空芯光子带隙光纤结构设计及色散特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空芯光子带隙光纤因为带隙的存在,提供一种全新的导光模式,在光通信和光器件等领域具有广阔的应用前景。同时光子带隙光纤具有色散可控特性,耦合特性以及非线性等传统光纤不具备的特性,特别是光纤的色散可控特性成为人们研究的重要内容之一。论文针对空芯光子带隙光纤的结构设计及色散特性进行分析,研究光纤结构参数对色散特性的影响,设计的混合结构空芯光子带隙光纤,不仅具有较低的色散值,而且具有较高的纤芯传输功率,为空芯光子带隙光纤的设计增添新的内容。
     首先,介绍光子晶体光纤的发展背景,主要介绍光子晶体的应用及分类,然后介绍光子晶体光纤的导光机理,并对全内反射型和光子带隙型光纤的特性进行分析。通过减小包层第一层气孔的大小,设计方形空芯光子带隙光纤,并对其色散特性、有效模面积特性、纤芯传输功率特性进行分析,结果表明方形空芯光子带隙光纤具有较低的色散特性,为设计混合结构空芯光子带隙光纤提供理论依据和参考。
     其次,分析六边形气孔空芯光子带隙光纤的结构参数对色散的影响,随着孔间距与曲化直径的增加,光纤的零色散波长向长波长方向移动,但是当包层气孔直径增加时,光纤的零色散波长却向短波长方向移动,为空芯光子带隙光纤色散设计提供理论参考。
     最后设计混合结构空芯光子带隙光纤,并取得较低的色散值及较低好的纤芯传输功率特性。通过与方形空芯光子带隙光纤、圆形气孔空芯光子带隙光纤和六边形气孔空芯光子带隙光纤色散特性对比,进一步证实混合结构空芯光子带隙光纤优异的传输特性。
     混合结构空芯光子带隙光纤具有较低的色散和较高的纤芯传输功率,在孤子传输,波分复用和脉冲压缩等方面具有潜在的应用。
Hollow-core photonic bandgap fiber (HC-PBGF) provides a new mechanism for light guidance due to its photonic bandgap, and the hollow-core photonic bandgap fiber is also widely used in optical communications and optical devices. Meanwhile photonic bandgap fiber possesses characteristics that traditional optical fiber does not have such as dispersion controllable ,coupling and nonlinear et ,especially the dispersion controllable has become one of the important areas in study. Structure design and dispersion are analyzed in this paper , and study the influences for dispersion with variations of fiber’s structural parameters. We design a mixed structure hollow-core photonic bandgap fiber, and this fiber not only has low dispersion but also has high power transmission in core. And it also provides new contents for the design of hollow-core photonic bandgap fiber.
     Firstly, we introduce the background of photonic crystal fiber, mainly focuse on the applications and classifications of photonic crystal. Then we introduce the mechanism of guidance for photonic crystal fiber, and analyze the characteristics of the total internal reflection photonic crystal fiber and photonic bandgap fiber. We design a square-lattice hollow-core photonic bandgap fiber by reducing air-holes of the first ring , and analyze the dispersion、effective mode area、power in core of the fiber. The results say that the square-lattice hollow-core photonic bandgap fiber can realize low dispersion , and provides theoretical basis and reference for designing of hollow-core photonic bandgap fiber.
     Then, we analyze the influences of parameter variations for dispersion of hollow-core photonic bandgap fiber with hexagonal air-holes. When the hole-space and diameter with curved turn increase ,the zero dispersion point moves to long wavelength .But as the diameter of holes increase ,the zero dispersion point moves to short wavelength ,and this can provide theoretical reference for designing of hollow-core photonic bandgap fibers.
     At last we design a mixed structure hollow-core photonic bandgap fiber,and obtain low dispersion and good power transmission in core. Then we contrast the mixed structure hollow-core photonic bandgap fiber with square-lattice hollow-core photonic bandgap fiber ,roundness air-holes hollow-core photonic bandgap fiber and hexagonal air-holes hollow-core photonic bandgap fiber, and further confirms the excellent transmission of mixed structure .
     The mixed structure HC-PBGF has low dispersion and high power transmission in core , and it has potential applications in soliton transmission , pulse compression and WDM.
引文
[1] J.D.Joannopoulos,R.D.Meade,J.N.Winn,Photonic Crystal:Molding the flowing of light[M].Princeton university Press,1995.
    [2] Philip.St.J.Russell,Photonic-crystal fibers[J].Journal of Lightwave Technology ,Vol.24,No.12,December 2006.
    [3]宋学鹏,黄永清,任晓敏,光子带隙型光子晶体光纤[J].光通信研究,2005 (4):57-60.
    [4] Bjarklev, J. Broeng, Photonic Crystal Fibers [M], Kluwer Academic Pulblishers, 2003.
    [5]肖清武,二维光子晶体的带隙结构和缺陷态研究[D].中南大学硕士论文,2007.
    [6] R.Amezcua-correa,N.G.R.Broderick,M.N.Petrovich,F.Poletti,Optimizing the usable bandwidthand loss through core design in realistic hollow-core photonic bandgap fibers[J],Optics Express 7974,Vol.14,No.17,21 August 2006.
    [7] Kunimasa Saitoh ,Nikolaos John Florous,Tadashi Murao and Masaniba,Realistic design of large hollow-core photonic band-gap fibers with suppressed higher order modes and surface modes[J],JOURNAL OF LIGHTWAVE TECHNOLOGY,VOL.25,NO.9,SEPTEMBER 2007.
    [8]戴娟,光子带隙型光子晶体光纤及其应用的研究[D].北京邮电大学硕士论文,2009 .
    [9] Kunimasa Saitoh and Masanori Koshiba,Leakage loss and group velocity dispersion in air-core photonic bandgap fibers [J],OPTICS EXPRESS 3100, VOL.11,NO.23,17 NOVEMBER 2003.
    [10] P.J.Roberts,D.P.Williams,H.Sabert et.Design of low-loss and highly birefringent hollow-core photonic crystal fiber[J],OPTICS EXPRESS 7329, VOL.14,NO.16,7 AUGUST 2006.
    [11] T.G..Euser,G..Whyte,M.Scharrer ,J.S.Y.Chen,A.Abdovand,J.Nold,C.F.Kaminski and P.St.J.russell.Dynamic control of higher-order modes in hollow-core photonic crystal fibers[J], OPTICS EXPRESS 17972, VOL.16,NO.22, 27 OCTOBER 2008.
    [12] M.N.Petrovich,F.Poletti,A.van Brankel and D.J.Richadson,Robustly single mode hollow core photonic bandgap fiber [J].OPTICS EXPRESS 4337,VOL.16,NO.6,17 MARCH 2008.
    [13]张虎,王秋国,杨伯君,于丽,基于正方形格子的空芯光子带隙光纤的模式特性和泄露耗[J],物理学报,2008,57(9):5722-5727.
    [14] Zheltikov, Special issue on supercontinuum generation [J].Applied Physics B, vol. 77, pp. 143-376, 2003.
    [15]P.J.Roberts,F.Couny,H.Sabert,B.J.Mangan,D.P.Williams,L.Farr,M.W.Mason,T.A.Birks,J.C.Knight and P.St.J.Russel,Ultimate low loss of hollow-core photonic crystal fibers[J],Optics Express 236,Vol.13,No.1,10 January 2005.
    [16]杨四刚,光子晶体光纤色散与非线性特性的研究[D].清华大学博士论文,2007.
    [17] Matthew G.Welch,Kevin Cook,Rodrigo Amezcua Correa,Frederic,William J.Wadsworth,Andrey V.Gorbach,Dmitry V.Skryabin,and Jonathan C.Knight,Solitons in Hollow Core Photonic Crystal Fiber: Engineering Nonlinearity and Compressing Pulses[J].JOURNAL OF LIGHTWAVE TECHNOLOGY,VOL .27,NO.11,pp.1644-1649,1 JUNE 2009.
    [18] D.Cassagne,C.Jouanin,and D.Bertho,Hexagonal photonic-band-gap structure [J],Physical Review B,Vol.53,pp.7134-7141,1996
    [19] Knight.J.C,Arriaga.J,Birks.T.A,Anomalous dispersion in photonic crystal fiber[J],IEEE Photonics Technology Lett,pp.807-809,2000.
    [20] R.F.Cregan,B.J.Mangan,J.C.Knight,T.A.Birks,P.St.J.Russel,and D.C.Allan,Single-mode photonic band gap guidance of light in air[J],Science 285,1537-1539,1999.
    [21] J. D. Shephard, W. N. MacPherson, R. R.J. Maier, J. D.C.Jones, M. Mohebbi, A. K. George, P. J. Roberts, and J.C. Knight, Single-mode mid-IR guidance in a hollow-core photonic crystal fiber[J].Opt. Express 13,pp. 7139–7144,2005.
    [22] Kiarash Zamani Aghaie,Vinayak Dangui,Michel J.F.Digonnet,Shanhui Fan, and Gordon S.Kino, Classification of the Core Modes of Hollow-core Photonic-Bandgap Fibers[J].IEEE JOURNAL OF QUANTUM ELECTRONICS,vol.45,no.9,pp.1195-1197,2009.
    [23] Philip S.Light , Francois Couny,Ying Ying Wang, Natalie V.Wheeler,P.John Roberts and Fetah Benabid,Double photonic bandgap hollow-core photonic crystal fiber[J].Optics Express ,vol.17,pp.16240-16242,2009.
    [24] Kyunghwan Oh, S.Choi,Yongmin Jung ,and Jhang W.Lee,Novel Hollow Optical Fibers and Their Applications in Photonic Devices for Optical Communications[J].Joural of Lightwave Technology ,vol 23,no.2,pp.524-526,2005.
    [25] P.J.Roberts ,D.P.Williams ,B.J.Mangan,H.Sabert,F.Couny,W.J.Wadsworth,T.A.Birks,J.C.Kni-ght and P.St.J.Russell,Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround[J],Optics Express,vol.13,no.20,pp.8280-8281,2005.
    [26] Vinayak Dangui,Michel.J.F.Digonnet,and Gordon S.Kino,Modeling of the Propagation Loss and Backscattering in Air-Core Photonic-Bandgap Fibers[J].Journal of Lightwave Technology ,vol.27,no.17,pp.3783-3785,2009.
    [27] T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, Holey optical fibers: An efficient modal model[J],J. Lightw. Technol., vol. 17, no. 6, pp. 1095–1102, Jun. 1999.
    [28] T. A. Birks, J. C. Knight, and P. S. J. Russell, Endlessly single-mode photonic crystal fiber[J], Opt. Lett, vol. 22, pp. 962–963, 1997.
    [29] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P.J. Roberts, and D. C.Allan, Single-mode photonic band gap guidance of light in air[J],Science, vol. 285, pp. 1538–1539, 1999.
    [30] J. Broeng, S. E. Barkou, T. Sondergaard, and A. Bjaklev, Analysis of air-guiding photonic bandgap fibers[J], Opt. Lett., vol. 25, pp. 96–97,2000.
    [31] D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, Group-velocity dispersion in photonic crystal fibers[J],Opt. Lett, vol. 23, pp. 1663–1664,1998.
    [32] M. Yan and P. Shum, Air guiding with honeycomb photonic bandgap fiber [J].IEEE Photon. Technol. Lett, vol. 17, no. 1, pp. 64–65, Jan. 2005.
    [33] Tadashi Murao,Kunimasa Saitoh,and Masanori Koshiba ,Structural optimization of air-guiding photonic bandgap fibers for realizing ultimate low loss waveguides[J].JOURNAL OF LIGHTWAVE TECHNOLOGY,VOL.26,NO.12,JUNE 15,2008
    [34] R.Amezcua-correa,F.Gerome,S.G.Leon-Saval,N.G.R.Broderick,T.A.Birks and J.C.Knight,Contr- ol of surface modes in low loss hollow-core photonic bandgap fibers[J],Optics Express 1142,Vol.16,No.2,21 January 2008.
    [35] J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. Sandro, Photonic crystals as optical fibers-physics and applications[J].Optical Materials, vol.11, pp.143–148, 1999.
    [36]赵兴涛,光子晶体光纤色散特性的理论研究[D].燕山大学硕士论文,2007.
    [37] F. Benabid, Hollow-core photonic bandgap fibre: New light guidance for new science and technology[J],Philos. Trans. R. Soc. A, vol. 364, pp.3440–3458, Dec. 2006.
    [38]侯金钗,光子晶体光纤的带隙特性研究[D].燕山大学硕士论文,2009.
    [39]李立肖,光子晶体光纤的双零色散和非线性特性的理论和实验研究[D].燕山大学硕士学位论文,2010.
    [40]张虎,空芯光子带隙光纤的结构设计和特性研究[D].北京邮电大学博士论文,2009
    [41] Ferrando,E.Silvestre,J.J.Miret,P.Andres,and M.V.Andres,Vector description of higher-order modes in photonic crystal fibers[J],J.Opt.Soc.Amer.A,Vol.17,pp.1335-1338,2000.
    [42] G. P. Agrawal, Nonlinear Fiber Optics (2nd Edition)[M]. San Diego: Academic Press, 1995.
    [43] J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers[J],Opt. Express, vol. 12, no. 4, pp. 718–722, Feb. 2004.
    [44]张方迪,新型光子晶体光纤的结构设计与关键特性分析[D].北京邮电大学博士学位论文,2007.
    [45]魏红彦,光子晶体光纤带隙特性的研究[D].燕山大学硕士学位论文,2007.
    [46] T. Murao, K. Saitoh, and M. Koshiba, Realization of single-moded broadband air-guiding photonic bandgap fibers[J], IEEE Photon. Technol. Lett, vol.18, no.15, pp. 1668–1678, 2006.
    [47]孙家兆,二维光子晶体禁带影响因素的研究[D].东华大学硕士论文,2009.
    [48]廖兴展,二维光子晶体带隙结构及色散特性研究[D].南昌大学硕士论文,2007.
    [49]孙青,基于空芯光子晶体光纤的气体受激拉曼散射效应[D].中国科学技术大学博士学位论文,2009.
    [50] K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms[J],Opt. Express, vol. 14, no. 16, pp. 7345–7350, Aug. 2006.
    [51] K. Saitoh, N. Mortensen, and M. Koshiba, Air-core photonic bandgap fibers: The impact of surface modes[J], Opt. Express, vol. 12, no. 3, pp. 395–398, Feb. 2004.
    [52] N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, Resonances in microstructured optical waveguides[J],Opt. Express, vol.11, no. 10, pp. 1248–1250, May 2003.
    [53] J. M. Fini, Design of solid and microstructure fibers for suppression of higher order modes[J],Opt. Express, vol.13, no.9, pp. 3478–3482, May 2005.
    [54]栗岩锋,光子晶体光纤色散特性的理论研究[D].天津大学博士学位论文,2004.
    [55] S. Guo, F. Wu, S. Albin, etl.Loss and Dispersion Analysis of Microstructured Fibers by Finite-Difference Method[J],Opt. Exp. vol.12,no.15, pp:3341-33, 2004 .
    [56] J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Photonic crystal fibers: A new class of optical waveguides[J], Optical Fiber Technology, vol.5, pp.309–321, 1999.
    [57] Koshiba M, Tsuji Y, Hikari M, Time-domain beam propagation method and its application to photonic crystal circuits[J], J. Lightwave. Technol, 2000, 18(1):102-109.
    [58] M. Koshiba and K. Saithoh, Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures [J], Appl. Opt, vol. 42, pp. 6267-6275, 2003.
    [59] K.Ieda,K.Kurokawa,K.Tajima,and K.Nakajima,Visibel to infrared high-speed WDM transmission over PCF[J],EIEC Electron,Express,Vol.4,pp.375-379,2007.
    [60]黎永,光子晶体光纤及结构对其性能影响的数值模拟[D].新疆大学硕士学位论文,2009.
    [61] G. Humbert, J. Knight, G. Bouwmans, P. Russell, D.Williams, P. Roberts, and B. Mangan, Hollow core photonic crystal fibers for beam delivery[D]. Opt. Express, vol.12, no.8, pp. 1478–1483, Apr. 2004.
    [62] D. G. Ouzounov et al, Generation of megawatt optical solitons in hollow-core photonic bandgap fibers [J], Science, vol.301, pp.1702–1703, Sep. 2003.
    [63] J. Laegsgaard and P. J. Roberts, Dispersive pulse compression in hollow-core photonic bandgap fibers[J],Opt. Exp, vol.16, pp.9628–9638, Jun. 2008.
    [64] J. C. Knight and P. St. J. Russell, New Ways to Guide Light[J], Science, vol. 296, pp. 276-277,2002.
    [65] S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, Complex FEM modal solver of optical waveguides with PML boundary conditions[J],Opt Quantum Electron, vol.33, pp.359-366, 2001.
    [66] M. Qiu, Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method [J], Microwave and Optical Technology Letters, 2001, 30(5):327-330.
    [67] Y. Li, C. Wang, M. Hu, B. Liu, and L. Chai, Bandgap properties of modified square photonic crystal fibers [J], Physica E, vol.39, pp. 26–28, Jul. 2007.
    [68] M. Yan and P. Shum, Improved air-silica photonic crystal with a triangular air hole- arrangement for hollow-core photonic bandgap fiber design [J],Opt. Lett, vol.30, pp. 1921–1922, Aug. 2005.
    [69] Cucinotta, S. Selleri, L. Vincetti et al, Holey Fiber Analysis Through the Finite-Element Method[J], IEEE Photonic Technol Lett, 2002, 14(11): 1530-1532.
    [70] R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation[J],Opt. Exp, vol.15, pp. 17578–17585, Dec. 2007.
    [71]王俊泉,二维光子晶体传输特性的研究[D].山东大学博士学位论文,2010.
    [72] F. Couny, F. Benabid, and P. S. Light, Large-pitch kagome-structured hollow-core photonic crystal fiber[J].Opt. Lett, vol.31, no.24, pp. 3574– 3575, Nov. 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700