定量构效关系及高效毛细管电泳分离测定方法的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定量结构——性质关系(QSPR)主要研究化合物的结构与其各种物理、化学、生物活性等性质之间的定量函数关系模型,借以指导新化合物的合成及预测未知化合物的各种性质,是计算机在化学中应用的一个特别活跃的领域。近年来,QSPR已经广泛地应用于化学、生物、环境、工程技术等各个领域,并与各种实验设计结合用于色谱分离。本文用QSPR建立模型预测了化合物的光学、电化学及生物性质并将其与响应面实验设计结合应用于毛细管电泳中优化了中药中活性组分的分离条件,结果表明实验设计和QSPR方法与毛细管电泳相结合在毛细管电泳分离方面是一个非常有力的工具。
     本论文共分六个部分,主要综述了QSPR的研究现状、原理、研究方法、建模方法应用;实验设计与QSPR联合用于毛细管电泳分离测定中药及其制剂中的两种活性组分;启发式方法(HM)和径向基函数神经网络(RBFNN)用于预测化合物的电化学性质、光学性质、对环境的毒性以及生物活性。
     第一章综述了QSPR的研究现状、研究方法、建模方法及其与实验设计结合在分析化学中的应用。
     论文第二章将响应面实验设计和毛细管区带电泳结合,建立了一种分离测定厚朴酚、和厚朴酚的简单快速的方法。优化了实验条件并成功用于厚朴和藿香正气水中厚朴酚、和厚朴酚的分析。另外,基于由Box-Behnken设计给出的实验条件及分离度与后出峰组分的迁移时间比(Rs/t),用径向基函数神经网络建立了“3-7-1”结构的人工神经网络非线性模型,并对最佳分离条件下的实验结果进行了预测,预测结果与数学软件的计算值及实验值都一致,相对偏差<5%。。
     在第三章中,基于所建立的线性和非线性模型,研究了染料中间体9,10-蒽醌的半波电位(E1/2)和其结构之间的定量构效关系。仅由9,10-蒽醌的分子结构计算的描述符就可得到其E1/2。用启发式方法选择最合适的分子描述符并用于线性QSPR模型的建立,用径向基函数神经网络建立非线性模型,并对影响E1/2的结构因素进行了探讨。
     第四章中,基于50个香豆素的结构及其紫外最大吸收波长(λmax),以启发式方法和径向基函数神经网络建立了线性及非线性QSPR模型。统计结果表明两模型均具有很好的稳定性及预测能力。通过对模型中出现的描述符的讨论,有助于理解影响香豆素类化合物紫外最大吸收波长的重要结构因素。
     在第五章中,将第四章中的建模方法用于光动力治疗癌症中光敏剂的可见光吸收波长(λ)及其结构关系模型的建立。获得了142个光敏剂的定量结构-可见光吸收波长线性关系模型。交互检验及对外部测试集的预测结果表明模型具有令人满意的稳定性及预测能力。对于新光敏剂的合成具有指导意义。
     第六章,研究了48个苯胺化合物的梨形四膜虫毒性(-logIGC50)与其结构之间的关系。分别由启发式方法和径向基函数神经网络建立了线性和非线性的定量结构-活性关系(QSAR)模型。并进行交互检验用于评价模型,结果表明两种模型都具有好的稳定性和预测能力。
The study of QSPR is to construct models between the structure of compounds and their physical, chemical properties and biological activity so as to develop new compounds and predict the properties of the compounds. It is a very active field in the application of computer in chemistry. In recent years, QSPR has been widely used in many fields of chemistry, biology, environment and technology, and combine with various experimental designs to the separation of many components. In this paper, QSPR was used to develop models to predict some signigicative properties of chemicals. QSPR and response surface experimental design were applied to capillary electrophoresis to optimize the separation conditions of active components in Chinese medicines. The results indicated that the combination of experimental design and QSPR was found to be a powerful tool in predicting separation conditions in CE.
     There are six parts in this dissertation, including a review on the background, theory, research method, modeling method and applications of quantitative structure property relationship (QSPR); the application of response surface experimental design and QSPR to the separation and determination of two active components of Chinese traditional medicine and preparations by capillary electrophoresis (CE); QSPR study on electrochemistry, optical properties, toxicity to environmental and biological activity of organic compounds by heuristic method (HM) and radial basis function neural network (RBFNN).
     In the first chapter, we reviews the background, research method, modeling method and the applications in analytical chemistry of QSPR .
     In chapter 2, a simple and rapid method for the separation and determination of honokiol and magnolol in Magnolia officinalis and its medicinal preparation is developed by response surface methodology and capillary zone electrophoresis. The condition was optimized and successfully applied to the analysis of honokiol and magnolol in Magnolia officinalis and Huoxiang Zhengqi Liquid. In addition, an artificial neural network with“3-7-1”structure based on the ratio of peak resolution to the migration time of the later component (Rs/t) given by Box-Behnken design is also reported and the predicted results are in good agreement with the values given by the mathematic software and the experimental results, RSD<5%.
     In chapter 3, Quantitative structure-property relationship (QSPR) models correlating half-wave potentials (E1/2) of dye intermediate 9, 10-anthraquinones and their structures were developed based on linear and non-linear modeling methods. Descriptors calculated from the molecular structures alone were used to represent the E1/2 of 9, 10-anthraquinones. Heuristic method (HM) was used to select the most appropriate molecular descriptors and a linear QSPR model was developed. Using the selected descriptors, radial basis function neural networks (RBFNN) was used in the non-linear model development. And the structural factors which have effect on E1/2 were discussed.
     In chapter 4, in an attempt to develop predictive tools for the determination of the UV maximum absorption wavelength (λmax), QSPR models forλmax of 50 coumarins were developed based on their structures alone. A six-descriptor linear correlation by heuristic method (HM) and a non-linear model using radial basis function neural network (RBFNN) approach were reported. Both of the models indicated satisfactory stability and predictive ability. The descriptors appearing in these models are discussed. This QSPR approach can contribute to a better understanding of structural factors of the organic compounds responsible for the analysis of maximum absorption wavelength.
     In chapter 5, the modeling methods used in chapter 4 was applied to develop quantitative structure-visible light absorption wavelength (λ) relationship model for photosensitizers in photodynamic therapy for cancer. A linear quantitative structure-visible light absorption wavelength (λ) relationship model of 142 photosensitizers was obtained. The results of cross-validation algorithm and external validation set indicated that the model has a satisfactory statistical stability and predictivity. It could be a potential way for instructing synthesis of this kind of new photosensitizers.
     In chapter 6, a quantitative structure-activity relationship (QSAR) was developed by the Heuristic method (HM) and Radial basis function neural networks (RBFNN) to study the tetrahymena pyriformis toxicity (explained as–logIGC50) of 48 aniline compounds. Cross-validation was used to evaluate the linear and non-linear models. The results show that both the two models have good stability and predictability for tetrahymena pyriformis toxicity of aniline derivatives.
引文
[1]胡之德,刘焕香.定量结构-性质关系在分析化学中的应用进展[J].分析测试技术与仪器, 2005, 11(4): 243-249.
    [2] Katrizky A R,Kuanar M, Slavov S,Hall C D. Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chemical Reviews[J]. 2010, 110(10): 5715-5789.
    [3] Wiener H. Structural Determination of Paraffin Boiling Points[J]. J. Am. Chem. Soc. 1947, 69: 17-20.
    [4] Wiener H. Correlation of Heats of Isomerization and Differences in Heats of Vaporization of Isomers, Among the Paraffin Hydrocarbons[J]. J. Am. Chem. Soc. 1947, 69: 2636-2638.
    [5]Platt J R. Influence of Neighbor Bonds on Additive BondProperties in Paraffins[J]. J.Chem. Phys. 1947, 15: 419-420.
    [6] Huitao Liu, YingyingWen, Feng Luan, Yuan Gao, Xiuyong Li, Quantitative structure-λmax relationship study on flavones by heuristic method and radial basis function neural network, Analytica Chimica Acta, 2009, 649(1): 52–61.
    [7]许禄,胡昌玉.应用化学图论[M].北京:科学出版社, 2000.
    [8]卢纹岱. SPSS for Windows统计分析[M].北京:电子工业出版社, 2002.
    [9]许禄.化学计量学[M].北京:科学出版社,1995:277.
    [10]周家驹,王亭.药物设计中的分子模型化方法[M].北京:科学出版社, 2001.
    [11] Clark D E. Evolutionary Algorithms in Molecular Design[M]. Weinheim: Wiley-VCH, 2000.
    [12] Devillers J. Genetic Algorithms in Molecular Modeling[M]. London: Academic Press , 1996.
    [13]李华昌,谢淑兰,易忠胜.遗传算法的原理与应用[J].矿冶, 2005, 14(1): 87-90.
    [14] Xia B B, Ma W P, Zheng B, Zhang X Y, Fan B T. Quantitative structure-activity relationship studies of a series of non-benzodiazepine structural ligands binding to benzodiazepine receptor[J]. Eruopean journal of medicinal chemistry. 2008, 43: 1489-1498.
    [15] Jurs, P C, Bakken G A, McClelland H E. Computational Methods for the Analysis of Chemical Sensor Array Data from Volatile Analytes[J]. Chem. Rev. 2000, 100: 2649-2678.
    [16] Burns J A, Whitesides G. Feed-forward neural networks in chemistry: mathematical systems for classification and pattern recognition[J]. Chem. Rev. 1993, 93: 2583-2601.
    [17] Zupan J, Gasteiger J. Neural networks for chemists: an introduction[M]. VCH-Verlag: Weinheim, 1993, pp: 213-228.
    [18] Cronin M T D, Dearden J C, Duffy J C, Edwards R, Manga N, Worth A P, Worgan A D P. The importance of hydrophobicity and electrophilicity descriptors in mechanistically-based QSARs for toxicological endpoints[J]. SAR QSAR Environ. Res. 2002, 13(1): 167-176.
    [19]马卫平.线性和非线性方法在QSAR/QSPR研究中的应用[M].兰州:兰州大学, 2007, 33-35.
    [20]张文军,张运掏. QSAR/QSPR模型验证方式与预测能力的关系研究[J].计算机与应用化学, 2010, 27(2): 201-204.
    [21]李小林,荆国华,周作明,卓静.多环芳烃沸点和辛醇/水分配系数的QSPR研究[J].计算机与应用化学, 2010, 27(4): 528-532.
    [22]何琴,黄保军,张立科. BP网络预测胺类衍生物常压沸点[J].广州化工, 2010, 38(8): 250-251.
    [23] Gharagheizi F, Mehrpooya M. Prediction of some important properties of sulfur compounds using quantitative structure-properties relationships[J]. Molecular diversity, 2008, 12(3/4): 143-155.
    [24] Toropov A, Nesmerak K, Raska I, Waisser K, Palat K.QSPR modeling of the half-wave potentials of benzoxazines by optimal descriptors calculated with the SMILES[J].Computational biology and chemistry. 2006, 30: 434-437.
    [25] Du H Y, Wang J, Zhang X J, Yao X J, Hu Z D. Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression[J]. Chemometrics and Intelligent Laboratory Systems. 2008, 92: 92–99.
    [26] Esteki M, Rezayat M, Ghaziaskar H S. Application of QSPR for prediction of percent conversion of esteriflcation reactions in supercritical carbon dioxide using least squares support vector regression[J]. The journal of supercritical fluids. 2010, 54(2): 222-230.
    [27]谢昆,乔澎,付川,程聪. QSPR方法预测乙腈溶剂中有机化合物的酸性解离常数[J].中国科学技术大学学报, 2010, 40(10): 1004-1010.
    [28]杜雨静,范英芳.人工神经网络用于三苯基丙烯腈衍生物的定量结构-活性关系模型[J].化工进展, 2010, 29(1): 25-28.
    [29]王进欣,杨燕,马俊海,张磊,郭青龙,尤启冬.藤黄酸氧化类似物的合成及抗肿瘤活性的二维定量构效关系[J].高等学校化学学报, 2010, 31(6): 1172-1178.
    [30]王雷,付彩霞.三唑硫醚类药物与抑制大鼠反应性关节炎活性的构效关系研究[J].滨州医学院学报, 2010, 33(6): 409-411.
    [31] Luan F, Ma W P, Zhang X Y, Zhang H X, Liu M C, Hu Z D, Fan BT. Quantitative structure-activity relationship models for prediction of sensory irritants (logRD50) of volatile organic chemicals[J]. Chemospher, 2006, 63:1142-1153.
    [32]金德辉,李惠民,文琛,吴琼.苯酚类化合物对运河水中混合菌急性毒性以及QSAR研究[J].江西化工, 2010, 3: 79-83.
    [33]胡俊杰,闾春林,周红,张亚珍,菅小东.卤代脂肪烃鱼类急性毒性QSAR模型研究[J].环境化学, 2010, 29(1): 48-52.
    [34]崔毅,蒋军成,潘勇,曹洪印,王睿.羧酸及其衍生物急性毒性的QSAR研究[J].环境化学与技术, 2010, 33(4): 29-34.
    [35] Liu H T, Wang K T, Xu H P, Chen X G, Hu Z D. Application of experimental design and artificial neural networks to separation and determination of active components in traditional chinese medicinal preparations by capillary electrophoresis, Chromatographia 2002, 55(9-10): 579-583.
    [36] Liu H T, Wen Y Y, Luan F, Gao Y. Application of experimental design and radial basis function neural network to the separation and determination of active components in traditional Chinese medicines by capillaryelectrophoresis[J]. Anal. Chim. Acta, 2009, 638 (1), 88-93.
    [37] Wen YY, H T Liu, Tian L H, Han P, Luan F, Li X Y. Detemination of alkaloids in pharmaceutical preparations containing the Kushen by capillary electrophoresis with the application of experimental design and quantitative structure–property relationships approach, Acta Chromatogr., 2010, 22 (3): 445-457.
    [1] Zhai H F, Nakade K., Mitsumoto Y. Honokiol and magnolol induce Ca2+ mobilization in rat cortical neurons and human neuroblastoma SH-SY5Y cells[J]. Eur. J. Pharmacol. 2003, 474: 199-204.
    [2] Chen C L, Chang P L, Lee S S, Peng F C., Kuo C H., Chan H T. Analysis of magnolol and honokiol in biological fluids by capillary zone electrophoresis[J]. J. Chromatogr. A 2007, 1142: 240-244.
    [3] Lin Y R., Chen H H., Ko C H., Chan M H.. Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage[J]. Eur. J. Pharmacol. 2006, 537: 64-69.
    [4] Fong W F, Tse A.K.W, Poon K H., Wang C.. Magnolol and honokiol enhance HL-60 human leukemia cell differentiation induced by 1, 25-dihydroxyvitamin D3 and retinoic acid[J]. J. Biochem. Cell Biol. 37: 427-441 (2005).
    [5] Chen S C, Chang Y L., Wang D L, Cheng J J. Magnolol suppresses IL-6-induced ICAM-1 expression via the inhibition of STAT3 activation in endothelial cells[J]. Br. J. Pharmacol. 2006, 148: 226-232.
    [6] Wu Y T, Lin L C, Tsai.T H. Simultaneous determination of honokiol and magnolol in Magnolia officinalis by liquid chromatography with tandem mass spectrometric detection[J]. Biomed. Chromatogr. 2006, 20: 1076-1081.
    [7] Lee S, Khoo C, Halstead C W, Huynh T, A. Bensoussan. Liquid chromatographic determination of honokiol and magnolol in Hou Po (Magnolia officinalis) as the raw herb and dried aqueous extract[J]. J. AOAC Int. 2007: 90: 1210-1218.
    [8] Wu X N, Chen X G, Hu Z. D. High-performance liquid chromatography method for simultaneous determination of honokiol and magnolol in rat plasma[J]. Talanta 2003, 59: 115-121.
    [9] Zhang L J, Wang X.. Hydrophobic ionic liquid-based ultrasound-assisted extraction of magnolol and honokiol from cortex Magnoliae officinalis[J]. J. Sep. Sci. 2010, 33: 2035-2038.
    [10] Jorgenson J W, Lukase K D. Zone electrophoresis in open-tubular glass-capillaries[J]. Anal. Chem. 1981, 53: 1298-1302..
    [11] Zhang Z P, Hu Z D, Yang G L. Separation and determination of magnolol and honokiol in Magnolia officinalis bark by capillary zone electrophoresis[J]. Microchim. Acta 1997, 127: 253-258.
    [12] Tian Y L, Chen G H.. Determination of magnolol and honokiol by non-aqueous capillary electrophoresis[J]. Chem. Res. Chin. Univ. 2006, 22: 335-338.
    [13] Liu L H., Wu X N, Fan L Y, Chen X G., Hu Z D. Separation and determination of honokiol and magnolol in herbal medicines by flow injection-capillary electrophoresis[J]. Anal. Bioanal. Chem. 2006, 384: 1533-1539.
    [14] Yao X, Xu X J, Yang P Y, Chen G. Carbon nanotube/poly(methyl methacrylate) composite electrode for capillary electrophoretic measurement of honokiol and magnolol in Cortex Magnoliae Officinalis[J]. Electrophoresis 2006, 27: 3233-3242.
    [15] Chen G, Xu X J, Zhu Y Z, Zhang L Y, Yang P Y. Determination of honokiol and magnolol in Cortex Magnoliae Officinalis by capillary electrophoresis with electrochemical detection[J]. J. Pharm. Biomed. Anal. 2006, 41: 1479-1484.
    [16] Ferreira S L C, Bruns R.E, Ferreira H S. Box-Behnken design: An alternative for the optimization of analytical methods[J]. Anal. Chim. Acta 2007: 597: 179-186.
    [17] Nguyen N K., Borkowski J J. New 3-level response surface designs constructed from incomplete block designs[J]. J. Statist. Plann. Inference 2007, 138: 294-305.
    [18] Cai W, Xia W, Shao X., Guo Q, Maigret B, Pan Z.. Molecular interactions ofα-cyclodextrin inclusion complexes using a genetic algorithm[J]. J. Mol. Struct. (Theochem). 2001, 535: 115-119.
    [19] Petritis K., Kangas L J, Ferguson P L, Anderson G A, Pasa-Tolic L, Lipton M S, Auberry K J. Strittmatter E F, Shen Y, Zhao R., Smith R D. Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses[J]. Anal. Chem. 2003, 75: 1039-1048.
    [20] Douali L, Villemin D, Cherqaoui D. Accurate non-linear QSAR model for HEPT derivatives[J]. J. Chem. Inf. Comput. Sci., 2003, 43: 1200-1207.
    [21] Zupan J, Gasterger J. Neural networks: a new method for solving chemical problems or just a passing phase[J]. Anal. Chim. Acta 1991, 248: 1-30.
    [22] Liu H T, Wang K T, Xu H P, Chen X G, Hu Z D. Application of experimental design and artificial neural networks to the separation and determination of active components in traditional Chinese medicinal preparation by capillary electrophoresis[J]. Chromatographia 2002, 55: 579-583.
    [23] Chen G, Xu X., Zhu Y, Zhang L, Hu Z. Separation and determination of honokiol and magnolol in herbal medicines by flow injection capillary electrophoresis[J]. Anal. Bioanal. Chem. 2006, 384: 1533-1539.
    [1] Shamsipur M, Siroueinejad A, Hemmateenejad B, Abaspour A, Sharghi H, Alizadeh K, Arshadi S. Cyclic voltammetric, computational, and quantitative structure-electrochemistry relationship studies of the reduction of several 9,10-anthraquinone derivatives. J Electroanal Chem 2007, 600:345-58.
    [2] McNaughton R L, Tipton A A, Rubie N D, Conry R R, Kirk M L. Electronic structure studies of oxomolybdenum tetrathiolate complexes: origin of reduction potential differences and relationship to cysteine-molybdenum bonding in sulfite oxidase. Inorg Chem 2000, 39(25):5697-706.
    [3] Niu S, Wang X B, Nichols J A, Wang L S, Ichiye T. Combined quantum chemistry and photoelectron spectroscopy study of the electronic structure and reduction potentials of rubredoxin redox site analogues. J Phys Chem A 2003, 107(16):2898-907.
    [4] Fatemi M H, Hadjmohammadi M R, Kamel K, Biparva P. Quantitative structure-property relationship prediction of the half-wave potential for substituted nitrobenzenes in five nonaqueous solvents. Bull Chem Soc Japan 2007, 80(2):303.
    [5] Hemmateenejad B, Yazdani M. QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors. Anal Chim Acta 2009, 634:27-35.
    [6] Nesmerak K, Nemece I, Sticha M, waisser K, palat K. Quantitative structure-property relationships of new benzoxazines and their electrooxidation as a model of metabolic degradation. Electrochim Acta 2005, 50(6):1431.
    [7] Hemmateenejad B, Shamsipur M. Quantitative structure-electrochemistry relationship study of some organic compounds using PC-ANN and PCR. Internet Electronic Journal of Molecular Design 2003; http://biochempress.com/Files/IECMD_2003/IECMD_2003_051.pdf
    [8] Katritzky AR, Lobanov VS, Karelson M. CODESSA: Reference Manual, University of Florida, Gainesville, FL, 1994.
    [9] HyperChem 6.01. Hypercube. Inc, 2000.
    [10] Stewart J P P. MOPAC 6.0, Quantum Chemistry Program Exchange, QCPE, No. 455, Indiana University, Bloomington, IN, 1989.
    [11] Katritzky A R, Lobanov V S, Karelson M. CODESSA: Training Manual University of Florida, Gainesville, FL, 1995.
    [12] Xia B B, Ma W P, Zheng B, Zhang X Y, Fan B T. Quantitative structure-activity relationship studies of a series of non-benzodiazepine structural ligands binding to benzodiazepine receptor. Eur J Med Chem 2008, 43(7):1491.
    [13] Yao X J, Panaye A, Doucet JP, Zhang RS, Chen HF, Liu MC, Hu ZD, Fan BT. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J Chem Inform Comput Sci 2004, 44(4):1257-66.
    [14] Luan F, Zhang XY, Zhang H X, Zhang R S, Liu M C, Hu Z D, Fan B T. QSPR study of permeability coefficents through low-density polyethylene based on radial basis function neural networks and the heuristic method. ComputMater Sci 2006, 37(4):454-61.
    
    [1] Egan D, O’Kennedy R., Moran E, Cox D, Prosser E, Thornes R D. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds[J]. Drug Metab. Rev. 1990, 22: 503–529.
    [2] Hoult J R S, M.iguel P. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential[J]. Pharmacol. 1996, 27: 713–722.
    [3] Hamdi N, Dixneuf P H, Synthesis of Triazole and Coumarin Compounds and Their Physiological Activity[J]. Top. Heterocycl. Chem. 2007,10: 123–153.
    [4] Guilet D, Helesbeux J J, Seraphin D, Sevenet T, Richomme P, Bruneton J. Novel Cytotoxic 4-Phenylfuranocoumarins from Calophyllum dispar[J]. J. Nat. Prod. 2001, 64: 563–568.
    [5] Thastrup O, Knudsen J B, Lemmich J, Winther K. Inhibition of human platelet aggregation by dihydropyrano- and dihydrofuranocoumarins, a new class of cAMP-phosphodiesterase inhibitors[J]. Biochem. Pharmacol. 1985, 34: 2137–2140.
    [6] Miranda R T, Garcia R C, Sanchez N F S, Nathan P J, QSPR study for the prediction of UV maximum absorption wavelength of coumarins by heuristic method and radial basis function neural network[J].J. Nat. Prod. 1998, 61: 1216–1220.
    [7] Bell R G, Sadowski J A, Matschiner J T. Mechanism of action of warfarin. Warfarin and metabolism of vitamin K1[J].Biochemistry 1972, 11: 1959–1961.
    [8] Rodigliero G. The evolution of photochemotherapy with psoralens and UVA (PUVA): 2000 BC to 1992 AD[J]. J. Photochem. Photobiol., B 1992, 14(1-2): 1–22.
    [9] Endell W, Seidel G. Effects of caffeine and ethanol on the blood-brain barrier in rats[J]. Agents & actions 1978, 8: 299-301.
    [10] Fang J Y, Whitaker C, Weslowski B, Chen M S, Naciria J, Shashidhar R, QSPR study for the prediction of UV maximum absorption wavelength of coumarins by heuristic method and radial basis function neural network[J]. J. Mater. Chem. 2001, 11: 2992–2995.
    [11] Morrion H., Curtis H, McDowell T. Solvent Effects on the Photodimerization of Coumarin1[J]. J. Am. Chem. Soc. 1966, 88: 5415-5419.
    [12] Leenders L H, Schouteden E, Schryver F C D, Photochemistry of non-conjugated bichromoph- oric systems. Cyclomerization of 7.7'-polymethylene- dioxycoumarines and polymethylenedicarhoxylic acid (7-coumarinyl) diesters[J]. J. Org. Chem. 1973, 38: 957-966.
    [13] Granaguru K, Ramasubbu N, Venkatesan K, Ramamurthy V. A study on the photochemical dimerization of coumarins in the solid state[J]. J. Org. Chem. 1985, 50: 2337-2346.
    [14] Moorthy J N, Venkatesan K, Weiss R G. Photodimerization of coumarins in solid cyclodextrin inclusion complexes[J]. J. Org. Chem. 1992, 57: 3292-3297.
    [15] Y Chen, Wu J D, Preparation and photoreaction of copolymers derived from N-(1-phenylethyl)acrylamide and 7-acryloyloxy-4-methyl coumarin[J]. J. Polym. Sci., Part A: Polym. Chem. 1994, 32: 1867-1875.
    [16] Schadt M, Seiberle H., Schuster A.. Photo-Generation of Linearly Polymerized Liquid Crystal Aligning Layers Comprising Novel, Integrated Optically Patterned Retarders and Color Filters[J]. Nature 1996, 381: 212-215.
    [17] Obi M., Morino S, Ichimura K, The reversion of photoalignment direction of a liquid crystal induced by a polymethacrylate with coumarin side chains[J].Chem. Mater. 1999, 11: 656-664.
    [18] Perny S, Barny P L, Delaire J, Buffeteau T, Sourisseau C, Dozov I, Forget S, Martinot-Lagarde P. Photoinduced orientation in poly(vinylcinnamate) and poly(7-methacryloyloxycoumarin) thin films and the consequences on liquid crystal alignment[J]. Liq. Cryst. 2000, 27: 329-340.
    [19] Xia B B, Ma W P, Zheng B, Zhang X Y, Fan B T. Quantitative structure–activity relationship studies of a series of non-benzodiazepine structural ligands binding to benzodiazepine receptor[J]. Eur. J. Med. Chem. 2008, 43: 1489-1498.
    [20] Ghasemi J, Saaidpour S, QSPR study for estimation of acidity constants of some aromatic acids derivatives using multiple linear regression (MLR) analysis[J]. J. Inclusion Phenom. Macrocyclic Chem. 2008, 60: 339-351.
    [21] Godavarthy S S, Robinson R L, Gasem K A M., An Improved Structure?Property Model for Predicting Melting-Point Temperatures[J]. Fluid Phase Equilib. 2008, 264: 122-136.
    [22] Katritzky A R, Stoyanova-Slavova I B, Dobchev D A, Karelson M.. QSPR modeling of flash points: An update [J]. J. Mol. Graphics Modell. 2007, 26: 529-536.
    [23] Hu R J, Doucet J P, Delamar M, Zhang R S. SAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors basedon linear and nonlinear regression methods[J]. Eur. J. Med. Chem. 2009, 44: 2158-2171.
    [24] Shamsipur M, Siroueinejad A, Hemmateenejad B, Abbaspour A, Sharghi H., Alizadeh K, Arshadi S. Cyclic voltammetric, computational, and quantitative structure–electrochemistry relationship studies of the reduction of several 9,10-anthraquinone derivatives[J]. J. Electroanal. Chem. 2007, 600: 345-358.
    [25] Yuan S, Xiao M, Zheng G, Tian M, Lu X. Quantitative structure-property relationship studies on electrochemical degradation of substituted phenols using a support vector machine[J]. SAR QSAR, Environ. Res. 2006, 17: 473-481.
    [26] Nikolic S, Milicevic A, Trinajstic N. QSPR Study of Polarographic Half-wave Reduction Potentials of Benzenoid Hydrocarbons[J]. Croat. Chem. Acta 2006, 79: 155-159.
    [27] Katritzky A R, Slavov S H, Dobchev D A, Karelson M.. QSPR modeling of UV absorption intensities[J]. J. Comput.- Aided Mol. Des. 2007, 21: 371–377.
    [28] Fitch W L, McGregor M, Katritzky A R, Lomaka A, Petrukhin R., Karelson M.. Prediction of Ultraviolet Spectral Absorbance Using Quantitative Structure?Property Relationships[J]. J. Chem. Inf. Comput. Sci. 2002, 42: 830-840.
    [29] Ke Y K, Dong H R. Handbook of analytical chemistry, Chemical industry, Beijing, 2nd edn., 1988, pp. 660-669.
    [30] ISIS Draw2.3, MDL Information Systems, Inc., 1990-2000
    [31] HyperChem 4.0, Hypercube Inc., Gainesville, FL, 1994.
    [32] HyperChem 6.01, Hypercube, Inc., 2000.
    [33] MOPAC, v.6.0 Quantum Chemistry Program Exchange, Program 455; Indiana University: Bloomington, IN.
    [34] Dewar M J S, Zoebisch E G, Healy E F, Stewart J J P, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model[J]. J. Am. Chem. Soc. 1985, 107: 3898-3902.
    [35] Katritzky A R., Lobanov V S, Karelson M. CODESSA: Training Manual (University of Florida, Gainesville, FL, 1995)
    [36] Katritzky A R, Lobanov V S, Karelson M, CODESSA: Reference Manual (University of Florida, Gainesville, FL, 1994)
    [37] Yu J Q, Yin Y, Hu X M, Zou G L. Interaction of protein with rude and yin baicalin.122th Youth Scientist Forum of China Association for Science and Technology, Guangzhou, 2006.
    [38] Kier L B. Use of molecular negentropy to encode structure governing biological activity[J]. J. Pharm. Sci. 1980, 69: 807-810.
    [39] Bonchev D, Information theoretic indices for characterization of chemical structure, Wiley-Interscience, New York, 1983.
    [40] Basak S C, Harriss D K, Magnuson V R, Comparative study of lipophilicity versus topological molecular descriptors in biological correlations[J]. J. Pharm. Sci. 1984, 73: 429-437.
    [41] Stanton D T, Jurs P C. Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies[J]. Anal. Chem. 1990, 62: 2323-2329.
    [42] Stanton D T, Egolf L M, Jurs P C, Hicks M G, Computer-assisted prediction of normal boiling points of pyrans and pyrroles[J]. J. Chem. Inf. Comput. Sci. 1992, 32: 306-316.
    [1] Mitton D, Ackroyd MD (Dist), FRCS R.. A brief overview of photodynamic therapy in Europe[J]. Photodiagn. Photodyn. Ther. 2008, 5: 103-111.
    [2] Kato H. Photodynamic therapy for lung cancersa review of 19 years’experience[J]. J. Photochem. Photobiol., B 1998, 42: 96-99.
    [3] Puolakkainen P, Schroder T. Photodynamic therapy of gastrointestinal tumors: a review[J]. Dig. Dis. 1992, 10: 53-60.
    [4] Bellnier D A, Greco W R., Loewen G M., Nava H, Oseroff A R, Pandey R K, suchida T T, Dougherty T J. Population pharmacokinetics of the photodynamic therapy agent 2-(1-hexyloxyehyl)-2-devinyl pyropheophorbide-a in cancer patients[J]. Cancer Res, 2003, 63: 1806-1813.
    [5] Prosst R L, Wolfsen H C, Gahlen J. Photodynamic therapy for esophageal diseases: a clinical update[J]. Endoscopy 2003, 35: 1059-1068.
    [6] Dilkes M G, Benjamin E, Ovaisi S, Banerjee A S. Treatment of primary mucosal head and neck squamous cell carcinoma using photodynamic therapy: results after 25 treated cases[J]. J. Laryngol. Otol. 2003, 117: 713-717.
    [7] Jichlinski P, Leisinger H J. Photodynamic therapy in superficial bladder cancer: Past, present and future[J]. Urol. Res. 2001, 29: 396-405.
    [8] Nathan T R, Whitelaw D E, Chang S C, Lees W R, Ripley P M, H Payne, Jones L. Parkinson M C, Emberton M, Gilliam A R, Mundy A R, Bown S G. Photodynamic therapy for prostate cancer recurrence after radiotherapy: a phase I study[J]. J. Urol. 2002, 168: 1427-1432.
    [9] Baas P, Saarnak A,. Oppelaar H., Neering H., Stewart F A. Photodynamic therapy with meta-tetrahydroxyphenylchlorin for basal cell carcinoma: a phase I/II study[J]. Br. J. Dermatol, 145 (2001) 75-78.
    [10] Schweitzer V G. Photofrin-mediated photodynamic therapy for treatment of aggressive head and neck nonmelanomatous skin tumors in elderly patients[J]. Laryngoscope 2001, 111: 1091-1098.
    [11] Zeitouni N, Oseroff A R, Shieh S. Photodynamic Therapy for nonmelanoma skin cancers: Current review and update[J]. Mol. Immunol, 2003, 39: 1133-1136.
    [12] Sternberg E D, Dolphin D, Bruckner C. Porphyrin-based photosensitizers for use in photodynamic therapy[J]. Tetrahedron 1998, 54: 4151-420.
    [13] Castano A P, Demidova T N, Hamblin M R. Mechanism in photodynamic therapy: part one---- photosensitizers, photochemistry and cellularlocalization[J]. Photodiagn. Photodyn. Ther. 1 (2004) 279-293.
    [14] Bonnett R. Photodynamic therapy in historical perspective[J]. Rev. Contemp. Pharmacother, 1999, 10: 1–17.
    [15] E.S. Nyman, P.H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2004, 73: 1-28.
    [16] Li M, Ni N, Wang B, Zhang Y. Modeling the excitation wavelengths (lambda(ex)) of boronic acids[J]. J. Mol. Model. 2008, 14: 441-449.
    [17] Xu J, Zhang H, Wang L, Liang G J, Wang L X, Shen X L, Xu W L. QSPR study of absorption maxima of organic dyes for dye-sensitized solar cells based on 3D descriptors[J]. Spectrochim. Acta, Part A, 76 (2010) 239-247.
    [18] Liu H T. Wen Y Y. Luan F, Gao Y, Li X Y. Quantitative structure-λmax relationship study on flavones by heuristic method and radial basis function neural network[J]. Anal. Chim. Acta 2009, 649: 52-61.
    [19] Shen L, Ji J Y, Li J Z, Wang J J. The end structure modification and nuclear magnetic resonance spectra changes of chlorophyl-αderivatives[J]. Journal of tonghua teachers college. 2007, 28: 30-33.
    [20] Wang J J, Zhang P, Wang P, Chen G L, Li F G. Synthesis of chorin alcohol Derivatives by chemical modifications for chlorophyll-αand its Degradation products[J]. Chinese journal of organic chemistry. 2010, 30: 1192-1200.
    [21] Wang J J, Han G F, Wu X R, Shen R J. Oxidation reaction along Qy axis and rearrangement reaction in E·ring of chlorophyll-αand its derivatives[J]. Chinese journal of organic chemistry. 2005, 25: 101-108.
    [22] Wang J J, Wu X R, Han G F, Shen R J. Knoevenagel reaction of pyropheophorbide and synthesis of its heterocyclo-substituted derivatives[J]. Chinese journal of organic chemistry. 2005, 25: 313-318.
    [23] Wang L M., Wu X R., Wang J J. Synthesis of methyl 131-alkylmethlene-131-deoxy-pyropheophorbide-α[J]. The world of chemistry. 2006, 1: 40-50.
    [24] Ji J Y, Xia S W, Wang J J. Grignard reaction of methyl pyropheophorbide substituted at 3-position by acyl group and synthesis of chlorophyll derivatives[J]. Chemical research and application. 2006, 18: 978-981.
    [25] Qiu J, Xia S W, Wang J J. Synthesis of methyl pyropheophorbide-αsubstituted at 3-position by alkyl group[J]. Journal of jilin institute of chemical technology. 2006, 23: 9-12.
    [26] Wang J J, Zhao Y, Wu X R, Han G F, Shen R J. Protection of the exocyclic carbonyl group of 2- acyl pyropheophorbide a methyl ester and their reactions with grignard reagents[J]. Chinese journal of organic chemistry. 2002, 22: 565-570.
    [27] Jing J R, Li J Z, Wang J J. Change for substitute group on chlorine ring of chlorophyll-αderivative effecting on their visible spectra[J]. Journal of yantai university (Natural Science and Engineering Edition). 2007, 20: 102-107.
    [28] Li Y W, Li F G, Liu C L, Liu S Y, Wang J J. Synthesis of (3E/Z, 131E/Z) 131-ketoxime of methyl pyropheophorbide-α[J]. Journal of Yantai University (Natural Science and Engineering Edition). 2008, 21: 94-98.
    [29] Wang J J, Li J Z, Yin J G, Liu Y J. Electrophilic reaction of methyl pyropheophorbide–αat 20-meso-1-position[J]. Chinese journal of organic chemistry. 2008, 28: 693-699.
    [30] Zhao L L, Wang P, Liu C, Zhang P, Wang J J. Grignard reaction of aldehyde chlorine and synthesis of chlorophyll derivatives substituted with phenyl group at 3-position[J]. Journal of Yantai University (Natural Science and Engineering Edition). 2010, 23: 176-182.
    [31] Wang J J, Zhao L L, Li J Z.. Synthesis of chloro-substituted chlorine derivatives with basic skeleton of chlorophyll-α[J]. Chinese journal of organic chemistry. 2009, 29: 1598-1605.
    [32] Li F G, Zhao L L, Li Y W, Wang J J. Reaction route and mechanism of synthesis of dimethyl chlorine-f[J]. Journal of Yantai Uneversity (Natural Science and Engineering Edition). 2008, 21: 186-190.
    [33] HyperChem 6.01. Hypercube. Inc, 2000.
    [34] Stewart J P P. MOPAC 6.0, Quantum Chemistry Program Exchange, QCPE, No. 455, Indiana University, Bloomington, IN, 1989.
    [35] Katritzky A R., Lobanov V S, Karelson M. CODESSA: Training Manual University of Florida, Gainesville, FL, 1995.
    [36] Liu H X, Papa E, Gramatica P. QSAR Prediction of Estrogen Activity for a Large Set of Diverse Chemicals under the Guidance of OECD Principles[J]. Chem. Res. Toxicol. 2006, 19: 1540–1548.
    [1] Xue C X, Zhang R S, Liu H X, Yao X J, Liu M C, Hu Z D, Fan B T. QSAR models for the predicted of binding affinities to human serum albumin using the heuristic method and a support vector machine[J]. Jourmal of chemical information and modeling[J]. Jourmal of chemical information and modeling, , 2004, 44: 1693 -1700.
    [2] Luan F, Ma W P, Zhang H X, Zhang X J, Liu M C, Hu Z D, Fan B T. Prediction of pKa for neutral and basic drugs based on radial basis function neural networks and the heuristic method[J]. Pharmaceutical research, 2005, 22: 1454-1560.
    [3] Cronin M T D, Schultz T W. Structure-toxicity relationships for phenols to Tetrahymena pyriformis[J]. Chemosphere, 1996, 32: 1453 -1468..
    [4] Schultz T W. Structure-Toxicity Relationships for Benzenes Evaluated with Tetrahymena pyriformis[J].Chemical research in toxicology, 1999, 12: 1262-1267.
    [5] Cronin M T D, Schultz T W. Development of quantitative structure- activity relationships for the toxicity of aromatic compounds to tetrahymena pyriformis: comparative assesssment of the methodologies[J]. Chemical research in toxicology, , 2001, 14: 1284-1295.
    [6] Laszlo T. A. Beteringhe, QSAR studies related to toxicity of aromatic compounds on tetrahymena pyriformis[J]. QSAR combinatorial science, 2006, 25: 944-951.
    [7] Kahn L, Sild S, Maran U. Modeling the toxicity of chemicals to tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks[J]. Journal of chemical information and modeling, 2007, 47: 2271-2279.
    [8] Lu G H, Wang C, Tang Z Y, Guo X L. Quantitative structure-activity relationships for predicting the joint toxicity of substituted anilines and phenols to algae[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 78: 73-77.
    [9] Zhao C Y, Zhang H X, Zhang X Y, Liu M C, Hu Z D, Fan B T. Application of support vector machine (SVM) for prediction toxic activity of different data sets[J]. Toxicology, 2006, 217: 105-119..
    [10] X J Yao, A Panaye, Doucet J P, Chen H F, Zhang R S, Fan B T, Liu M C, Hu Z D. Conparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks[J]. Analytica chimica acta, 2005, 535: 259-273.
    [11] Gong Z G, Xia B B, Zhang R S, Zhang X Y, Fan B T. Quantitative structure-activity relationship study on fish toxicity of substituted benzenes[J]. QSAR combinatorial science, 2008, 27: 967-976.
    [12] H A Jabir, Cooper Al-Fahemi, D L, Allan N L. QSAR using momentum-space and trivial feature count descriptors-an application to tetrahymena pyriformis toxicity[J]. Journal of molecular structure: THEOCHEM, 2009, 901: 56-59.
    [13] Katritzky A R., Lobanov V S, Karelson M. CODESSA: Reference Manual. University of Florida, Gainesville, FL (1994).
    [14] HyperChem 6.01 (Hypercube. Inc, 2000).
    [15] Stewart J P P. MOPAC 6.0 Quantum Chemistry Program Exchange (Indiana University, Bloomington, IN) (1989).
    [16] Katritzky A R, Lobanov V S, Karelson M, CODESSA: Training Manual. University of Florida, Gainesville, FL (1995).
    [17] Luan F, Liu H T, Wen Y Y, Zhang X Y. Quantitative structure-property relationship study for estimation of quantitative calibration factors of some organic compounds in gas chromatography[J]. .Analytica chimica acta, 2008, 612(2): 126-135
    [18] Luan F, Liu H T, Gao Y, Li Q Z, Zhang X Y, Guo Y. Prediction of hydrophile-lipophile balance values of anionic surfactants using a quantitative structure-property relationship[J]. Journal of colloid and interface science, 2009, 336(2): 773 -779.
    [19] Liu H T, Wen Y Y, Luan F, Gao Y. Application of experimental design and radial basis function neural network to the separation and determination of active components in traditional chinese medicines by capillary electrophoresis.[J]. Analytica chimica acta, 2009, 638: 88-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700