尼莫地平和梓醇的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶质细胞,中枢神经系统最丰富的细胞,被认为在中枢神经系统中起提供营养与支持,维持微环境,形成髓鞘,免疫监视和调节神经递质的作用。近来研究发现,胶质细胞还参与一系列中枢神经系统疾病,包括脑缺血和帕金森症等神经系统退行性疾病,并在这些疾病的发展过程中起重要的作用。本研究以LPS诱导大鼠中脑神经-胶质细胞混合培养体系中多巴胺神经元脱失为炎症介导的PD模型,以原代培养的星形胶质细胞氧糖剥夺-再复氧为体外缺血模型,探讨了尼莫地平和梓醇的神经保护作用。
     1.尼莫地平对炎症介导的多巴胺神经元退化的保护作用
     人们逐渐认识到脑内炎症反应在多种神经退行性疾病包括帕金森病和阿茨海默症中起着重要作用。炎症介导的神经退化与脑内在免疫细胞——小胶质细胞激活有关。激活的小胶质细胞产生前炎症因子和神经毒因子,包括细胞因子、活性氧自由基、一氧化氮和花生四烯酸代谢产物等,它们诱导神经元退化。因此,识别抑制小胶质细胞激活的化合物,有可能开发出治疗炎症调节的神经退行性疾病的药物。本研究应用中脑神经.胶质细胞混合培养体系,报道了尼莫地平,一种用于治疗心血管疾病的钙离子通道阻断剂,以剂量依赖的方式显著地阻止了LPS诱导的多巴胺神经元的变性。利用神经和胶质细胞重组培养,发现尼莫地平只有在小胶质细胞存在下,才能发挥其神经保护作用。此外,在去除小胶质细胞后的大鼠中脑神经.胶质细胞混合培养体系中,尼莫地平不能降低MPP~+诱导的神经毒性,提示尼莫地平对神经元直接损伤无保护作用。由于尼莫地平显著抑制LPS诱导的小胶质细胞生成一氧化氮(NO),肿瘤坏死因子-α(TNF-α),白介素-1β(IL-1β),花生四烯酸代谢产物.前列腺素E_2(PGE_2)和反应性氧自由基(reactive oxygenspecies,ROS),表明尼莫地平对LPS诱导的多巴胺神经元的变性的保护作用是通过抑制小胶质细胞激活实现的。进一步研究显示,尼莫地平不能阻止LPS诱导的烟酰胺腺嘌呤二核苷酸磷酸(β-nicotinamide adenine dinucleotide phosphate,NADPH)氧化酶(PHOX)缺陷小鼠(PHOX~(-/-))中的多巴胺神经元丢失,而明显地抑制LPS诱导的野生型小鼠(PHOX~(+/+))PHOX胞质亚基p47phox向细胞膜的转位和多巴胺神经元丢失。这些结果提示,尼莫地平通过抑制小胶质细胞调节的氧化应激和炎症反应,保护多巴胺神经元免于损伤。此外,我们的研究揭示了PHOX是尼莫地平一个新的作用位点。因此,尼莫地平可能是一个治疗炎症相关的神经退行性疾病如帕金森病的潜在药物。
     2.梓醇对缺血诱导的星形胶质细胞损伤的保护作用
     脑缺血(Brain ischemia)是一种由于脑供血不足造成不可逆脑损伤而引起的一种急性神经系统退行性疾病,人们对其病理机制和防治措施进行了大量的研究,研究注意力主要集中在神经元上,治疗的策略也是针对阻止神经元功能的丧失。然而,近年来人们发现,脑缺血时星形胶质细胞的功能状态决定着缺血神经元的发展和转归。梓醇是一种环烯醚萜甙类小分子化合物,为传统中药地黄(Rehmannia glutinosa)的主要有效成分。先前研究发现,梓醇能够阻止脑缺血.再灌注诱导的沙土鼠CA1海马神经损伤,对脑缺血.再灌注导致的学习记忆障碍有明显的改善作用。本研究我们探讨了梓醇在缺血-再灌注诱导的星形胶质细胞损伤中作用及其作用机制。以原代培养小鼠星形胶质细胞氧糖剥夺-再复氧为体外缺血模型,通过四甲基偶氮唑盐(3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl-terazoliumbromide,MTT)比色分析,乳酸脱氢酶(lactate dehydrogenase,LDH)检测和形态观察,发现梓醇以剂量依赖的方式对缺血诱导的星形胶质细胞损伤具有明显的保护作用。此外,梓醇有效地阻止缺血引起的星形胶质细胞线粒体膜电位的降低,抑制活性氧自由基(reactive oxygen species,ROS)和一氧化氮(nitric oxide,NO)的生成,降低脂质过氧化物水平和诱导型一氧化氮合成酶(inducible nitric oxide synthase,iNOS)的活性,提高超氧化物歧化酶(superoxide dismutase,SOD)和谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)的活性,增加谷胱甘肽(glutathione,GSH)含量。这些结果提示梓醇通过抑制自由基生成,提高抗氧化能力,从而保护缺血.再灌注诱导的星形胶质细胞损伤。
Glial cells,the most abundant cell types in the central nervous system(CNS),have been believed to provide support and nutrition,maintain homeostasis,form myelin,serve immune surveillance,and modulate neurotransmission.Recent studies suggest that glial cells also are implicated in a wide range of CNS disorders including ischemia and Parkinson's disease(PD) neurodegenerative disease,and play an important role in the progress of disorders.In this study,the protective effects of nimodipine and catalpol on neurodegenerative disease were investigated with LPS-induced degeneration of dopaminergic neurons in mesencephalic neuron-glia cultures as a PD model and primary cultured astrocytes exposed to oxygen-glucose deprivation followed by reperfusion as an in vitro ischemic model.
     1.Nimodipine protects dopaminergic neurons against inflammation-mediated degeneration through the inhibition of microglial activation
     Inflammation in the brain has increasingly been recognized to play an important role in the pathogenesis of several neurodegenerative disorders,including Parkinson's disease and Alzheimer's disease.Inflammation-mediated neurodegeneration involves activation of the brain's resident immune cells,the microglia,which produce proinflammatory and neurotoxic factors,including cytokines,reactive oxygen intermediates,nitric oxide,and eicosanoids that impact on neurons to induce neurodegeneration.Hence,identification of compounds that prevent microglial activation may be highly desirable in the search for therapeutic agents for inflammation-mediated neurodegenerative diseases.In this study,nimodipine,a calcium channel blocker commonly-used in the therapy of cardiovascular diseases,was reported to significantly reduce lipopolysaccharide(LPS)-induced the degeneration of dopaminergic(DA) neurons in a dose-dependent manner in mesencephalic neuron-glia cultures.In addition,with reconstituted neuron and glia cultures,nimodipine was found to be neuroprotective only in the presence of microglia.Moreover,nimodipine was not neuroprotective to 1-methyi-4-phenylpyridinium (MPP~+)-induced DA neurotoxitity in the absence of microglia.The neuroprotective effect of nimodipine was attributed to the inhibition of microglial activation, since nimodipine significantly inhibited the production of nitric oxide(NO),tumor necrosis factor-α(TNF-α),intedeukin-1β(IL-1β) and prostaglandin E_2(PGE_2) from LPS-stimulated microglia.Mechanistic study showed that nimodipine failed to protect the degeneration of neurons in neuron-glia cultures from mice lacking functional NADPH oxidase(PHOX),a key enzyme for extracellular superoxide production in immune cells,and significantly reduced LPS-induced PHOX cytosolic subunit p47phox translocation to the cell membrane in microglia from wild-type mice(PHOX~(+/+)).These results suggest that nimodipine is protective to DA neurodegeneration via inhibiting the microglial-mediated oxidative stress and inflammatory response.Furthermore,our study revealed that inhibition of PHOX is a novel site of action for the calcium channel blocker-independent effect of nimodipine.Thus, nimodipine may be a potential therapeutic agent for the treatment of inflammation-related neurodegenerative disorders such as Parkinson's disease.
     2.Catalpol protects primary cultured astrocytes from ischemia-induced damage in vitro
     Brain ischemia is an acute neurodegenerative disease caused by insufficiency bloods supply to a particular brain area and subsequent of irreversible brain damage.Studies on pathomechanism of brain ischemia have mainly focused neurons and,accordingly,therapeutic strategies have been designed to counteract neuronal dysfunction.However,recent data indicate that a decrease in neuronal survival during and after ischemia is also associated with astrocytic dysfunction.Thus,counteracting astrocytic dysfunction during ischemia and reperfusion provide a new option of the pharmacological intervention in prevention of brain damage.Catalpol,an iridoid glycoside abundant in the roots of Rehmannia glutinosa,has been previously found to prevent the loss of CA1 hippocampal neurons and to reduce working errors in gerbils after ischemia-reperfusion injury.In the present study,we investigated the effects of catalpol on astrocytes in an ischemic model to further characterize its neuroprotective mechanisms.Primary cultured astrocytes exposed to oxygen-glucose deprivation(OGD) followed by reperfusion(adding back oxygen and glucose,OGD-R),were used as an in vitro ischemic model.Treatment of the astrocytes with catalpol during ischemia-reperfusion increased astrocyte survival significantly in a concentration-dependent manner,as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay,lactate dehydrogenase(LDH) release and morphological observation.In addition,catalpol prevented the decrease in mitochondrial membrane potential,inhibited the formation of reactive oxygen species(ROS) and the production of nitric oxide(NO), decreased the level of lipid peroxide and the activity of inducible nitric oxide synthase(iNOS), and elevated the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px) and the content of glutathione(GSH).These results suggest that catalpol exerts the most significant cytoprotective effect on astrocytes by suppressing the production of free radicals and elevating antioxidant capacity.
引文
[1]Heidenreich KA.Molecular mechanisms of neuronal cell death.Ann N Y Acad Sci,2003,991:237-250.
    [2]Moore DJ,Dawson VL and Dawson TM.Role for the ubiquitin-proteasome system in Parkinson's disease and other neurodegenerative brain amyloidoses.Neuromolecular Med,2003,4(1-2):95-108.
    [3]Olanow CW and Tatton WG.Etiology and Pathogenesis of Parkinson's disease.Annu Rev Neurosci,1999,22:123-144.
    [4]Langston JW.Parkinson's disease:current and future challenges.Neurotoxicology,2002,23(4-5):443-450.
    [5]Gasser T.Molecular genetics of Parkinson's disease.Adv Neurol,2001,86:23-32.
    [6]Lansbury PT Jr,Brice A.Genetics of Parkinson's disease and biochemical studies of implicated gene products.Curr Opin Cell Biol,2002,14(5):653-660.
    [7]Lim KL,Dawson VL,Dawson TM.The cast of molecular characters in Parkinson's disease:felons,conspirators,and suspects.Ann N Y Acad Sci,2003,991:80-92.
    [8]Liu B,Gao HM and Hong JS.Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries:role of neuroinflammation.Environ Health Perspect,2003,111(8):1065-1073.
    [9]Wersinger C and Sidhu A.Inflammation and Parkinson's disease.Curr Drug Targets Inflamm Allergy,2002,1(3):221-242.
    [10]Hunot S,Hirsch EC.Neuroinflammatory processes in Parkinson's disease.Ann Neurol,2003,53( Suppl 3):S49-60.
    [11]McGeer PL and McGeer EG.Mechanisms of cell death in Alzheimer disease-immunopathology.J Neural Transm,1998,Suppl 54:159-166.
    [12]McGeer PL and McGeer EG.Glial cell reactions in neurodegenerative diseases:pathophysiology and therapeutic interventions.Alzheimer Dis Assoc Disord,1998,12(Suppl 2):S1-6.
    [13]Nakajima K and S Kohsaka.Functional roles of microglia in the brain.Neurosci Res,1993,17(3):187-203.
    [14]Nakajima K and Kohsaka S.Functional roles of microglia in the central nervous system.Hum Cell,1998,11(3):141-155.
    [15]Liu B,Hong JS.Role of microglia in inflammation-mediated neurodegenerative disease:mechanisms and strategies for therapeutic intervention.J Pharmacol Exp Ther,2003,304:1-7.
    [16]Gao HM,Liu B,Zhang W,Hong JS.Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide:relevance to the etiology of Parkinson's disease.FASEB J,2003,17(13):1957-1959.
    [17]Qin L,Liu Y,Cooper C et al.Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species.J Neurochem,2002,83(4):973-983.
    [18]Qin L,Liu Y,Wang T et al.NADPH oxidase mediates LPS-induced neurotoxicity and pro-inflammatory gene expression in activated microglia.J Biol Chem,2004,279(2):1415-1421.
    [19]Banati RB.Neuropathological imaging:in vivo detection of glial activation as a measure of disease and adaptive change in the brain.Br Med Bull,2003,65:121-131.
    [20]Muller HW,Junghans U and Kappler J.Astroglial neurotrophic and neurite promoting factors.Pharmacol Ther,1995,65:1-18.
    [21]Nedergaard M,Ransom B and Goldman SA.New roles for astrocytes:Redefining the functional architecture of the brain.Trends Neurosci,2003,26:523-530.
    [22]Newman EA.New roles for astrocytes:Regulation of synaptic transmission.Trends Neurosci,2003,26:536-542.
    [23]Slezak M and Pfrieger FW.New roles for astrocytes:Regulation of CNS synaptogenesis Trends Neurosci,2003,26:531-535.
    [24]Hertz L and Zielke HR.Astrocytic control of glutamatergic activity:astrocytes as stars of the show.Trends neurosci,2004,27:735-743.
    [25]Takuma K,Baba A and Matsuda T.Astrocyte apoptosis:implications for neuroprotection.Progress in Neurobiology,2004,72:111-127.
    [26]Vega J,Sabbatinim A and Delvalle ME.Effect of treatment with the dihydropyridine type calcium antagonist darodipine(PY108-068) on the expression of neurofilament protein immunoreactivity the cerebellar cortex of aged rats.Mech Ageing Dev,1994,75(2):169.
    [27]Parnetti L,Senin U and Carosi M.Mental deterioration in old age:results of two multicenter,clinical trials with nimodipine.The nimodipine study group.Clin Ther,1993,15(2):394.
    [28]赵文璇和郭玉璞.46例脑血管病人记忆康复的临床研究.中华内科杂志,1991,30(12):752.
    [29]Szab(?) C,Thiemermann C and Vane JR.Dihydropyridine antagonists and agonists of calcium channels inhibit the induction of nitric oxide synthase by endotoxin in cultured macrophages.Biochem Biophys Res Commun,1993,196(2):825-830.
    [30]Tian YY,An LJ,Jiang B et al.Catalpol protects dopaminergic neurons from LPS-induced neurotoxicity in mesencephalic neuron-glia cultures.Life Science,2006,80:193-199.
    [31]Tian YY,Jiang B,An LJ et al.Neuroprotective effect of catalpol against MPP~+-induced oxidative stress in mesencephalic neuronsEuropean.Journal of Pharmacology,2007,568:142-148.
    [32]Mao YR,Jiang B,Duan YL et al.Efficacy of catalpol as protectant against oxidative stress and mitochondrial dysfunction on rotenone-induced toxicity in mice brain.Envir Toxi Phar,2007,23:314-318.
    [33]Jiang B,Liu JH,Bao YM et al.Catalpol inhibits apoptosis in hydrogen peroxide induced PC 12 cells by preventing cytochrome C release and inactivating of caspase cascade.Toxicon,2004,43:53-59.
    [34]Li DQ,Bao YM,Li Y et al.Catalpol modulates the expressions of Bcl-2 and Bax and attenuates apoptosis in gerbils after ischemic injury.Brain Res,2006,1115(1):179-185.
    [35]Liu J,He QJ,Zou W et al.Catalpol increases hippocampal neuroplasticity and up-regulates PKC and BDNF in the aged rats.Brain Res,2006,1123(1):68-79.
    [36]Li DQ,Duan YL,Bao YM et al.Neuroprotection of catalpol in transient global ischemia in gerbils.Neurosci Res,2004,50(2):169-177.
    [37]Miller G.The dark side of glia.Science,2005,308(5723):778-781.
    [38]Perry VH,Gordon S.Macrophages and the nervous system.Int Rev Cytol,1991,125:203-244.
    [39]Kreutzberg GW.Microglia:a sensor for pathological events in the CNS.Trends Neurosci,1996,19(8):312-318.
    [40]Kempermann G and Neumann H.Microglia:The Enemy Within?Science,2003,302(5651):1689-1690.
    [41]Yokoyama A,Yang L,Itoh S et al.Microglia,a potential source of neurons,astrocytes,and oligodendrocytes.Glia,2004,45(1):96-104.
    [42]Theele DP,Streit WJ.A chronicle of microglial ontogeny.Glia,1993,7(1):5-8.
    [43]Cuadros MA and Navascues J.The origin and differentiation of microglial cells during development.Prog Neurobiol,1998,56(2):173-189.
    [44]Imamoto K.Origin of microglia:cell transformation from blood monocytes into macrophagic ameboid cells and microglia.Prog Clin Biol Res,1981,59A:125-139.
    [45]Raivich G,Bohatschek M,Kloss CU et al.Neuroglial activation repertoire in the injured brain:graded response,molecular mechanisms and cues to physiological function.Brain Res Brain Res Rev,1999,30(1):77-105.
    [46]Aloisi F,Ria F,Adorini L.Regulation of T-cell responses by CNS antigen-presenting cells:different roles for microglia and astrocytes.Immunol Today,2000,21(3):141-147.
    [47]Dobrenis K.Microglia in cell culture and in transplantation therapy for central nervous system disease.Methods,1998,16(3):320-344.
    [48]Bronstein DM,Perez-Otano I,Sun V et al.Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures.Brain Res,1995,704(1):112-116.
    [49]Araki E,Forster C,Dubinsky JM et al.Cyclooxygenase-2 inhibitor ns-398 protects neuronal cultures from lipopolysaccharide-induced neurotoxicity.Stroke,2001,232(10):2370-2375.
    [50]Cicchetti F,Brownell AL,Williams K et al.Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging.Eur J Neurosci,2002,15(6):991-998.
    [51]Itzhak Y,Martin JL,Ali SF.Methamphetamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.Synapse,1999,34(4):305-312.
    [52]Liberatore GT,Jackson-Lewis V,Vukosavic S et al.Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease.Nat Med,1999,5(12):1403-1409.
    [53]Dehmer T,Lindenau J,Haid S et al.Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo.J Neurochem,2000,74(5):2213-2216.
    [54]Du Y,Ma Z,Lin S et al.Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease.Proc Natl Acad Sci USA,2001,98(25):14669-14674.
    [55]Wu DC,Jackson-Lewis V,Vila M,et al.Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease.J Neurosci,2002,22(5):1763-1771.
    [56]Liu Y,Qin L,Wilson BC et al.Inhibition by naloxone stereoisomers of beta-amyloid peptide(1-42)-induced superoxide production in microglia and degeneration of cortical and mesencephalic neurons.J Pharmacol Exp Ther,2002,302(3):1212-1219.
    [57]Gao HM,Hong JS,Zhang W,Liu B.Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons.J Neurosci,2002,22(3):782-790.
    [58]Gao HM,Jiang J,Wilson B et al.Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons:relevance to Parkinson's disease.J Neurochem,2002,81(6):1285-1297.
    [59]Brown DR.Microglia and prion disease.Microsc Res Tech,2001,54(2):71-80.
    [60]Good PF,Hsu A,Werner P et al.Protein nitration in Parkinson's disease.Journal of Neuropathology&Experimental Neurology,1998,57:338-342.
    [61]Green SP,Cairns B,Rae J et al.Induction of gp 91-phox,a component of the phagocyte NADPH oxidase,in microglial cells during central nervous system inflammation.J Cereb Blood Flow Metab,2001,21:374-384.
    [62]Wu DC,Teismann P,Tieu K et al.NADPH oxidase mediates oxidative stress in the 1-methyl-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease.Proc.Natl Acad Sci USA,2003,100:6145-6150.
    [63]Itazhka Y,Martin JL and Ali SF.Methamphetamine-and 1-methyl-4phenyl-1,2,3,6-tetrahydropyrideine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficent mice.Synapse,2000,34:305-312.
    [64]Liberators GT,Jackson-Lewis V,Vukosavic S et al.Inducible nitric oxide synthase stimulate dopaminergic neurodegeneration in the MPTP model of Parkinson disease.Nat Med,1999,5:1403-1409.
    [65]Dehmer T,Lindenau J,Haid S et al.Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo.J Neurochem,2000,74:2213-2216.
    [66]Du Y,Ma Z,Lin S et al.Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease.Proc Natl Acad Sci U S A,2001,98:14669-14674.
    [67]Schulz JB,Matthews RT,Muqit MM et al.Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced parkinsonian in baboons.Nat Med,1995,64:936-939.
    [68]Ara J,Przedborski S,Naini AB et al.Interaction of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Proc Natl Acad Sci USA,1998,95:7659-7663.
    [69]Bolanos JP,Heales SJ,Peuchen S et al.Nitric oxide-mediated mitochondrial damage:a potential neuroprotecive role for glutathione.Free Radic Biol Med,1996,21:995-1001.
    [70]Salvemini D,Misko TP,Masferrer JL et al.Nitric oxide activates cyclooxygenase enzyme.Proc Acad Sci USA,1993,90:7240-7244.
    [71]Mogi M,Togari A,Kondo T et al.Caspase activities and tumor necrosis factor recep tor R1(p55) level are elevated in the substantia nigra from parkinsonian brain.J Neural Transm,2000,107(3):335-341.
    [72]Wessig J,Brecht S,ClaussenM et al.Tumor necrosis factor receptor-1(p55) knockout only transiently decreases the activation of c-Jun and does not affect the survival of axotomized dopaminergic nigral neurons.Eur J Neurosci,2005,22(1):267-272.
    [73]Castano A,Herrera AJ,Cano J et al.The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone,and notmimicked by rh-TNF-α,IL-1β and IFN-γ.J Neurochem,2002,81(1):150-157.
    [74]Teismann P and Ferger B.Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease.Synapse,2001,39:167-174.
    [75]Feng Z,Li D,Fung PC et al.COX-2-deficient mice are less prone to MPTPneurotoxicity than wild-type mice.Neuroreport,2003,14(15):1927-1929.
    [76]Mirza B,Hadberg H,Thomsen P,Moos T.The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease.Neuroscience,2000,95(2):425-432.
    [77]Factor SA,Sanchez-Ramos J,Weiner WJ.Trauma as an etiology of parkinsonism:a historical review of the concept.Mov Disord,1988,3(1):30-36.
    [78]Casals J,Elizan TS,Yahr MD.Postencephalitic parkinsonism-a review.J Neural Transm,1998,105(6-7):645-676.
    [79]Ling Z,Gayle DA,Ma SY et al.In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain.Mov Disord,2002,17(1):116-124.
    [80]Langston JW,Ballard P,Tetrud JW,Irwin I.Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science,1983,219(4587):979-980.
    [81]Kurkowska-Jastrzebska I,Wronska A,Kohutnicka M et al.The inflammatory reaction following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication in mouse.Exp Neurol,1999,156(1):50-61.
    [82]He Y,Appel S,Le W.Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum.Brain Res,2001,909(1-2):187-193.
    [83]Hefti F,Melamed E,Wurtman RJ.Partial lesions of the dopaminergic nigrostriatal system in rat brain:biochemical characterization.Brain Res,1980,195(1):123-137.
    [84]Mogi M,Togari A,Tanaka K et al.Increase in level of tumor necrosis factor (TNF)-alpha in 6-hydroxydopamine-lesioned striatum in rats without influence of systemic L-DOPA on the TNF-alpha induction.Neurosci Lett,1999,268(2):101-104.
    [85]Perier C,Bove J,Vila M et al.The rotenone model of Parkinson's disease.Trend in Neurosci,2003,26:345-346.
    [86]Sherer TB,Betarbet R,Kim JH,Greenamyre JT.Selective microglial activation in the rat rotenone model of Parkinson's disease.Neurosci Lett,2003,341(2):87-90.
    [87]Kim WG,Mohney RP,Wilson B et al.Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain:role of microglia.J Neurosci,2000,20(16):6309-6316.
    [88]Gayle DA,Ling Z,Tong C et al.Lipopolysaccharide(LPS)-induced dopamine cell loss in culture:roles of tumor necrosis factor-alpha,interleukin-1beta,and nitric oxide.Brain Res Dev Brain Res,2002,133(1):27-35.
    [89]Knapp RJ,Malatynska E,Collins N et al.Molecular biology and pharmacology of cloned opioid receptors.Faseb J,1995,9:516-525.
    [90]Stewart WF,Kawas C,Corrada M,Metter EJ.Risk of Alzheimer's disease and duration of NSAID use.Neurology,1997,48(3):626-632.
    [91]Teismann P,Ferger B.Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2provide neuroprotection in the MPTP-mouse model of Parkinson's disease.Synapse,2001,39(2):167-174.
    [92]Liu B,Du L,Hong JS.Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation.J Phar Exp Ther,2000,293:607-617.
    [93]Wu DC,Jackson-Lewis V,Vila M,et al.Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine mouse model of Parkinson disease.J Neurosci,2002,22:1763-1771.
    [94]Du Y,Ma Z,Lin S,et al.Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease.PNAS,2001,98:14669-14674.
    [95]Liu Y,Qin L,Li G,et al.Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation.J Pharmacol Exp Ther,2003,305:212-221.
    [96]Wang MJ,Lin WW,Chen HL,et al.Silymarin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity by inhibiting microglia activation.Eur J Neurosci,2002,16:2103-2112.
    [97]刘慧,王小军,胡荣,星形胶质细胞,生理科学进展,2004,35(1):86-91.
    [98]姚君茹,潘三强,吕来清,星形胶质细胞的可塑性,解剖学研究,2002,24(1):49-51.
    [99]McDonald AJ,Mascagni F,Muller JF.Immunocytochemical localization of GABABR1receptor subunits in the basolateral amygdala.Brain Res,2004,1018(2):147-158.
    [100]Schipke CG and Kettenmann H.Astrocyte responses to neuronal activity.Glia,2004,47(3):226-232.
    [101]Hattori G.Tanaka E,Yokomizoa YJ et al.Eleetrical and pharmacological properties of the slow depolarization induced by Schaffer collateral stimulation in astrocytes of the rat hippocampal CAI region.Neurosci Lett,2003,343:85-88.
    [102]Sharma G,Vijayaraghavan S.Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores.Proc Natl Acad Sci,2001,98:4148-4153.
    [103]Huang YH,Sinha SR,Tanaka K et al.Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons.J Neurosci,2004,24(19):4551-4559.
    [104]Angulo MC,Kozlov AS,Charpak S et al.Glutamate released from glial cells synchronizes neuronal activity in the hippocampus.J Neurosci,2004,24(31):6920-6927.
    [105]Haydon PG.Neuroglial networks:Neurons and glia talk to each other.Current Biology,2000,10:712-714.
    [106]ShaoY and McCarthy KD.Plasticity of astrocytes.Glia,1994,11147-11155.
    [107]Rumajogee P,Verge D,Darmon M et al.Rapid up-regulation of the neuronal serotoninergic phenotype by brain-derived neurotrophic factor and cyclic adenosine monophosphate:relations with raphe Astrocytes.J Neurosci Res,2005,81(4):481-487.
    [108]Chvatal A,PAstor A,Mauch M et al.Distinct populations of identified glial cells in the developing rat spinal cord slice:ion channel properties and cell morphology.Eur J Neurosci,1995,7(1):129-142.
    [109]Kalmar B,Kittel A,Lemmens R et al.Cultured Astrocytes react to LPS with increased cyclooxygenase activity and phagocytosis.Neurochem Int,2001,38(5):453-461.
    [110]McNaught KS,Jenner P.Dysfunction of rat forebrain Astrocytes in culture alters cytokine and neurotrophic factor release.Neurosci Lett,2000,285(1):61-65.
    [111]Giralt M,Penkowa M,Lago N et al.Metallothionein-1+2 protect the CNS after a focal brain injury.Exp Neurol,2002,173(1):114-128.
    [112]Chung IY and Benveniste EN.Tumor necrosis factor-alpha production by Astrocytes.Induction by lipopolysaccharide,IFN-gamma,and IL-1 beta.J Immunol,1990,144(8):2999-3007.
    [113]Ren LQ,Garrett DK,Syapin M et al.Differential fibronectin expression in activated C6 glial cells treated with ethanol.Mol Pharmacol,2000,58(6):1303-1309.
    [114]Uemura A,Kusuhara S,Wiegand SJ et al.Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal Astrocytes.J Clin Invest,2006,116(2):369-377.
    [115]Oren A,Falk K,Rotzschke O et al.Production of neuroprotective NGF in Astrocyte-T helper cell cocultures is upregulated following antigen recognition.J Neuroimmunol,2004,149(1-2):59-65.
    [116]Appel E,Kolman O,Kazimirsky G et al.Regulation of GDNF expression in cultured astrocytes by inflammatory stimuli.Neuroreport,1997,8(15):3309-3312.
    [117]Noack H,Possel H,Chatterjee S,et al.Nitrosative stress in primary glial cultures after induction of the inducible isoform of nitric oxide synthase(iNOS).Toxicology,2000,148(2-3):133-142.
    [118]Bechmann I,Steiner B,Gimsa U et al.Astrocyte-induced T cell elimination is CD95ligand dependent.Journal of neuroimmunology,2002,132(1-2):60-65.
    [119]Schroeter M and Jander S.T-cell cytokines in injury-induced neural damage and repair.Neuromolecular medicine,2005,7(3):183-195.
    [120]Aloisi F,Serafini B,Adorini L.Glia-T cell dialogue.Journal of neuroimmunology 2000,107(2):111-117.
    [121]Link H.The cytokine storm in multiple sclerosis.Multiple sclerosis,1998,4(1):12-15.
    [122]Rouach N,Segal M,Koulakoff Aet al.Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions.J Physiol,2003,553(3):729-745.
    [123]Nadal A,Fuentes E,PAstor J et al.Plasma albumin induces calcium waves in rat cortical Astrocytes.Glia,1997,19(4):343-351.
    [124]Grosche J,Matyash V,Moller T et al.Microdomains for neuron-glia interaction:parallel fiber signaling to Bergrnann glial cells.Nat Neurosci,1999,2(2):139-143.
    [125]杨志军,魏玲.星形胶质细胞生物学功能研究进展.中华神经医学杂志,2003,2(5):396-398.
    [126]颜因,罗勇.脑缺血炎症反应与星形胶质细胞的关系.中国康复理论与实践,2006,12(1):867-870.
    [127]刘发益.中枢神经系统损伤后星形胶质细胞反应.山西医科大学学报,2000,12(增刊):51.
    [128]黄其林.星形胶质细胞对损伤反应的体外实验研究.第三军医大学学报,2001,23(3):315.
    [129]Heiss WD and Herholz K.Assessment of pathophysilogy of stroke by positron tomography.Eur J Nucl Med,1994,21:455-465.
    [130]White BC,Sullivan JM,DeGracia DJ et al.Brain ischemia and reperfusion:molecular mechanisms of neuronal injury.J Neurol Sci,2000,179:1-33.
    [131]Nishizawa Y.Glutamate release and neuronal damage in ischemia.Life Sci,2001,69(4):369-381.
    [132]Rothman SM.Synaptic activity mediates death of hypoxic neurons.Science,1983,220:536-577.
    [133]Olney JW.Brain lesions,obesity and other disturbances in mice treated with monosodium glutamate.Science,1969,164:719-721.
    [134]Benveniste H,Drejer J,Schoushoe A et al.Elevation of the extracellular concentration of glutamate and asparate in rat hippocampus during transient cerebral ischimia monitored by intracerebral microdialysis.J Neurochem,1984,43:1369-1374.
    [135]Makrs AR.intracellular calcium-release channels:regulators of cell life and death.Am J Physiol,1997,272:597.
    [136]Frantseva MV,Carlen PL,Perez Velazquez JL.Dynamics of intracellular calcium and free radical production during ischemia in pyramidal neurons.Free Radic Biol Med,2001,31(10):1216-1227.
    [137]Nicotera P,Bellomo G,Orrenius S.Calcium misdialed mechanisms in chemically induced cell death.Ann Rev Pharmacol Toxicol,1992,32:449-470.
    [138]Mahura IS.Cerebral ischemia-hypoxia and biophysical mechanisms of neurodegeneration and neuroprotection effects.Fiziol Zh,2003,49(2):7-12.
    [139]Trout JJ,Koenjg H,Goldstone AD et al.N-Methyl-D-aspartate receptor excitotoxicity involves activation of polyamine synthesis:protection bya-difluoromethylornithine.J Neurochem,1993,60(l):352-355.
    [140]Honde HM,Korge P,Weiss JN.Mitochondria and ischemia/reperfusion injury.Ann NY Acad Sci,2005,1047:248-258.
    [141]Juurlink BH,Paterson PG.Review of oxidative stress in brain and spinal cord injury:suggestions for pharmacological and nutritional management strategies.J Spinal Cord Med,1998,21:309-334.
    [142]Zoppo G,Ginis I,Hallenbeck JM et al.Inflammation and stroke:putative role for cytokines,adhesion molecules and iNOS in brain response to ischemia.Brain Pathol,2000,10:95-112.
    [143]Ryter SW,Tyrrell RM.Singlet molecular oxygen(~1O_2):A possible effecter of eukaryotic gene expression.Free Radic Biol Med,1998,24(9):1520-1534.
    [144]Facchinetti F,Dawson VL,Dawson TM.Free radicals as mediators of neuronal injury.Cell Mol Neurobiol,1998,18:667-682.
    [145]Siesjo BK,Zhao Q,Pahlmark K et al.Glutamate,calcium,and free redicals as mediators of ischemia brain damage.Ann Thorac Surg,1995,59(5):1316-1320.
    [146]DeGracia DJ,Kumar R,Owen CR et al.Molecular pathways of protein synthesis inhibition during brain reperfusion:implications for neuronal survival or death.J Cereb Blood Flow Metab,2002,22(2):127-141.
    [147]Liu PK.DNA damage and repair in the brain after cerebral ischemia.Curr Top Med Chem,2001,1(6):483-495.
    [148]Barja G,Herrero A.Oxidative damaged to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.FASEB J,2000,14:312-318.
    [149]Ding HL,Zhu HF,Dong JW et al.Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia reperfusion injury.Acta Pharmacol Sin,2005,26(3):315-322.
    [150]Dihi K,Ohtaki H,Inn R et al.Peroxynitrite and caspase-3 expression after ischemia reperfusion in mouse cardiac arrest model.Acta Neurochir Suppl,2003,86:87-91.
    [151]Vila N,Castillo J,Davalos A,Chamorro A.Proinflammatory cytokines and early neurological worsening in ischemic stroke.Stroke,2000,31:2325-2329.
    [152]Block F,Peters M,Nolden-Koch M.Expression of IL-6 in the ischemic penumbra.Neuroreport,2000,11:963-967.
    [153]郝延磊.细胞间黏附因子-1和E-选择素在局部脑缺血中的作用.中华老年心血管杂志,2000,2:54-57.
    [154]Grau AJ,Reis A,Buggle F et al.Monocyte function and plasma levels of interleukin-8in acute ischemic stroke.J Neurol Sci.2001,192:41-47.
    [155]Gourmala NG,Buttini M,Limonta S et al.Differential and time-dependent expression of monocyte chemoattractant protein-1 mRNA by astrocytes and macrophages in rat brain:effects of ischemia and peripheral lipopolysaccharide administration.J Neuroimmunol,1997,74:35-44.
    [156]Stevens SL,Bao J,Hollis J et al.The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice.Brain Res,2002,932(1-2):110-119.
    [157]Ruehl ML,Orozco JA,Stoker MB,et al.Protective effects of inhibiting both blood and vascular selectins after stroke and reperfusion.Neurol,Res,2002,24(3):226-232.
    [158]Kinouchi H,Huang H,Arai S et al.Induction of cyclooxygenase -2 messenger RNA after transient and permanent middle cerebral artery occlusion in rats:comparison with c-fos messenger RNA by using in situ hybridization.J Neurosurg,1999,91:1005-1012.
    [159]Du C,Hu R,Csernansky CA et al.Very delayed infarction after mild focal cerebral ischemia:a role for apoptosis? J Cereb Blood Flow Metab,1996,16:195-201.
    [160]Charriaut-Marlangue C,Margaill I,Represa A et al.Apoptosis and necrosis after reversible focal ischemia:an in situ DNA fragmentation analysis.J Cereb Blood Flow Metab,1996,16:186-194.
    [161]Garcia JH,Liu KF,Ye ZR,Gutierrez JA.Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats,Stroke.1997;28:2303-2309.
    [162]Lee SH,Kim M,Kim YJ et al.Ischemic intensity influences the distribution of delayed infarction and apoptotic cell death following transient focal cerebral ischemia in rats.Brain Research 2002;956:14-23
    [163]Endres M,Namura S,Shimizu-Sasamata M et al.Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family.J Cereb Blood Flow Metab,1998,18:238-247.
    [164]Renolleau S,Aggoun-Zouaoui D,Ben-Ari Y,Charriaut-Marlangue C.A model of transient unilateral focal ischemia with reperfusion in the P7 neonatal rat:morphological changes indicative of apoptosis.Stroke,1998,29:1454-1460.
    [165]Li Y,Powers C,Jiang N,Chopp M.Intact,injured,necrotic and apoptotic cells after focal cerebral ischemia in the rat.J Neurol Sci,1998,156:119-132.
    [166]Busto R,Dietrich WD,Globus MY et al.Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury.J Cereb Blood Flow Metab,1987,7:729-738.
    [167]Valtysson J,Hillered L,Andine P et al.Neuropathological endpoints in experimental stroke pharmacotherapy:the importance of both early and late evaluation.Acta Neurochir,1994,129:58-63.
    [168]Kerr JF,Wyllie AH,Currie AR.Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer,1972,26:239-257.
    [169]Wood KA,Youle RJ.Apoptosis and free radicals.Ann N Y Acad Sci,1994,738:400-407.
    [170]Williams GT,Smith CA.Molecular regulation of apoptosis:genetic controls on cell death.Cell,1993,74:777-779.
    [171]Gillardon F,Lenz C,Waschke KF et al.Altered expression of Bcl-2,Bcl-X,Bax,and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats.Brain Res Mol Brain Res,1996,40:254-260.
    [172]Antonsson B,Conti F,Ciavatta A et al.Inhibition of Bax channel forming activity by Bcl-2.Science,1997,277:370-376.
    [173]Kluck RM,Bossy-Wetzel E,Green DR,Newmeyer DD.The release of cytochrome C from mitochondria:a primary site for Bcl-2 regulation of apoptosis.Science,1997,275:1132-1136.
    [174]De Ryck M,Keersmaekers R,Clincke G et al.Lubeluzole,a novel benzothiazole protects neurologic function after cerebral thrombolic stroke in rats:An apparent stereospecific effect.Neurosci Abstr,1994,20:185.
    [175]Grotta J.The current status of neuronal protective therapy:why have all neuronal protective drugs worked in animals but non far in stroke patients? Cerebrovase Dis,1994,4:115-120.
    [176]Fpster AC,Gill R,Woodruff GN.Neuroprotective effects of MK-801 in vivo:selectivity and evidence for delayed degeneration mediated by NMDA receptor activation.J Neurosci,1988,8:4745-4754.
    [177]Smith SE and Meldrum BS.Cerebroprotective effect of a non-N-methyl-D-aspartate antagonist,GYKI 52466,after focal ischemia in the rat.Stroke,1992,23:861-864.
    [178]Dienet HC,Kase M,Hacke W et al.Lubeluzole in acute ischemic stroke.Stroke,1997,28:271.
    [179]Diener HC,Cortens M,Ford G et al.Lubeluzole in Acute Ischemic Stroke Treatment:A double-blind study with an 8-hour iInclusion window comparing a 10-mg daily dose of Lubeluzole with placebo.Stroke,2000,31:2543-2551.
    [180]梁健,郑平香,梁京生等.延胡索乙素对大鼠局灶性脑缺血再灌注损伤的保护作用.中国药理学通报,1998,14(5):413-415.
    [181]李树生,杨光田,郑智等.川芎嗪在心肺脑复苏中的实验研究.急诊医学杂志,1996,5(2):72-74.
    [182]姜开余,钱曾年.三七皂甙对沙士鼠脑缺血再灌注损伤的作用.中成药,1995,17(7):32-33。
    [183]王国贤,宗瑞义,刘丹平等.人参二醇皂甙对沙士鼠急性脑缺.血再灌注损伤的保护作用.中国药理学通报,1996,12(6):575.
    [184]王万铁,陈寿权,王卫等.醒脑静注射液抗脑缺血再灌注损伤作用的实验研究.中国急救医学,1999,19(12):701-703.
    [185]DeGraba TJ.The role of inflammation after acute stroke:utility of pursuing anti-adhesion molecule therapy.Neurology,1998,51:62-68.
    [185]吴波,刘鸣.丹参类药物治疗急性缺血性脑卒中的研究进展.中国临床康复,2004,8(10):1925-1927.
    [187]孙德旭.人参皂苷对脑缺血保护作用的研究进展.四川解剖学杂志,2005,12(1):26-28.
    [188]赵卫东.山莨菪碱对大鼠急性脑缺血再灌注损伤的保护效应.昆明医学院学报,1987;8(3):1-3.
    [189]王沙燕,赖真,耿小英等.黄芪对脑缺血再灌注星形胶质细胞的影响.中国中医基础医学杂志,2003,9(4):41-43.
    [190]Fanelli RJ,Mccarthy RT,Chisholm AJ.Neuropharmacology of nimodipine:From single channels to behavior.Ann NY Acad Sci,1994,747(12):336.
    [191]Diserhoft JF,Thompson LT,Moyer JR.Calcuim dependent after hyoerpolarization and learning in young and aging hippocampus.Life Sci,1996,59(5-6):413.
    [192]Facchinetti F,Fasolato C,Del Giudice E et al.Nimodipine selectively stimulated P-amyloid 1-42 secretion by a mechanism independent of calcium influx blockage.Neurobio Aging,2006,27(2):218-27.
    [193]Yamazaki M,Chiba K,Mohri T.Neuritogenic effect of natural iridoid compounds on PC12 cells and its possible relation to signaling protein kinases.Biol Pharm Bull,1996,19(6):791-795.
    [194]Aloisi F.The role of microglia and astrocytes in CNS immune surveillance and immunopathology.Adv Exp Med Biol,1999,468:123-133.
    [195]McGeer PL and McGeer EG.The inflammatory response system of brain:implications for therapy of Alzeimer and other neurodegenerative diseases.Brain Res Brain Res Rev,1995,21(2):195-218.
    [196]Liu B and Hong JS.Role of microglia in inflammation-mediated neurodegenerative diseases:mechanisms and strategies for therapeutic intervention.J Pharmacol Exp Ther 2003,304(1):1-7.
    [197]Kreutzberg GW.Microglia:a sensor for pathological events in the CNS.Trends Neurosci 1996,19(8):312-318.
    [198]Ng YK,Ling EA.Induction of major histocompatibility class Ⅱ antigen on microglial cells in postnatal and adult rats following intraperitoneal injections of lipopolysaccharide.Neurosci Res 1997,28(2):111-118.
    [199]Nakajima K,Kohsaka S.Microglia:activation and their significance in the central nervous system.J Biochem,2001,130(2):169-175.
    [200]Lee SC,Liu W,Dickson DW et al.Cytokine production by human fetal microglia and astrocytes.Differential induction by lipopolysaccharide and IL-1 beta.J Immunol,1993,150(7):2659-2667.
    [201]McGuire SO,Ling ZD,Lipton JW et al.Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons.Exp Neurol.2001,169(2):219-230.
    [202]Block ML,Hong JS.Microglia and inflammation-mediated neurodegeneration:Multiple triggers with a common mechanism.Prog Neurobiol,2005,76(2):77-98.
    [203]Buttini M.,Boddeke H.Peripheral lipopolysaccharide stimulation induces interleukin-1 beta messenger RNA in rat brain microglial cells.Neuroscience 1995;65(2):523-530.
    [204]Casta(?)o A,Herrera AJ,Cano J,Machado A.Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system.J Neurochem 1998,70(4):1584-1592.
    [205]Gao HM,Hong JS,Zhang WQ,and Liu B.Distinct Role for Microglia in Rotenone-induced Degeneration of Dopaminergic Neurons.J Neurosci,2002,22(3):782-790.
    [206]Langley MS,Sorkin EM.Nimodipine.A reviewof its pharmacodynamic and pharmacokinetic properties,and therapeutic potential in cerebrovascular disease.Drugs,1989,37(5):669-699.
    [207]Sandin M,Jasmin S,Levere TE.Aging and cognition:facilitation of recent memory in aged nonhuman primates by nimodipine.Neurobiol Aging,1990,11(5)573-575.
    [208]Weiss JH,Pike CJ,Cotman CW.Ca channel blockers attenuate beta-amyloid peptide toxicity to cortial neurons in culture.J Neurochem,1994,62(l):372-375.
    [209]Horn J,de Haan RJ,Vermeulen M et al.Nimodipine in animal model experiments of focal cerebral ischemia:a systematic.Stroke,2001,32(10):2433-2438.
    [210]Qin L,Liu Y,Wang T et al.NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia.J Biol Chem 2004,279(2):1415-1421.
    [211]Gao HM,Jiang J,Wilson B et al.Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons:Relevance to Parkinson's disease.J Neurochem 2002;81(6):1285-1297.
    [212]Liu B,Du L,Hong JS.Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation.J Pharmacol Exp Ther,2000,293(2):607-617.
    [213]Fritze J,Walden J.Clinical findings with nimodipine in dementia:test of the calcium hypothesis.J Neural Transm,Suppl 1995,46:439-453.
    [214]Janis RA,Silver PJ and Triggle DJ.Drug action and cellular calcium regulation.Adv Drug Res,1987,16:309-591.
    [215]Peroutka SJ and Allen GS.Calcium channel antagonist binding sites labeled by ~3H-nimodipine in human brain.J Neurosurg,1983,59(6):933-937.
    [216]Farber K and Kettenmann H.Functional Role of Calcium Signals for Microglial Function.Glia,2006,54(7):656-665.
    [217]Cloton CA,Jia M,Li MX and Gilbert DL.K~+ modulation of microglial superoxide production:involvement of voltage-gated Ca channels.Am J Physiol,1994,266:C1650-C1655.
    [218]Eder C.Ion channels in microglia( brain macrophages).Am J Physiol Cell Physiol,1998,275:327-342.
    [219]Farber K,Kettenmann H.Functional Role of Calcium Signals for Microglial Function.Glia,2006,54:656-665.
    [220]Herms JW,Madlung A,Brown DR,Kretzschmar HA.Increase of intracellular free Ca in microglia activated by prion protein fragment.Glia,1997,21:253-257.
    [221]McLarnon JG,Zhang L,Goghari V et al.Effects of ATP and elevated K~+ on K~+ currents and intracellular Ca~(2+) in human microglia.Neuroscience,1999,91:343-352.
    [222]Moller T.Calcium Signaling in Microglial Cells.Glia,2002,40:184-194.
    [223]Liu B,Gao HM,Wang JY,Jeohn GH,Cooper CL,Hong JS.Role of nitric oxide in inflammation-mediated neurodegeneration.Ann N Y Acad Sci,2002,962:318-331.
    [224]Chao CC,Molitor TW,Hu S.Neuroprotective role of IL-4 against activated microglia.J Immunol,1993,151(3):1473-1481.
    [225]Jeohn GH,Kong LY,Wilson B et al.Synergistic neurotoxic effects of combined treatments with cytokines in murine primary mixed neuron/glia cultures.J Neuroimmunol,1998,85:1-10.
    [226]Peskin AV and Winterbourn CC.A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt( WST-1).Clin Chim Acta,2000,293:157-166.
    [227]Qian L,Tan KS,Wei SJ et al.Microglia-Mediated Neurotoxicity Is Inhibited by Morphine through an Opioid Receptor-Independent Reduction of NADPH Oxidase Activity.J Immunol,2007,179:1198-1209.
    [228]Qian L,Block ML,Wei SJ et al.Interleukin-10 protects lipopolysaccharideinduced neurotoxicity in primary midbrain cultures by inhibiting the function of NADPH oxidase.J Pharmacol Exp Ther,2006,319:44-52.
    [231]Lipton P.Ischemic cell death in brain neurons.Physiol Rev,1999,79:1431-1568.
    [232]Kitagawa K,Matsumoto M,Oda T et al.Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death.Neuroscience,1990,35:551-558.
    [233]Floyd RA.Antioxidants,oxidative stress,and degenerative neurological disorders.Proc Soc Exp Biol Med,1999,222(3):236-245.
    [234]Love S.Oxidative stress in brain ischemia.Brain Pathol,1999,9:119-131.
    [235]Droge W.Free radicals in the physiological control of cell function.Physiol Rev,2002,82:47-95.
    [236]Turpaev KT.Reactive oxygen species and regulation of gene expression.Biochemistry(Mosc),2002,67:281-292.
    [237]Voeikov VL.Reactive oxygen species( ROS) pathogens or sources of vital energy?Part 1.ROS in normal and pathologic physiology of living systems.J Altern Complement Med,2006,12:111-118.
    [238]Lievre V,Becuwe P,Bianchi A et al.Free radical production and changes in superoxide dismutases associated with hypoxia/reoxygenation-induced apoptosis of embryonic rat forebrain neurons in culture.Free Radic Biol Med,2000,29:1291-1301.
    [239]Chan PH.Reactive oxygen radicals in signaling and damage in the ischemic brain.J Cereb Blood Flow Metab,2001,21:2-14.
    [240]Sugawara T and Chan PH.Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia.Antioxid Redox Signal,2003,5:597-607.
    [241]Tagami M,Yamagata K,Ikeda K et al.Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion.Lab Invest,1998,78:1415-1429.
    [242]Cuzzocrea S,McDonald MC,Mazzon et al.Effects of tempol,a membrane-permeable radical scavenger,in a gerbil model of brain injury.Brain Res,2000,875:96-106.
    [243]Yamada J,Yoshimura S,Yamakawa H et al.Cell permeable ROS scavengers,Tiron and Tempol,rescue PC12 cell death caused by pyrogallol or hypoxia/reoxygenation.Neurosci Res,2003,45:1-8.
    [244]Desagher S,Glowinski J and Premont J.Astrocytes protect neurons from hydrogen peroxide.J Neurosci,1996,16:2553-2562.
    [245]Dringen R,Gutterer JM and Hirrlinger J.Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species.Eur J Biochem,2000,267:4912-4916.
    [246]Rosenberg PA.Accumulation of extracellular glutamate and neuronal death in astrocyte-poor cortical cultures exposed to glutamate.Glia,1991,4:91-100.
    [247]Blanc EM,Bruce-Keller AJ and Mattson MP.Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca~(2+) homeostasis and cell death.J Neurochem,1998,70:958-970.
    [248]Liang A,Xue B,Wang J et al.A study on hemostatic and immunological actions of fresh and dry Dihuang.Zhongguo Zhong Yao Za Zhi,1999,24:663-672.
    [249]Yokozawa T,Kim HY and Yamabe N.Amelioration of diabetic nephropathy by dried Rehmanniae Radix( Di Huang) extract.Am J Chin Med,2004,32:829-839.
    [250]Mosmann T.Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays.J Immunol Methods,1983,65(1-2):55-63.
    [251]Vian L,Vincent J,Maurin J et al.Comparison of three in vitro cytotoxicity assays for estimating surfactant ocular irritation.Toxicol in Vitro,1995,9( 2):185-190.
    [252]Lobner D.Comparison of the LDH and MTT assays for quantifying cell death:validity for neuronal apoptosis?Journal of Neuroscience Methods,2000,96:147-152.
    [253]Possel H,Noack H,Augustin W et al.2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation.FEBS Lett,1997,416:175-178.
    [254]Green LC,Wagner DA,Glogowski J et al.Analysis of nitrate,nitrite,and[15N]nitrate in biological fluids.Analytical Biochemistry,1982,126:131-138.
    [255]Zamzami N,Maisse C,Metivier D et al.Measurement of membrane permeability and permeability transition of mitochondria.Methods.Cell Biol,2001,65:147-158.
    [256]Maeda Y,Matsumoto M,Stern DM et al.Hypoxia/reoxygenation-mediated induction of astrocyte interleukin-6:a paracrine mechanism potentially enhancing neuron survival.J Exp Med,1994,180(6):2297-2308.
    [257]Tacconi MT.Neuronal death:is there a role for astrocytes? Neurochem Res,1998,(23):759-765.
    [258]Gabryel B,Adamczyk J,Huzarska M et al.Aniracetam Attenuates Apoptosis of Astrocytes Subjected to Simulated Ischemia In Vitro.Neurotoxicology,2002,23:385-395.
    [259]Chen Y,Swanson RA.Astrocytes and brain injury.J Cereb Blood Flow Metab,2003,23:137-149.
    [260]Liu X-H,Kato H,Nakata N et al.An immunohistochemical study of copper/zine superoxide dismutasse in rat hippocampus after transient cerebral ischemia.Brain Res,1993,625:29-37.
    [261]Takizawa S,Matsushima K,Shinohara Y et al.Immunohistochemical locatisation of glutathione peroxidase in infracted human brain.J Neurol Sci,1994,122:66-73.
    [262]Aschner M.Astrocytic functions and physiological reactions to injury:the potential to induce and/or exacerbate neuronal dysfunction.A forum position paper.NeuroToxicology,1998,19:7-18.
    [263]Gabryel B and Trzeciak HI.Role of astrocytes in pathogenesis of ischemic brain injury.Neurotoxicity Res,2001,3:1-17.
    [264]Sagara J,Miura K,Bannai S.Maintenance of neuronal glutathione by glial cells.J Neurochem,1993,61:1672-1676.
    [265]Drukarch B,Schepens E,Stoof JC et al.Astrocyte-enhanced neuronal survival is mediated by scavenging of extracellular reactive oxygen species.Free Radic Biol Med,1998,25:217-220.
    [266]Liu D,Smith CL,Barone FC et al.Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain.Brain Res Mol Brain Res,1999,68:29-41.
    [267]Han YF,Wu DC,Xiao XQ et al.Protection against ischemic injury in primary cultured astrocytes of mouse cerebral cortex by bis(7)-tacrine,a novel anti-Alzheimer's agent.Neurosci Lett,2000,288:95-98.
    [268]Oillet J,Koziel V,Vert P,Daval JL.Influence of posthypoxia reoxygenation conditions on energy metabolism and superoxide production in cultured neurons from the rat forebrain.Pediatr Res,1996,39:598-603.
    [269]Peters O,Back T,Lindauer U et al.Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat.J Cereb Blood Flow Metab,1998,18:196-205.
    [270]Yang G,Chan PH,Chen J et al.Human copper/zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia.Stroke,1994,25:165-170.
    [271]Chan PH,Kawase M,Murakami K et al.Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion.J Neurosci,1998,18:8292-8299.
    [272]Wang J,Ma JH,Giffard R.G.Overexpression of copper/zinc superoxide dismutase decreases ischemia-like astrocyte injury.Free Radic Biol Med,2005,38:1112-1118.
    [273]Homi HM,Freitas JJ,Curi R et al.Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion.Neurosci Lett,2002,333:37-40.
    [274]Toyoda T and Lee KS.Differential induction of superoxide dismutase in core and penumbra regions after transient focal ischemia in the rat neocortex.Neurosci Lett,1997,235:29-32.
    [275]Panickar KS and Norenberg MOOD.Astrocytes in cerebral ischemic in jury:morphological and general considerations.Glia,2005,50:287-298.
    [276]Dawson TM,Dawson VL,Synder SH.A novel neuronal messenger molecule in brain:The free radical,nitric oxide.Ann Neurol,1992,32:297-311.
    [277]Iadecola C,Zhang F,Xu X.Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage.Am J Physiol,1995,268:R286-292.
    [278]Dawson VL and Dawson TM.Nitric oxide neurotoxicity.J Chem Neuroanat,1996,10:179-190.
    [279]Chen H,Chopp M,Shultz G et al.Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat.J Neurol Sci,1993,118:109-116.
    [280]Cazevieille C,Muller A,Meynier F,Bonne C.Superoxide and nitric oxide cooperation in hypoxia/reoxygenation induced neuron injury.Free Radic Biol Med,1993,14:389-395.
    [281]Radi R,Beckman JS,Bush KM,Freeman BA.Peroxynitrite-induced membrane lipid peroxidation:the cytotoxic potential of superoxide and nitric oxide.Arch Biochem Biophys,1991,288:481-487.
    [282]Radi R,Rodriguez M,Castro L and Telleri R.Inhibition of mitochondrial electron transport by peroxynitrite.Arch Biochem Biophys,1994,308:89.
    [283]Grandati M,Verrecchia C,Revaud ML et al.Calcium-independent NO-synthase activity and nitrites/nitrates production in transient focal cerebral ischaemia in mice.Br J Pharmacol,1997,122:625-630.
    [284]Iadecola C,Xu X,Zhang F et al.Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia.J Cereb Blood Flow Metab,1995,14:52-59.
    [285]Iadecola C,Zhang F,Casey R et al.Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia.Stroke,1996,27:1373-1380.
    [286]Iadecola C,Zhang F,Xu X et al.Inducible nitric oxide synthase gene expression in brain following cerebral ischemia.J Cereb Blood Flow Metab,1995c,15:378-384.
    [287]Forster C,Clark HB,Ross ME,ladecola C.Inducible nitric oxide synthase expression in human cerebral infarcts[In Process Citation].Acta Neuropathol( Berl),1999,97:215-220.
    [288]Mori K,Togashi H,Ueno KI et al.Aminoguanidine prevented the impairment of learning behavior and hippocampal long-term potentiation following transient cerebral ischemia.Behav Brain Res,2001,120:159-168.
    [289]Christophe M and Nicolas S.Mitochondria:a target for neuroprotective interventions in cerebral ischemia-reperfusion.Curr Pharm Des,2006,12:739-757.
    [290]Bambrick L,Kristian T,Fiskum G.Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection.Neurochem Res,2004,29:601-608.
    [291]Dugan LL,Kim-Han JS.Astrocyte mitochondria in in vitro models of ischemia.J.Bioenerg.Biomembr,2004,36:317-321.
    [292]Yu AC-H,Wong HK,Yung HW and Lau LT.Ischemia-induced apoptosis in primary cultures of astrocytes.Glia,2001,35:121-130.
    [293]Mosman T.Rapid,colorimetric assay for cellular growth and survival.Application to proliferation and cytotoxicity assays.J Immunol Methods,1983,65:55-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700