流体静压力和TGF-β3诱导大鼠骨髓源性间充质干细胞向软骨细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     初步探讨流体静压力和转化生长因子-β3(transforming growth factor-β3, TGF-β3)在诱导骨髓间充质干细胞(BM-MSC)向软骨细胞分化过程中的内在联系,研究BM-MSCs的分化机制,为最终控制MSCs的定向分化打下基础。
     方法:
     取健康雄性SD大鼠骨髓,采用贴壁法分离培养大鼠MSCs, MTS法测定细胞生长曲线,流式细胞仪检测细胞表面抗原。取第四代MSCs培养于三维藻酸盐凝珠,采用Hoechst333258/PI荧光染色和Annexin V/PI直标双染流式细胞仪检测细胞活性。用转化生长因子β3(TGF-β3)和流体静压力诱导MSCs向软骨细胞特征方向分化。利用组织化学染色和Real time荧光定量RT—PCR测定其向软骨细胞特征方向分化过程中转录因子SOX9、特异性细胞外基质II型胶原(collageII)和聚集蛋白聚糖(aggrecan)的表达情况。实验分成3个实验组和对照组,分别为:TGF-β3(10ng/ml);静压力组(100kPa,4h/d);TGF-β3和静压力联合组和对照组(不添加任何生长因子和静压力)。各组于诱导的第7天,分别进行HE染色,甲苯胺蓝染色及PAS染色(Periodic Acid-Schiff stain);于诱导第1、3和7天分别提取各组细胞总RNA,进行RT-PCR扩增,检测Sox9,COLⅡ和AGG的表达量。
     结果:
     本实验成功分离、纯化、培养了大鼠MSCs,原代及传代细胞贴壁生长,细胞生长状态良好,形态为长梭性。流式细胞仪检测第2、3、4代大鼠MSCs细胞表面标记:CD29、CD90阳性(≥80%、≥98%、≥98%),CD11、CD45阴性(≤2.0%、≤0.4%、≤0.2%)。MTS法细胞增殖实验结果显示大鼠MSCs生长性状稳定,第1、3、5代细胞的生长曲线相似,传代后2天为潜伏期,第4-6天进入对数增殖期,第8天后进入平台期。倒置显微镜观察藻酸盐凝珠内的MSCs,细胞分布均匀,形状为圆形或椭圆形,胞体透亮,随着培养时间的增加,局部可见细胞团簇。Hoechst333258/PI荧光染色显示藻酸盐凝珠内大部分细胞呈低蓝色,核呈正常结构,随培养时间的增加未见明显核呈红色荧光的细胞增多。AnnexinV/PI直标双染流式细胞仪检测结果:对照组、压力组和细胞因子组细胞包裹于藻酸盐凝珠培养7天后,存活率较高,分别为79.7%,71.4%和89.4%。组织切片HE染色:TGF-β3,压力,TGF-β3+压力组与对照组的凝珠内细胞分布均匀,形状为圆形或椭圆形,细胞呈皱缩状,细胞周围为空隙,形似软骨陷窝。甲苯胺蓝染色和PAS染色:TGF-β3,压力,TGF-β3+压力组结果阳性,证实骨髓间充质干细胞经诱导后细胞呈现软骨细胞特征。RT-PCR结果表明TGF-β3,压力,TGF-β3+压力组细胞在诱导1、3、7天后均有Sox9、COL Ⅱ和AGG表达,在整个实验期间内,随着培养时间的增加,各实验组的Sox9和COL Ⅱ基因表达量呈现不同程度的增加。第3、7天的Sox9、COL Ⅱ和AGG mRNA表达水平较对照组高,其中TGF-β3+压力组的Sox9基因表达量,压力组和TGF-β3+压力组的COL Ⅱ基因表达量,TGF-β3和TGF-β3+压力组的AGG基因表达量显著增加,具有统计学差异(P≤0.05)。另外,藻酸盐凝珠培养第三天,TGF-β3+压力组的COL Ⅱ和AGG基因的表达水平明显高于单纯TGF-β3组和压力组(P≤0.01),说明压力和细胞因子的联合作用能获得更为显著的效果。
     结论:
     藻酸盐凝珠可以作为大鼠MSCs三维立体培养的载体,为其提供粘附生长、向软骨细胞分化、合成和分泌细胞外基质(ECM)的场所。细胞因子TGF-β3能够有效促进大鼠MSCs向软骨细胞分化,表达软骨细胞特异性的基因和蛋白;静压力促进MSCs表达Sox9, COL Ⅱ和早期AGG的表达。静压力和TGF-β3的组合作用较复杂,不是简单的协同或拮抗作用。因此,生物因子TGF-β3和合适的压力刺激可诱导间充质干细胞向软骨细胞分化并维持其细胞表型,是维持关节软骨稳态的重要因素。
Objectives:
     Bioactive factors, such as TGF β3as well as mechanical factors i.e. hydraulicpressure, have been shown to induce and/or modulate chondrogenesis of bone marrow derived mesenchymal stromal cells(BMSCs). Since these factors are intracellularly transduced through different mechanisms, it is hypothesized that TGF β3and hydraulic pressure may act synergistically on chondrogenic differentiation of BMSCs. The purpose of this study was to investigate the effects of Hydrostatic pressure and TGF-β3on chondrogenesis employing rat Bone-Marrow Derived Mesenchymal Stem Cells(BM-MSCs).
     METHODS:
     BM-MSCsderived from the tibias and femurs of rats, were grown in α-modified Eagle medium supplemented with10%fetal calf serum, which were characterized through flow cytometry using specific antibodies. BM-MSCs encapsulated in alginate beads, were divided into four groups:control; transforming growth factor (TGF-β3)(with TGF-P3treatment); loading (with stimulation of Hydrostatic pressure loading); and TGF-β31oading (with TGF-β3treatment and loading stimulation) groups. In the loading experiment, specimens were subjected to100kPaby an in-house designed pressure chamber for4hours a day.Experiments were conducted for1,3, and7consecutive days. Cell differentiation was verified through histochemistry, quantitativereverse transcription-polymerase chain reaction (RT-PCR) analysis.
     RESULT:
     MSCs of passage2.3,4were positive(≥80%、≥98%、>98%)for CD29, CD90and negative(≤2.0%、≤0.4%、≤0.2%)for CD11and CD45. Staining of the extracellular matrix was positive. TGF-(33, loading, and TGF-β3loading exhibitedsignificantly higher levels of expressions of chondrogenicmarkers (collagen II and AGG) at the third and seventh day.TGF-β3loading exhibited higher collagen type II and AGG than medium with TGF—β3alone or loading at the third day.
     CONCLUSION:
     The used concentrations of TGF-β3and parameters for hydraulicpressure were able to induce and modulatechondrogenesis of rat BMSCs in some extend, but the co-effect of TGF-β3and hydraulicpressure is complicated, there are no synergistic effects were observed.
引文
[l]Chokalingam K Hunter S, Gooch C, et al. Three-dimensional in vitro effects of compression and time in culture on aggregate modulus and on gene expression and protein content of collagen type II in murine chondrocytes. Tissue EngPartA.2009; 10(15):2807-2816.
    [2]Pittenger MF, Mackay AM, Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells. Science.1999;284(5411):143-147.
    [3]Woodbury D, Schwarz EJ, ProckopDJ,et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci R(?) 2000;61(4):364-370.
    [4]Hsiao-Li Ma,1,2Shih-Chieh Hung,1,2Shan-Yang Lin,3Yuh-Lien Chen,4Wai-Hee LolChondrogenesis of human mesenchymal stem cellsencapsulated in alginate beads. J BiomedMater Res 64A:273-281,2003
    [5]KO K S;MCCULLOCH C A G Intercellular mechanotransduction:Cellular circuits that coordinate tissue responses to mechanical loading 2001(05)
    [6]Kazuyuki Onoderaa,, Ichiro Takahashia, YasuyukiSasanob, Jin-Wan BaeaHidetoshi Mitania, Manabu Kagayamab, Hideo Mitania Stepwise mechanical stretching inhibits chondrogenesis throughcell-matrix adhesion mediated by integrins in embryonicrat limb-bud mesenchymal cells
    [7]Lawrence J. Bonassar,Alan J. Grodzinsky, Eliot H. Frank,et al. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. Journal of Orthopaedic Research.2001; 19:11-17.
    [8]Peng-Yuan Wang, Hsiang-Hong Chow,Juin-Yih Lai, et al. The effect of dynamic mechanical compression on articular cartilage tissue engineering. Journal of biomedical materials research:Part B—Applied Biomaterials.2008.
    [9]Stephanie J. Bryant, Garret D. Nicodemus, and IdalisVillanueval. Designing 3D photopolymer hydrogels to regulate biomechanical CueS and tissue growth for cartilage tissue engineering. Pharmaceutical Research.2008; 25:2379-2386.
    [10]D.R.Haudenschild,D.D.D'ilma,M.K.Lotz Dynamic compression of chodrocytes induces a Rho kinase-dependent reorganization of the actin cytoskeleton Biorheology 45 (2008)219-228
    [11]Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB.BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel.Osteoarthritis and CartilageVolume 13, Issue 6, June 2005, Pages 527-536
    [12]Roelen B A, Dijke P. Controlling mesenchymal stem cell differentiation by TGF-Beta family members [J] J Orthop Sci,2003,8:740
    [13]Kondo S, Cha SH, Xie WF et al. Cytokine regulation of cartilage-derived retinoic acid—sensitive protein(CD—RAP)in primary articular chondrocytes:suppression by IL—1, bfGF, TGF-beta and stimulation by IGF—1. J Orthop Res.2001; 19(4): 712-719.
    [14]Priyangi M Pereral, EwaWypasek. Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytesArthritis Research & Therapy 2010,12:R106
    [15]Zuscik MJ, Hilton MJ, Zhang X, Chen D, O'Keefe RJ:Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest 2008, 118:429-438.
    [16]Chiquet M, Gelman L, Lutz R, Maier S:From mechanotransduction to extracellular matrix gene expression in fibroblasts. BiochimBiophysActa 2009,1793:911-920.
    [17]Dossumbekova A, Anghelina M, Madhavan S, He L, Quan N, Knobloch T, Agarwal S:Biomechanical signals inhibit IKK activity to attenuate NF-kappaB transcription activity in inflamed chondrocytes. Arthritis Rheum 2007,56:3284-3296.
    [18]Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N:Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum 2004,50:3541-3548.
    [19]Wang B, Yang Y, Friedman PA:Na/H exchange regulatory factor 1, a novel AKT-associating protein, regulates extracellular signal-regulated kinase signaling through a B-raf-mediated pathway. MolBiol Cell 2008,19:1637-1645.
    [20]Nugent GE, Aneloski NM, Schmidt TA, Schumacher BL, Voegtline MS, Sah RL: Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis Rheum 2006,54:1888-1896.
    [21]McNulty AL, Estes BT, Wilusz RE, Weinberg JB, Guilak F:Dynamic loading enhances integrative meniscal repairr in the p(?) of interleukin-1. Osteoarthritis Cartilage 2010,18:830-838.
    [22]Nam J, Aguda B, Agarwal S:Biomechanical thresholds regulate inflammation through the NF-κB pathway:experiments and modeling. PLoS ONE 2009, 4:e5262.
    [23]Chowdhury TT, Bader DL, Lee DA:Dynamic compression counteracts IL-1 beta-induced release of nitric oxide and PGE2 by superficial zone chondrocytes cultured in agarose constructs. Osteoarthritis Cartilage 2003,11:688-696.
    [24]Jennifer S. Park a,b,c, Julia S. Chu a,c, Anchi D. Tsoua,b,c, RokhayaDiopThe effect of matrix stiffness on the differentiation of mesenchymal stem cellsin response to TGF-bBiomaterials 32 (2011) 3921e3930
    [25]Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 2003;9(4):679e88.
    [26]Catherine Baugel*, Olivier Cauvardl, Sylvain Leclercq2Modulation of transforming growth factor betasignalling pathway genes by transforming growthfactor beta in human osteoarthritic chondrocytes:involvement of Sp1 in both early and lateresponse cells to transforming growth factor betaArthritis Research & Therapy 2011,13:R23
    [27]Spagnoli A, Longobardi L,0 Rear L, et al. Cartilage disorders:potential therapeutic use of mesenchymal stem cells[J], EndoerDev,2005,9:17-30.
    [28]Bosnakovski D, Mizuno M, Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system [J], ExpHematol,2004, 32(5):502-509.
    [29]Gareia—Molina JA, Vallespi-Miro G. The role of fibroblast growth factor(FGF)and type beta transforming growth factor(TGF—beta 1-beta 2-beta 3)during rat craniofacial development[J]. Bull Group intRechSciStomatolOdontol,2003, 45(2-3):66-78.
    [30]Grimaud E, Heymann D, Redini F, Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders [J], Cytokine Growth Factor Rev,2002; 13(3):241-57.
    [31]M. Weber a, A. Steinert b Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel class of alginates Biomaterials 23 (2002) 2003-2013
    [32]Marijnissen WJCM, van OschGJVM, Aigner J, Verwoerd-Verhoef HL, Verhaar JAN. Tissue-engineered cartilage using serially passaged articular chondrocytes. Chondrocytes in alginate, combined in vivo witha synthetic (E210) or biologic biodegradable carrier (DBM). Biomaterials 2000;21:571-80.
    [33]Selden C, Khalil M, Hodgson H. Three dimensional culture upregulates extracellular matrix protein expression in human liver cell linesFa step towards mimicking the liver in vivo? Int J Artif Organs 2000;23:774-81.
    [34]Hasse C, Bohrer T, Barth P, Stinner B, Cohen R, Cramer H,Zimmermann U, Rothmund M. Parathyroid xenotransplantation without immunosuppression in experimental hypoparathyroidism:long-term in vivo function following microencapsulation witha clinically suitable alginate. World J Surg 2000; 24:1361-6.
    [35]Steven H. Elder,1 Shawn W. Sanders,1 William R. McCulley, et al Chondrocyte Response to Cyclic HydrostaticPressure in Alginate Versus Pellet CultureJOURNAL OF ORTHOPAEDIC RESEARCH APRIL 2006
    [36]Young RG Butler D L, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res.1998; 16(4):406-413.
    [37]Peng H. Huard J. Stem cells in the treatment of muscle and connective tissue diseases. CurrOpinPharmacol.2003; 3(3):329-333.
    [38]AdrijanaPreradovic, Guenther Kleinpeter,HansFeichtinger,et al. Quantitation of collagen I, collagen II and aggrecan mRNA and expression of the corresponding proteins in human nucleus pulposus cells in monolayer cultures. Cell Tissue Res.2005; 321:459-464.
    [39]Lei Lei, Liao Weiming, Sheng Puyi, et al. Biological character of human adipose-derived adult stem cells and influence of donor age on cell replication in culture. Sci China Ser C-Life Sci.2007; 50(3):320-328.
    [40]Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med.2005; 54(3):132-141.
    [41]Schaffler A, Buchier C.Concise review:adipose tissue—derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells.2008; 25(4): 818-827.
    [42]Sung UkKuh, Yerun Zhu, Jun Li, et al. Can TGF-β1 and rhBMP-2 act in synergy to transform bone marrow stem cells to discogenic-type cells? ActaNeurochir(Wien).2008; 150:1073-1079.
    [43]Duggal, S Fronsdal, KB etalPhenotype and Gene Expression of Human Mesenchymal Stem Cells in Alginate Scaffolds TISSUE ENGINEERING (15): 1763-1773 JUL 2009
    [44]Diduch DR, Jordan LC, Mierisch CM, Balian G.Marrow stromal cells embedded in alginate for repair of osteochondral defects.The Journal of Arthroscopic & Related SurgeryVolume 16, Issue 6, September 2000, Pages 571-577
    [45]Ma HL, Hung SC, Lin SY, Chen YL, Lo WH.Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads.Journal of Biomedical Materials Research Part AVolume 64A, Issue 2, pages 273-281,1 February 2003
    [46]Ick Hwan Yang, Su Hyang Kim, Yun Hee Kim, Hyun Jin Sun, Sung Jae Kim, Jin Woo Lee. Comparison of phenotypic characterization between "alginate bead" and "pellet" culture systems as chondrogenic differentiation models for human mesenchymal stem cellsYONSEI MEDICAL JOURNAL(45):891-900 OCT 31 2004
    [47]Shen, BJ Wei, AQ et al BMP-2 Enhances TGF-beta 3-Mediated Chondrogenic Differentiation of Human Bone Marrow MultipotentMesenchymal Stromal Cells in Alginate Bead Culture TISSUE ENGINEERING PART (15):1311-1320 JUN 2009
    [48]Shizuko Ichinose, Kazuo Yamagata, Ichiro Sekiya, et al. DetaiIedexamination of cartilage formation and endochondral ossification using human mesenchymal stem cells [J]. Clinical and Experimental Pharmacology and Physiology,2005,32: 561.Shizuko Ichinose
    [49]Young-Bin Lim,Shin-Sung Kang etal. Disruption of Actin Cytoskeleton Induces Chondrogenesis of Mesenchymal Cells by Activating Protein Kinase C-α Signaling Biochemical and Biophysical Research Communication 273,609-613 2000
    [50]Wezeman, F. H. (1998) Morphological foundations of precartilage development in mesenchyme. Microsc. Res. Tech.43,91-101
    [51]STEPHEN D. THORPE,1CONOR T. BUCKLEY et al. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-β 3 induced chondrogenic differentiation ANNALS OF BIOMEDICAL ENGINEERINGVolume 38, Number 9,2896-2909, DOI:10.1007/s10439-010-0059-6
    [52]C-Y CHARLES HUANG,a,b KRISTEN L. HAGAR,etal. Effects of Cyclic Compressive Loading on Chondrogenesis of RabbitBone-Marrow Derived Mesenchymal Stem CellsStem Cells 2004;22:313-323
    [53]O'Driscoll SW, Keeley FW, Salter RB. Durability of regenerated articular cartilage produced by free autogenous periostealgrafts in major full-thickness defects in joint surfaces under theinfluence of continuous passive motion. A follow-up report atone year. J Bone Joint Surg Am 1988;70:595-606
    [54]Wakitani S, Goto T, Pineda SJ et al. Mesenchymal cell-basedrepair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 1994;76:579-592.
    [55](?)k RL, Soltz MA, Wang CC et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J BiomechEng 2000; 122:252-260
    [56]Angele P, Yoo JU, Smith C et al. Cyclic hydrostatic pressureenhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res2003;21:451-457
    [57]Lee DA, Knight MM, Bolton JF et al. Chondrocyte deformation withincompressed agarose constructs at the cellular and sub-cellular levels.JBiomech 2000;33:81-95.
    [58]Mouw, J. K., J. T. Connelly, C. G Wilson, K. E. Michael,and M. E. Levenston. Dynamic compression regulates theexpression and synthesis of chondrocyte-specific matrixmolecules in bone marrow stromal cells. Stem Cells 25:655-663,2007.
    [59]Knight MM, Ghori SA, Lee DA et al. Measurement of the deformationof isolated chondrocytes in agarose subjected to cyclic compression. MedEngPhys 1998;20:684-688
    [60JJANNA K. MOUW,a,cJOHN T. CONNELLY, et al. Dynamic Compression Regulates the Expression and Synthesis ofChondrocyte-Specific Matrix Molecules in Bone MarrowStromal CellsSTEM CELLS 2007;25:655-663
    [61]Locker M, Kellermann O, Boucquey M et al. Paracrine and autocrinesignals promoting full chondrogenic differentiation of a mesoblastic cellline. J Bone Miner Res 2004; 19:100-110
    [62]Luettich K, Schmidt C. TGFbetal activates c-Jun and Erkl via alphaV-beta6 integrin. Mol Cancer 2003-2:33.
    [63]You L, Kruse FE. Differential effect of activin A and BMP-7 onmyofibroblast differentiation and the role of the Smad signaling pathway.InvestOphthalmol Vis Sci 2002;43:72-81.
    [64]Wang SE, Wu FY, Shin I et al. Transforming growth factor beta (TGF-beta)-Smad target gene protein tyrosine phosphatase receptor type kappais required for TGF-beta function. Mol (?) Biol2005;25:4703-4715.
    [65]Miyanishi K, TrindadeMC, Lindsey DP et al. Effects of hydrostatic pressureand transforming growth factor-beta 3 on adult human mesenchymal stemcell chondrogenesis in vitro. Tissue Eng 2006;12:1419-1428.
    [66]Furumatsu T, Tsuda M, Taniguchi N et al. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300recruitment. J BiolChem 2005;280:8343-8350.
    [67]Chen CW, Tsai YH, Deng WP et al. Type Ⅰ and Ⅱ collagen regulation ofchondrogenic differentiation by mesenchymal progenitor cells. J OrthopRes 2005;23:446-453.
    [68]Sekiya I, Tsuji K, Koopman P et al. SOX9 enhances aggrecan genepromoter /enhancer activity and is upregulated by retinoic acid in acartilage-derived cell line, TC6. J BiolChem 2000;275:10738-10744.
    [69]Kypriotou M, Fossard-Demoor M, Chadjichristos C et al. SOX9 exerts abifunctional effect on type Ⅱ collagen gene (COL2A1) expression inchondrocytes depending on the differentiation state. DNA Cell Biol2003;22:119-129.
    [70]Lefebvre V, HuangW, Harley VR et al. SOX9 is a potent activator of thechondrocyte-specific enhancer of the pro alphal(Ⅱ) collagen gene. MolCell Biol 1997; 17:2336-2346.
    [71]Huang CY, Reuben PM, Cheung HS. Temporal expression patterns andcorresponding protein inductions of early responsive genes in rabbit bonemarrow-derived mesenchymal stem cells under cyclic compressive loading. STEM CELLS 2005;23:1113-1121.
    [72]Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997;390:465-471.
    [73]Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev2000;14:627-644.
    [74]Lagn(?), Hata A, Hemmati-Brivanlou A et al. Partnership betweenDPC4 and SMAD proteins in TGF-beta signalling pathways. Nature1996;383:832-836.
    [75]Pedrozo HA, Schwartz Z, Robinson M et al. Potential mechanisms forthe plasmin-mediated release and activation of latent transforminggrowth factor-betal from the extracellular matrix of growth plate chondrocytes. Endocrinology 1999;140:5806-5816.
    [76]George SJ, Johnson JL, Smith MA et al. Transforming growth factor-beta is activated by plasmin and inhibits smooth muscle cell death inhuman saphenous vein. J Vasc Res 2005;42:247-254.
    [77]Maeda S, Dean DD, Gay I et al. Activation of latent transforminggrowth factor betal by stromelysin 1 in extracts of growth platechondrocyte-derived matrix vesicles. J Bone Miner Res 2001;16:1281-1290.
    [78]Tuli R, Tuli S, Nandi S et al. Transforming growth factor-beta-mediatedchondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J BiolChem 2003;278:41227-41236.
    [79]Blanchette F, Rivard N, Rudd P et al. Cross-talk between the p42/p44 MAPkinase and Smad pathways in transforming growth factor beta 1-inducedfurin gene transactivation. J BiolChem 2001;276:33986-33994.
    [80]Watanabe H, de Caestecker MP, Yamada Y. Transcriptional cross-talkbetween Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan genexpression in chondrogenic ATDC5 cells. J BiolChem 2001;27614466-14473.
    [1].Cope JB. Temporary anchorage devices in orthodontics:a paradigm shift. Semin Orthod 2005;11(1):3-9.
    [2].Herman R, Cope JB. Miniscrew implants:IMTEC mini orthoimplants. Semin Orthod 2005;11(1):32-39
    [3].Melsen B, Verna C. Miniscrew implants:the Aarhus anchorage system. Semin Orthod 2005;11(1):24-31.
    [4].Papadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics:A comprehensive review. Oral Surg Oral Med Oral Path Oral Radiol Endod.2007;103(5):e6-e15.
    [5].Costa A, Pasta G, Bergamaschi G. Intraoral hard and soft tissue depthsfor temporary anchorage devices. Semin Orthod 2005;11(1):10-15.
    [6].Asscherickx K, Vannet BV, Wehrbein H, Sabzevar MM. Root repair after injury from mini-screw. Clin Oral Implants Res 2005;16(5):575-8.
    [7].Volong Dao, Rahul Renjen, MS,Hari S. Prasad, Michael D. Rohrer, MS,Anthony L. Maganzini, and Richard A. Kraut, DDS.Cementum, Pulp, Periodontal Ligament, and Bone Response After Direct Injury With Orthodontic Anchorage Screws:A Histomorphologic Study in an Animal Model. J Oral Maxillofac Surg.2009;67(11):2440-5.
    [8].Megan Hembree, Peter H. Buschang,Roberto Carrillo, Robert Spears,and P. Emile. Effects of intentional damage of the roots and surrounding structures with miniscrew implants Am J Orthod Dentofacial Orthop.2009; 135(3):280.e 1-9;
    [9].Lin JC, Liou EJ, Yeh CL, Evans CA.. A comparative evaluation of current orthodontic miniscrew systems. World J Orthod 2007;8(2):136-44.
    [10].Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kami oka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop 2006;129(6):721.e7-12..
    [11].Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop 2006;67(3):162-74.
    [12].Poggio PM, Incorvati C, Velo S, Carano A. "Safe zones":a guide for miniscrew positioning in the maxillary and mandibular arch.Angle Orthod 2006;76(2):191-7.
    [13].Mah J, Bergstrand F. Temporary anchorages devices:a st(?) port. J Clin Orthod 2005;3(3):132-6.
    [14].Monnerat C, Restle L, Mucha JN. Tomographic mapping of mandibular interradicular spaces for placement of orthodontic mini-implants. Am J Orthod Dentofacial Orthop. 2009;135(4):428.e1-9
    [15].Hernandez LC, Montoto G, Puente Rodriguez M, Galban L, Martinez V.'Bone map' for a safe placement of miniscrews generated by computed tomography Clin Oral Implants Res. 2008;19(6):576-581
    [16].Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop 2004;126(1):42-7.
    [17].Asscherickx K, Vannet BV, Wehrbein H, Sabzevar MM. Root repair after injury from mini-screw. Clin Oral Implants Res 2005;16(5):575-8.
    [18].Kadioglu O, Buyukyilmaz T, Zachrisson BU, Maino BG. Contact damage to root surfaces of premolars touching miniscrews during orthodontic treatment. Am J Orthod Dentofacial Orthop. 2008;134(3):353-360.
    [19].Chung K, Kim SH, Kook Y. C-orthodontic microimplant for dis-talization of mandibular dentition in Class Ⅲ correction. Angle Orthod 2005;75(1):119-128.
    [20].Driemel O, Staudenmaier R, Buch RS, et al:Dental injuries due to miniplate ostosynthesis Classification,treatment management, complications, and prognosis.Mund Kiefer Gesichtschir 2005;9:330-335.
    [21].Moertl M, Tsioutsias T, Schmalz G, et al:An unusual case of dental root injury after miniplate osteosynthesis of the mandible.Am J Orthod Dentofacial Orthop.2008 Sep;134(3):353-360.
    [22].Chen YH, Chang HH, Chen YJ, Lee D, Chian HH, Yao CCJ. Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate:an animal study. Clin Oral Implants Res 2008;19(1):99-106.
    [23].Carmen E. Brisceno,P. Emile Rossouw,Roberto Carrillo,Robert Spears,and Peter H. Buschange South Miami, Fla, and Dallas Tex, Healing of the roots and surrounding structures after intentional damage with miniscrew implants Am J Orthod D(?)ntofacial Ort(?) 2009;135(3):292-301
    [24].Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage:success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop 2007;131(1):9-15.
    [25].Bae SM, Kyung HM.Mandibular molar intrusion with miniscrew anchorage. J Clin Orthod 2006;40(2):107-8.
    [26].Carrillo R, RossouwPE, Franco PF,Opperman LA, Buschang PH.Intrusion of multiradicular teeth and related root resorption using mini-screw implant anchorage:a radiographic evaluation. Am J Orthod Dentofacial Orthop 2007; 132:647-655.
    [27].Gautam P, Valiathan A. Implants for anchorage. Am J Orthod Dentofacial Orthop 2006; 129(2):174.
    [28].Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic miniimplant.Clin Oral Implants Res 2006;17(1):109-14
    [29].Maino BG, Mura P, Bednar J. Miniscrew implants:the spider screw anchorage system. Semin Orthod 2005;11(1):40-46
    [1]Harris CA.A Dictionary of Dental Sciences, Biography, Bibliography and Medical Terminology, 1st edn.Philadelphia:Lindsay and Blakiston,1849:725.
    [2]Joshi MR, Bhatt NA. Canine transposition. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1971;31:49-54.
    [3]Shanmuhasuntharam P, Thong YL. Transposition of maxillary teeth. Singapore Dent J. 1990;15:27-31.
    [4]Shapira Y, Kuftinec MM. Tooth transpositions—a review of the literature and treatment considerations. Angle Orthod.1989;59:271-276.
    [5].Peck S, Peck L, Hirsh G. Mandibular lateral incisor-canine transposition in monozygotic twins. ASDC J Dent Child 1997;64:409-13.
    [6]Shapira Y, Kuftinec MM, Stom D. Maxillary canine-lateralincisor transposition—orthodontic management. Am J OrthodDentofacialOrthop 1989;95:439-44.
    [7]Peck S, Peck L. Classification of maxillary tooth transpositions. Am J OrthodDentofacialOrthop. 1995;107:505-17.
    [8]Ferrazzini G. Maxillary molar transposition.Journal of Dentistry for Children 2002 69:73-6,13.
    [9]Grant JE, Abu Mezier N, Dibiase AT. Mandibular first and second molar tooth transposition:a case report. Int J Paediatr Dent.2006; 16:227-9.
    [10].White SC, Pharoah MJ. Oral radiology:principles and interpretation.5th ed. Philadelphia: Mosby; 2004.
    [11]Saadettin Kayipmaz AE Senem Tug raSaricaog luAE "mer Said Sezg Unusual teeth transpositions:two case reports inOral Radiol (2009) 25:81-84
    [12]Maia F. Orthodontic correction of a transposed maxillary canine and lateral incisor. Angle Orthod 2000;70:339-48.
    [13]Yilmaz H, Turkkahraman H, Sain M. Prevalence of tooth transpositions and associated dental anomalies in a (?) population. Dentomaxillofac Radiol 2005;34:32-5.
    [14]Burnett SE. Prevalence of maxillary canine-first premolar transposition in a composite African sample. Angle Orthod 1999;69:187-9.
    [15]Ruprecht A, Batniji S, El-Neweihi E. The incidence of transposition of teeth in dental patients. J Pedod 1985;9:244-9.
    [16]Chattopadhyay A, Srinivas K. Transposition of teeth and geneticetiology. Angle Orthod 1996;66:147-52.
    [17]王大为.对上颌尖牙第一双尖牙易位的探讨[J].口腔正畸学杂志.1995:31:49
    [18]Sandham A, Harvie H. Ectopic eruption of the maxillary canineresulting in transposition with adjacent teeth. Tandlaegebladet1985;89:9-11.
    [19]Investigation of tooth transposition in a non-syndromic Turkish anatolian population: Characteristic features and associated dental anomalies evlutCelikoglu 1, OzkanMiloglu 2, Ozkan OzteklMed Oral Patol Oral Cir Bucal.2010 Sep 1;15 (5):e716-20.
    [20]Shapira Y, Kuftinec MM. Maxillary tooth transpositions:characteristic features and accompanying dental anomalies. Am J OrthodDentofacialOrthop.2001; 119:127-34.
    [21]Thilander B, Jakobsson SO. Local factors in impaction ofmaxillary canines.ActaOdontolScand 1968;26:145-68
    [22]Burnett SE, Weets JD. Maxillary canine-first premolar transposition in two Native American skeletal samples from NewMexico. Am J PhysAnthropol 2001; 116:45-50.
    [23]Baccetti T. A controlled study of associated dental anomalies.AngleOrthod 1998;68:267-74.
    [24]Peck L, Peck S, Attia Y. Maxillary canine-first premolar transposition, associated dental anomalies and genetic basis. Angle Orthod 1993;63:99-109.
    [25]Plunkett DJ, Dysart PS, Kardos TB, Herbison GP. A study oftransposed canines in a sample of orthodontic patients. Br JOrthod 1998;25:203-8.
    [26]Shapira Y, Kuftinec MM. Maxillary tooth transpositions:characteristic features and accompanying dental anomalies. Am JOrthodDentofacialOrthop 2001;199:127-34.
    [27]Shapira Y, Kuftinec MM. A unique treatment approach formaxillary canine-lateral incisor transposition. Am J OrthodDentofacialOrthop 2001;119:540-5.
    [28]Maxillary tooth transposition:Correct or accept? Roberto Ciarlantiniaand BirteMelsenbAm J OrthodDentofacialOrthop 2007; 132:385-94
    [29]Shapira Y, Kuftinec MM. Orthodontic management of mandibular canine-incisor transposition. Am J Orthod 1983;83:271-6.
    [30]Ely NJ, SherriffM, CobourneMT. Dental transposition as a disorder of genetic origin.Eur J Orthod 2006;28:145-51.
    [31]Caplan D. Transposition of the maxillary canine and the lateralincisor. Dent Pract Dent Rec 1972;22:307
    [32]Jarvinen S. Mandibular incisor-cuspid transposition:a survey.J Pedod 1982;6:159-63.
    [33]Peck S, Peck L, Kataja M. Mandibular lateral incisor-caninetransposition, concomitant dental anomalies, and genetic control.AngleOrthod 1998;68:455-66
    [34]Shapira Y. Bilateral transposition of mandibular canines andlateral incisors:orthodontic management of a case. Br J Orthod1978;5:207-9.
    [35]Taner T, Uzamis M. Orthodontic management of mandibular lateral incisor-canine transpositions:reports of cases. ASDC J DentChild 1999;66:110-115,185.
    [36]Doruk C, Babacan H, Bic,akc,i A. Correction of a mandibularlateral incisor-canine transposition. Am J OrthodDentofacialOrthop 2006; 129:65-72
    [37]UmweniAA,OjoMA. The frequency of tooth transposition in Nigerians, its possible aetiologic factors and clinical implications.J Dent Assoc S Afr 1997;52:551-4.
    [38]Wikipedia. Nigeria. A population estimate. Available at: http://en.wikipedia.org/wiki/Nigeria#Twins. Accessed October 20,2008
    [39]Mandibular Lateral Incisor-Canine Transposition Associated With Dental Anomalies OZDEN KANSU* AND NIHAL AVCUClinical Anatomy 18:446-448 (2005)
    [40].Assessment of characteristic features and dental anomalies accompanying tooth transposition: A meta-analysis Moschos A. Papadopoulos,a MariaChatzoudi, band Vassilis Karagiannisc Thessaloniki, Greece, and Newcastle upon Tyne, United Kingdom(Am J OrthodDentofacialOrthop 2009;136:308.e1-308.e10)
    [41]Felipe Giacometaand Mo nicaTirre de Souza Arau'job Orthodontic correction of a maxillary canine-first premolar transposition Am J Orthod Dento facial Orthop 2009; 136:115-23
    [42]Mehmet OguzOztoprak, DDS, MSc,a Cigdem Demircan, DDS, bTulinArun, PhD, DDS, MScc Correction of a maxillary canine-first premolar transposition using mini-implant anchorage Korean J Orthod 2011;41(5):371-378
    [43]Congenitally missing maxillary lateral incisors:Canine substitution Bjorn U. Zachrisson, aMarcoRosa, band Sverker Toreskogc Am J OrthodDentofacialOrthop 2011;139:434-45
    [44]Saadettin Kayipmaz AE Senem Tug raSaricaog luAE "mer Said Sezg Unusual teeth transpositions:two case reports in Oral Radiol (2009) 25:81-84
    [45]Mandibular Lateral Incisor-Canine Transposition Associated With Dental Anomalies OZDEN KANSU* AND NIHAL AVCUClinical Anatomy 18:446-448 (2005)
    [46]J. E. R. GRANT 1, N. ABU MEZIER2 & A. T. DIBIASE2 Mandibular first and second molar tooth transposition:a case report International Journal of Paediatric Dentistry 2006; 16: 227-229
    [47]Transposition of a maxillary canine and a lateral incisor and use of cone-beam computed tomography for treatment planning Jason Pair Valencia, Calif (Am J Orthod Dentofacial Orthop 2011;139:834-44
    [48]Bocchieri A, Braga G Correction of a bilateral maxillary canine-first premolar transposition in the late mixed dentition. Am JOrthodDentofacialOrthop 2002; 121:120-8.
    [49]Mattos BSC, Carvalho JCM, Matusita M, Alves APPP. Tooth transposition:a literature review and a clinical case. Braz J OralSci 2006;5:953-7.
    [50].Peck S, Peck L, KatajaM. Concomitant occurrence of canine malposition and tooth agenesis: evidenre of orofacial genetic fields.Am J OrthodDentofacialOrthop 2002;122:657-60.
    [51]Sato K, Yokozeki M, Takagi T,Moriyama K. An orthodontic caseof transposition of the upper right canine and first premolar. AngleOrthod 2002;72:275-8.
    [52].Alignment of transposed mandibular lateral incisor and canine using removable appliances E Canoglu,* I Kocadereli, MD Turgut*Australian Dental Journal 2009; 54:266-270
    [53]Maxillary Canine-First Premolar Transposition in the Permanent Dentition HasanBabacana; BanuKilic,b; Altug "Bic,akc.IAngle Orthodontist, Vol 78, No 5,2008
    [54]Maxillary Canine—First Premolar Transposition Restoring Normal Tooth Order With Segmented Mechanics LeopoldinoCapelozzaFilhoa; Mauricio de Almeida Cardosob; Tien Li Anc;Francisco Antonio BertozdAngle Orthodontist, Vol 77, No 1,2007
    [55]Shapira Y, Kuftinec MM. Intrabony migration of impacted teeth.Angle Orthod. 2003;73:738-43.
    [56].Turkkahraman H, Sayin MO, Yilmaz HH. Maxillary canine transposition to incisor site:a rare condition. Angle Orthod.2005;75:284-7
    [57]Kuroda S, Kuroda Y. Nonextraction treatment of upper caninepremolar transposition in an adult patient. Angle Orthod 2005;75:472-7.
    [58]Nestel E, Walsh JS. Substitution of a transposed premolarfor a congenitally absent lateral incisor.Am J OrthodDentofacialOrthop,1988;93:395-399.
    [59]Demir A, Basciftci FA, Gelgor IE, Karaman AI. Maxillary canine transposition.J ClinOrthod. 2002;36:35-37.
    [60]Levander E, Malmgren O. Evaluation of the risk of root resorption during orthodontic treatment:a study of upper incisors. Eur J Orthod.1988;10:30-38.
    [61]Linge B, Linge L. Patient characteristics and treatment variables associated with apical root resorption during orthodontic treatment. Am J OrthodDentofacialOrthop.1991;99:35-43.
    [62]Maia FA, Maia NG. Unusual orthodontic correction of bilateral maxillary canine-first premolar transposition.Angle Orthod.2005;75:262-272.
    [63]Remington DN, Joondeph DR,_Artun J, Riedel RA, Chapko MK.Long-term evaluation of root resorption occurring during orthodontic movement. A(?) Orthod Dentofacial Orthop 1989;96:43-6.
    [64]Copeland S, Green LJ. Root resorption in maxillary central incisors following active orthodontic treatment. Am J Orthod 1986;89:51-5.
    [65]Falahat B, Ericson S, D'Amico RM, Bjerklin K. Incisor root resorption due to ectopic maxillary canines. Angle Orthod 2007;78:778-85.
    [66]Jonsson A, Malmgren O, Levander E. Long-term follow-up of tooth mobility in maxillary incisors with orthodontically induced apical root resorption. Eur J Orthod 2007;29:482-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700