cell-associated neurotrophin that promotes neuronal recruitment from the adult songbird edpendyma/subependyma[J]. Journal of neurobiology.1998,36(1):1-15.
    [108]Forlano, P.M., Deitcher, D.L., Myers, D.A., Bass, A.H. Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish:aromatase enzyme and mRNA expression identify glia as source[J]. The Journal of neuroscience: the official journal of the Society for Neuroscience.2001,21(22):8943-8955.
    [109]Sarnat,H.B. Role of human fetal ependyma[J]. Pediatr Neurol.1992,8(3):163-178.
    [110]Ma, P.M. Tanycytes in the sunfish brain:NADPH-diaphorase histochemistry and regional distribution[J]. The Journal of comparative neurology.1993,336(1):77-95.
    [111]Forsyth, R., Fray, A., Boutelle, M., Fillenz, M., Middleditch, C., Burchell, A. A role for astrocytes in glucose delivery to neurons?[J]. Dev Neurosci.1996,18(5-6):360-370.
    [112]Wagner, J., Akerud, P., Castro, D.S., Holm, P.C., Canals, J.M., Snyder, E.Y., Perlmann, T., Arenas, E. Induction of a midbrain dopaminergic phenotype in Nurrl-overexpressing neural stem cells by type 1 astrocytes [J]. Nat Biotechnol.1999,17(7):653-659.
    [1]Ming, G.L., Song, H. Adult neurogenesis in the mammalian central nervous system[J]. Annual review of neuroscience.2005,28:223-250.
    [2]Zhao, C., Deng, W., Gage, F.H. Mechanisms and functional implications of adult neurogenesis[J]. Cell.2008,132(4):645-660.
    [3]Gould, E. How widespread is adult neurogenesis in mammals?[J]. Nature reviews. Neuroscience.2007,8(6):481-488.
    [4]Kronenberg, G., Reuter, K., Steiner, B., Brandt, M.D., Jessberger, S., Yamaguchi, M., Kempermann, G. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli[J]. J Comp Neurol.2003,467(4):455-463.
    [5]Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A., Lledo, P.M. Becoming a new neuron in the adult olfactory bulb[J]. Nat Neurosci.2003,6(5):507-518.
    [6]Sidman, R.L., Miale, I.L., Feder, N. Cell proliferation and migration in the primitive ependymal zone:an autoradiographic study of histogenesis in the nervous system[J]. Exp Neurol.1959,1:322-333.
    [7]Smart, I. The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-H3 injection[J]. J Comp Neurol.1961, 116(3):325-347.
    [8]Altman, J., Das, G.D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats[J]. J Comp Neurol.1965,124(3):319-335.
    [9]Altman, J., Das, G.D. Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions[J]. J Comp Neurol.1966, 126(3):337-389.
    [10]Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. Ⅳ. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb[J]. J Comp Neurol.1969,137(4):433-457.
    [11]Kaplan, M.S., Hinds, J.W. Neurogenesis in the adult rat:electron microscopic analysis of light radioautographs[J]. Science.1977,197(4308):1092-1094.
    [12]Kaplan, M.S., Bell, D.H. Neuronal proliferation in the 9-month-old rodent-radioautographic study of granule cells in the hippocampus[J]. Exp Brain Res. 1983,52(1):1-5.
    [13]Stanfield, B.B., Trice, J.E. Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections[J]. Exp Brain Res.1988,72(2):399-406.
    [14]Nottebohm, F. The road we travelled:discovery, choreography, and significance of brain replaceable neurons[J]. Ann N Y Acad Sci.2004,1016:628-658.
    [15]Reynolds, B.A., Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science.1992,255(5052):1707-1710.
    [16]Kukekov, V.G., Laywell, E.D., Suslov, O., Davies, K., Scheffler, B., Thomas, L.B., O'Brien, T.F., Kusakabe, M., Steindler, D.A. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain[J]. Exp Neurol.1999,156(2):333-344.
    [17]Gratzner, H.G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine:A new reagent for detection of DNA replication[J]. Science.1982,218(4571):474-475.
    [18]Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., Gage, F.H. Neurogenesis in the adult human hippocampus[J]. Nat Med.1998, 4(11):1313-1317.
    [19]van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D., Gage, F.H. Functional neurogenesis in the adult hippocampus[J]. Nature.2002, 415(6875):1030-1034.
    [20]Belluzzi, O., Benedusi, M., Ackman, J., LoTurco, J.J. Electrophysiological differentiation of new neurons in the olfactory bulb[J]. J Neurosci.2003, 23(32):10411-10418.
    [21]Rakic, P. Neurogenesis in adult primate neocortex:an evaluation of the evidence[J]. Nat Rev Neurosci.2002,3(1):65-71.
    [22]Hayes, N.L., Nowakowski, R.S. Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice[J]. Brain Res Dev Brain Res.2002,134(1-2):77-85.
    [23]Selden, J.R., Dolbeare, F., Clair, J.H., Nichols, W.W., Miller, J.E., Kleemeyer, K.M., Hyland, R.J., DeLuca, J.G. Statistical confirmation that immunofluorescent detection of DNA repair in human fibroblasts by measurement of bromodeoxyuridine incorporation is stoichiometric and sensitive[J]. Cytometry.1993,14(2):154-167.
    [24]Lewis, P.F., Emerman, M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus[J]. J Virol.1994,68(1):510-516.
    [25]Prendergast, F.G., Mann, K.G Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskalea[J]. Biochemistry.1978, 17(17):3448-3453.
    [26]Tsien, R.Y. The green fluorescent protein[J]. Annu Rev Biochem.1998,67:509-544.
    [27]Chudakov, D.M., Lukyanov, S., Lukyanov, K.A. Fluorescent proteins as a toolkit for in vivo imaging[J]. Trends Biotechnol.2005,23(12):605-613.
    [28]Yuste, R. Fluorescence microscopy today[J]. Nat Methods.2005,2(12):902-904.
    [29]Kempermann, G, Jessberger, S., Steiner, B., Kronenberg, G. Milestones of neuronal development in the adult hippocampus[J]. Trends Neurosci.2004,27(8):447-452.
    [30]Katsetos, C.D., Del Valle, L., Geddes, J.F., Assimakopoulou, M., Legido, A., Boyd, J.C., Balin, B., Parikh, N.A., Maraziotis, T., de Chadarevian, J.P., Varakis, J.N., Matsas, R., Spano, A., Frankfurter, A., Herman, M.M., Khalili, K. Aberrant localization of the neuronal class III beta-tubulin in astrocytomas[J]. Arch Pathol Lab Med.2001, 125(5):613-624.
    [31]Yamaguchi, M., Saito, H., Suzuki, M., Mori, K. Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice[J]. Neuroreport. 2000,11(9):1991-1996.
    [32]Overstreet, L.S., Hentges, S.T., Bumaschny, V.F., de Souza, F.S., Smart, J.L., Santangelo, A.M., Low, M.J., Westbrook, G.L., Rubinstein, M. A transgenic marker for newly born granule cells in dentate gyrus[J]. J Neurosci.2004,24(13):3251-3259.
    [33]Gage, F.H. Mammalian neural stem cells[J]. Science.2000,287(5457):1433-1438.
    [34]Fukuda, S., Kato, F., Tozuka, Y., Yamaguchi, M., Miyamoto, Y., Hisatsune, T. Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus[J]. J Neurosci.2003,23(28):9357-9366.
    [35]Garcia, A.D., Doan, N.B., Imura, T., Bush, T.G., Sofroniew, M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain[J]. Nat Neurosci.2004,7(11):1233-1241.
    [36]Suh, H., Consiglio, A., Ray, J., Sawai, T., D'Amour, K.A., Gage, F.H. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus[J]. Cell Stem Cell.2007, 1(5):515-528.
    [37]Jaenisch, R., Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming[J]. Cell.2008,132(4):567-582.
    [38]Johansson, C.B., Svensson, M., Wallstedt, L., Janson, A.M., Frisen, J. Neural stem cells in the adult human brain[J]. Exp Cell Res.1999,253(2):733-736.
    [39]Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M., Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain[J]. Cell.1999,97(6):703-716.
    [40]Capela, A., Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal[J]. Neuron.2002,35(5):865-875.
    [41]Consiglio, A., Gritti, A., Dolcetta, D., Follenzi, A., Bordignon, C, Gage, F.H., Vescovi, A.L., Naldini, L. Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors[J]. Proc Natl Acad Sci U S A.2004,101(41):14835-14840.
    [42]Merkle, F.T., Mirzadeh, Z., Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain[J]. Science.2007,317(5836):381-384.
    [43]Breunig, J.J., Macklis, J.D., Pakic, P.2007. Evolving methods for the labeling and mutation of postnatal neuronal precursor cells:a critical review. In:Adult neurogenesis(Gage, F.H., Kempermann, G., Hongjun, S., eds), pp 49-80. Cold Spring Harbor Press, NY.
    [44]Ming, G.L., Song, H. Adult neurogenesis in the mammalian brain:significant answers and significant questions[J]. Neuron.2011,70(4):687-702.
    [45]Morrison, S.J., Spradling, A.C. Stem cells and niches:mechanisms that promote stem cell maintenance throughout life[J]. Cell.2008,132(4):598-611.
    [46]Song, H., Stevens, C.F., Gage, F.H. Astroglia induce neurogenesis from adult neural stem cells[J]. Nature.2002,417(6884):39-44.
    [47]Lie, D.C., Colamarino, S.A., Song, H.J., Desire, L., Mira, H., Consiglio, A., Lein, E.S., Jessberger, S., Lansford, H., Dearie, A.R., Gage, F.H. Wnt signalling regulates adult hippocampal neurogenesis[J]. Nature.2005,437(7063):1370-1375.
    [48]Ramirez-Castillejo, C., Sanchez-Sanchez, F., Andreu-Agullo, C., Ferron, S.R., Aroca-Aguilar, J.D., Sanchez, P., Mira, H., Escribano, J., Farinas, I. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal[J]. Nat Neurosci. 2006,9(3):331-339.
    [49]Hoglinger, GU., Rizk, P., Muriel, M.P., Duyckaerts, C., Oertel, W.H., Caille, I., Hirsch, E.C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease[J]. Nat Neurosci.2004,7(7):726-735.
    [50]Palmer, T.D., Willhoite, A.R., Gage, F.H. Vascular niche for adult hippocampal neurogenesis[J]. J Comp Neurol.2000,425(4):479-494.
    [51]Alvarez-Buylla, A., Lim, D.A. For the long run:maintaining germinal niches in the adult brain[J]. Neuron.2004,41(5):683-686.
    [52]Cao, L., Jiao, X., Zuzga, D.S., Liu, Y., Fong, D.M., Young, D., During, M.J. VEGF links hippocampal activity with neurogenesis, learning and memory[J]. Nat Genet.2004, 36(8):827-835.
    [53]Lledo, P.M., Saghatelyan, A. Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience[J]. Trends Neurosci.2005,28(5):248-254.
    [54]Hack, I., Bancila, M., Loulier, K., Carroll, P., Cremer, H. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis[J]. Nat Neurosci.2002, 5(10):939-945.
    [55]Duan, X., Chang, J.H., Ge, S., Faulkner, R.L., Kim, J.Y., Kitabatake, Y., Liu, X.B., Yang, C.H., Jordan, J.D., Ma, D.K., Liu, C.Y., Ganesan, S., Cheng, H.J., Ming, G.L., Lu, B., Song, H. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain[J]. Cell.2007,130(6):1146-1158.
    [56]Gong, C., Wang, T.W., Huang, H.S., Parent, J.M. Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus[J]. J Neurosci.2007,27(8):1803-1811.
    [57]Esposito, M.S., Piatti, V.C., Laplagne, D.A., Morgenstern, N.A., Ferrari, C.C., Pitossi, F.J., Schinder, A.F. Neuronal differentiation in the adult hippocampus recapitulates embryonic development[J]. J Neurosci.2005,25(44):10074-10086.
    [58]Overstreet Wadiche, L., Bromberg, D.A., Bensen, A.L., Westbrook, GL. GABAergic signaling to newborn neurons in dentate gyrus[J]. J Neurophysiol.2005, 94(6):4528-4532.
    [59]Ge, S., Goh, E.L., Sailor, K.A., Kitabatake, Y, Ming, G.L., Song, H. GABA regulates synaptic integration of newly generated neurons in the adult brain[J]. Nature.2006, 439(7076):589-593.
    [60]Zhao, C., Teng, E.M., Summers, R.G, Jr., Ming, G.L., Gage, F.H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus [J]. J Neurosci.2006,26(1):3-11.
    [61]Schmidt-Hieber, C., Jonas, P., Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus [J]. Nature.2004,429(6988):184-187.
    [62]Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L., Song, H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain[J]. Neuron.2007, 54(4):559-566.
    [63]Jessberger, S., Toni, N., Clemenson, G.D., Jr., Ray, J., Gage, F.H. Directed differentiation of hippocampal stem/progenitor cells in the adult brain[J]. Nat Neurosci. 2008, 11(8):888-893.
    [64]Toni, N., Teng, E.M., Bushong, E.A., Aimone, J.B., Zhao, C., Consiglio, A., van Praag, H., Martone, M.E., Ellisman, M.H., Gage, F.H. Synapse formation on neurons born in the adult hippocampus[J]. Nat Neurosci.2007,10(6):727-734.
    [65]Laplagne, D.A., Esposito, M.S., Piatti, V.C., Morgenstern, N.A., Zhao, C., van Praag, H., Gage, F.H., Schinder, A.F. Functional convergence of neurons generated in the developing and adult hippocampus[J]. PLoS Biol.2006,4(12):e409.
    [66]Laplagne, D.A., Kamienkowski, J.E., Esposito, M.S., Piatti, V.C., Zhao, C., Gage, F.H., Schinder, A.F. Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis[J]. Eur J Neurosci.2007,25(10):2973-2981.
    [67]Jessberger, S., Kempermann, G. Adult-born hippocampal neurons mature into activity-dependent responsiveness[J]. Eur J Neurosci.2003,18(10):2707-2712.
    [68]Kee, N., Teixeira, C.M., Wang, A.H., Frankland, P.W. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus[J]. Nat Neurosci.2007,10(3):355-362.
    [69]Tashiro, A., Makino, H., Gage, F.H. Experience-specific functional modification of the dentate gyrus through adult neurogenesis:a critical period during an immature stage[J]. J Neurosci.2007,27(12):3252-3259.
    [70]Petreanu, L., Alvarez-Buylla, A. Maturation and death of adult-born olfactory bulb granule neurons:role of olfaction[J]. J Neurosci.2002,22(14):6106-6113.
    [71]Lledo, P.M., Alonso, M., Grubb, M.S. Adult neurogenesis and functional plasticity in neuronal circuits[J]. Nat Rev Neurosci.2006,7(3):179-193.
    [72]Saghatelyan, A., Roux, P., Migliore, M., Rochefort, C., Desmaisons, D., Charneau, P., Shepherd, GM., Lledo, P.M. Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation[J]. Neuron.2005, 46(1):103-116.
    [73]Tashiro, A., Sandler, V.M., Toni, N., Zhao, C., Gage, F.H. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus[J]. Nature.2006, 442(7105):929-933.
    [74]Choi, S.H., Li, Y., Parada, L.F., Sisodia, S.S. Regulation of hippocampal progenitor cell survival, proliferation and dendritic development by BDNF[J]. Mol Neurodegener.2009, 4:52.
    [75]Alonso, M., Viollet, C., Gabellec, M.M., Meas-Yedid, V., Olivo-Marin, J.C., Lledo, P.M. Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb[J]. J Neurosci.2006,26(41):10508-10513.
    [76]Mandairon, N., Sacquet, J., Garcia, S., Ravel, N., Jourdan, F., Didier, A. Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb[J]. Eur J Neurosci.2006,24(12):3578-3588.
    [77]Kempermann, G., Gage, F.H. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task[J]. Eur J Neurosci.2002,16(1):129-136.
    [78]Olson, A.K., Eadie, B.D., Ernst, C., Christie, B.R. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways[J]. Hippocampus.2006,16(3):250-260.
    [79]Bruel-Jungerman, E., Laroche, S., Rampon, C. New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment[J]. Eur J Neurosci.2005,21(2):513-521.
    [80]Mirescu, C., Gould, E. Stress and adult neurogenesis[J]. Hippocampus.2006, 16(3):233-238.
    [81]Klempin, F., Kempermann, G. Adult hippocampal neurogenesis and aging[J]. Eur Arch Psychiatry Clin Neurosci.2007,257(5):271-280.
    [82]Shors, T.J. Memory traces of trace memories:neurogenesis, synaptogenesis and awareness[J]. Trends Neurosci.2004,27(5):250-256.
    [83]Leuner, B., Gould, E., Shors, T.J. Is there a link between adult neurogenesis and learning?[J]. Hippocampus.2006,16(3):216-224.
    [84]Sisti, H.M., Glass, A.L., Shors, T.J. Neurogenesis and the spacing effect:learning over time enhances memory and the survival of new neurons[J]. Learn Mem.2007, 14(5):368-375.
    [85]Drapeau, E., Montaron, M.F., Aguerre, S., Abrous, D.N. Learning-induced survival of new neurons depends on the cognitive status of aged rats[J]. J Neurosci.2007, 27(22):6037-6044.
    [86]Dobrossy, M.D., Drapeau, E., Aurousseau, C., Le Moal, M., Piazza, P.V., Abrous, D.N. Differential effects of learning on neurogenesis:learning increases or decreases the number of newly born cells depending on their birth date[J]. Mol Psychiatry.2003, 8(12):974-982.
    [87]Kokaia, Z., Lindvall, O. Neurogenesis after ischaemic brain insults[J]. Curr Opin Neurobiol.2003,13(1):127-132.
    [88]Verret, L., Jankowsky, J.L., Xu, G.M., Borchelt, D.R., Rampon, C. Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis [J]. J Neurosci.2007,27(25):6771-6780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700