smad4及Wnt3a对MSCs的miRNA谱的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用Wnt3a和smad4联合刺激纯化的MSCs,观察其miRNA谱的变化,为寻找成骨相关的miRNA提供实验基础。
     方法:选用出生后2周的SD大鼠,无菌下其股骨的骨髓细胞,通过分离、培养原代骨髓间充质干细胞;绘制其生长曲线;流氏细胞仪检测培养第6代的、已纯化的骨髓间充质干细胞。通过pcDNA3.1-smad4与穿梭质粒pGStrack-HB组装,依靠同源性将穿梭质粒pGStrack-smad4转移至pGSadeno腺病毒表达载体上;HEK 293包装重组腺病毒及线性化,完成pGSadeno-smad4的构建;PCR验证重组腺病毒的产生。以rAd5-smad4转染和Wnt3a联合刺激培养MSCs,激光共聚焦观察Wnt3a+smad4组β-cat/Smad4在MSCs内的聚合现象。Trizol法提取细胞中的总RNA,制作芯片,用LuxScan 10K/A双通道激光扫描仪扫描芯片。采用LuxScan3.0图像分析软件对芯片图像进行分析。用Significance Analysis of Microarrays检测Wnt3a+smad4对MSCs的miRNA普表达的影响,挑选出差异表达基因。并观察MSCs的存活时间及凋亡
     结果:经过分离、培养的原代骨髓间充质干细胞,经多次传代后,细胞逐渐纯化,并且细胞初期多以集落形式增长,第6代后细胞呈形态均一的纺锤形,分布均匀。流式细胞仪检测,结果显示为体积均一的细胞群,CD31、CD34、CD45的阳性率分别为5.67%、4.31%、4.42%,CD90、CD44、CD71的阳性率分别为97.17%、98.63%、95.86%。结果说明本试验培养分离的细胞具备了所有MSCs的抗原特性,细胞生长速率及形态正常。通过穿梭质粒、线性切割和包装构建rAd5-smad4; rAd5-smad4中smad4PCR片段大小约为1.8kb,结果均符合预期,说明重组腺病毒rAd5-smad4包装成功。以rAd5-smad4转染和Wnt3a联合刺激培养MSCs, microarry检测发现hsa-miR-122a、638、494、450表达上调;激光共聚焦显示MSCs内的β-cat/Smad4聚合。]Ad5-smad4转染和Wnt3a联合刺激后MSCs可存活2周/代;凋亡率0.02%。MSCs未经传代长期存活。并具有正常细胞的凋亡率
     结论:本试验分离、培养的细胞具备了所有MSCs的抗原特性,细胞生长速率及形态正常。通过穿梭质粒、线性切割和包装细胞系完成了rAd-smad4的构建表达;Wnt3a和转染rAd-smad4实现了联合对MSCs进行基因修饰目的,MSCs可存活2周/代;凋亡率0.02%。联合刺激后的MSCs高表达hsa-miR-122a、638、494、450。这为寻找成骨相关的miRNA提供了实验基础。
Objictive:Combined stimulation of purified MSCs with smad4 and Wnt3a, observed changes in miRNA spectrum, to provide experimental basis for searching for related miRNA of osteogenesis.
     Methods:Two weeks old SD rats were choosed, gain the bone marrow cells of femoral. Then isolated and coltured the bone marrow mesenchyal stem cells. Drawed the curve of growth. Detected the purified MSCs with sixthed generation by Flow cytometry. Assembled pcDNA3.1-smad4 to pGStrack-HB, then transferred pGStrack-smad4 to pGSadeno which was adenovirus carrier. Recombined adenovirus by transfecting HEK293 cell, and here completed the construction of adenovirus of pGSadeno-smad4. Then validated the recombinant adenovirus by polymerase chain reaction. Combined the stimulation with Wnt3a and transfection of rAd-smad4 to cultured the MSCs, confocal observation of phenomenon aggregate ofβ-cat/Smad4 in MSCs, which were stimulated Wnt3a and smad4. Extracted the total RNA by using Trizol method, producted and scanned chips with LuxScan 10K/A of dual channel. Images were analyzed by Image analysis software LuxScan3.0. Used Significance Analysis of Microarrays to detect miRNA expression profile of MSCs, which were stimulated Wnt3a and smad4, selected the different expression of miRNAs. And observed the survival time and apoptosis of MSCs.
     Results:The bone marrow mesenchymal stem cells gradually purified after isolated and cultured primary MSCs were passaged for many generations, in the early stage of growth the cells formed colonies, the cells were uniform shape and distribution after the sixth generation. And flow cytometry showed that cell populations had homogeneous volume, the positive rates of CD31, CD34, CD45 were 5.67%,4.31%, 4.42%, and of CD90, CD44, CD71 were 97.17%,98.63%,95.86%. These results show that the isolated and cultured cells had the same antigenic characteristics of MSCs, growth rate and morphology were normal.Constructed rAD5-smad4 through the shuttle plasmid and packaging. PCR fragments size of smad4 rAd5-smad4 were about 1.8kb, the results are in line with expectation, which indicated that adenovirus rAd5-smad4 packaged successfully. Combined the stimulation with Wnt3a and transfection of rAd-smad4 to cultured the MSCs, detected hsa-miR-122a,638,494 and 450 upregulation by microarry. Confocal observed the phenomenon aggregate ofβ-cat/Smad4 in MSCs. Combined the stimulation with Wnt3a and transfection of rAd-smad4 to the MSCs, MSCs could survive for 2 weeks of generation with 0.02% of apoptosis rate. MSCs had normal rate of apoptosis.
     Conclusion:isolated and cultured primary MSCs had the same antigenic characteristics of MSCs, growth rate and morphology were normal. rAD5-smad4 was constructed successfully. Combined the stimulation with Wnt3a and transfection of rAd-smad4 to the MSCs, and achieved the purpose of genetically modified to MSCs. We found hsa-miR-122a,638,494 and 450 were upregulation, which provided experimental basis for searching for related miRNA of osteogenesis.
引文
[1]Wasnich RD. Epidemiology of Osteoporosis in the United States Of America[J]. Osteoporosis Int,2003. (sup3)7:68-72.
    [2]Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes[J]. Microsc Res Tech,1994 (Aug15)28:505-19.
    [3]Abad V, Meyers JL, Weise M, et al. The role of the resting zone in growth plate chondrogenesis[J]. Endocrinology,2002(May)143:1851-7.
    [4]Moon RT, Bowerman B, Boutros M, et,al. The promise and perils of Wnt signaling through beta-catenin[J]. Science,2002,296:1644-6.
    [5]Strutt D. Frizzled signalling and cell polarisation in Drosophila and vertebrates[J]. Development,2003; 130:4501-13.
    [6]Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates[J]. Curr Opin Genet Dev,2001; 11:547-53.
    [7]Huang HC, Klein PS. The Frizzled family:receptors for multiple signal transduction pathways[J]. Genome Biol,2004;5:234.
    [8]Nilsson O, Marino R, De LF, Phillip M, Baron J. Endocrine regulation of the growth plate[J]. Horm Res 2005;64:157-65.
    [9]Horton WA. Skeletal development:insights from targeting the mouse genome[J]. Lancet,2003 (Aug 16),362:560-9.
    [10]van Donkelaar CC, Huiskes R. The PTHrP-Ihh feedback loop in the embryonic growth plate allows PTHrP to control hypertrophy and Ihh to regulate proliferation[J]. Biomech Model Mechanobiol,2006 (May 12)6:55-62.
    [11]Kronenberg HM. PTHrP and skeletal development[J]. Ann N Y Acad Sci,2006 (Apr); 1068:1-13.
    [12]Kobayashi T, SoegiartoDW, Yang Y, et al. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP[J]. J Clin Invest,2005(Jul),115:1734-42.
    [13]Akiyama H, Shigeno C, Iyama K, Ito H, Hiraki Y, Konishi J, et al. Indian hedgehog in the late-phase differentiation in mouse chondrogenic EC cells, ATDC5:upregulation of type X collagen and osteoprotegerin ligand mRNAs[J]. Biochem Biophys Res Commun 1999 (Apr 21);257:814-820.
    [14]Su WC, Kitagawa M, Xue N, et al. Activation of Statl by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type Ⅱ dwarfism[J]. Nature 1997 (Mar 20);386:288-92.
    [15]van der Eerden BC, Karperien M,Wit JM. Systemic and local regulation of the growth plate[J]. Endocr Rev 2003 (Dec);24:782-801.
    [16]Kyeong-Sook Lee, Seung-Hyun Hong, Suk-Chul Bae. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-b and bone morphogenetic protein[J]. Oncogene (2002)21:7156-7163
    [17]He L, Thomson JM, HemannMT, et al. A microRNA polycistron as a potential human oncogene[J]. Nature,2005,435 (7043):823-833.
    [18]Zamore PD, Haley B. Ribo2gnome:the big world of small RNAs[J]. Science, 2005,309(5740):1519-1524.
    [19]O'Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression[J]. Nature,2005,435(7043):839-843.
    [20]Stark A, Brennecke J, BushatiN, et al. Animal microRNAs confer robustness to gene exp ression and have a significant impact on 3'-UTR evolution[J]. Cell, 2005,123(6):1133-1146.
    [21]Annalisa P, Furio P, Ilaria Z, et a 1. Anorganic bovine bone and a silicate-based synthetic bone activate difierent microRNAs [J]. J Oral Sci.200850(3):301-307.
    [22]Palmieri A, Pezzetti F. Brunelli G, et al. Peptide-15 changes miRNA expression in osteoblast-like cells[J]. Implant Dent,2008,17(1):100-108.
    [23]Palmieri A, Pezzetti F, Avantaggiato A, et al.Titanium acts on osteoblast translational process[J]. J Oral Implantol,2008,34(4):190-195.
    [24]Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases[J]. Gene,2004,341:19-39.
    [25]Baron R, Rawadi G, Roman-Roman S. Wnt signaling:a key regulator of bone mass[J]. Curr Top Dev Biol,2006,76:103-127.
    [26]李宝新,李玉坤.Wnnt信号通路对骨调节研究新进展[J].国际骨科学杂志2008,29(3):179—181.
    [27]Liu CJ. MicroRNAs in skeletogenesis[J]. Front Biosci,2009, Jan 1; 14:2757-64.
    [28]J Weber. Genetic analysis of adenovirus type 2 Ⅲ. Temperature sensitivity of processing viral proteins[J]. J. Virol,1976:17:462-471.
    [29]Kanis JA, Johnell O, De Laet C, et al. A meta-analysis of previous fracture and subseqent fracture risk[J]. Bone,2004,35:375-82.
    [30]Johnell O. The socioeconomic burden of fractures:today and in the 21st century[J]. Am J Med,1997,103:20S-26.
    [31]Ceenci S, Weitzmann MN, Roggia C, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-a[J]. J Clilnvest,2000,106:1229-37.
    [32]Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures[J]. Lancet,2002,359:1761-67.
    [33]Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates[J]. Curr Opin Genet Dev,2001,11:547-53.
    [34]Liu C, Li Y, Semenov M, et al. Control of β-Catenin phosphorylation/ degradation by a dual-kinase mechanism[J]. Cell,2002,108(6):837-847.
    [35]Logan CY, Nusse R. The Wnt signaling pathway in development and disease[J]. Annu Rev Cell Dev Biol,2004,20:781-810.
    [36]Nusse R. Wnt signaling in disease and in development[J]. Cell Res,2005, 15:28-32.
    [37]Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases[J]. Gene,2004,341:19-39.
    [38]Baron R, Rawadi G, Roman-Roman S. Wnt signaling:a key regulator of bone mass[J]. Curr Top Dev Biol,2006,76:103-127.
    [39]Takada I., Mihara M., Suzawa M., et al. A histone lysine methyltransferase activated by non-canonical Wnt signaling suppresses PPAR-gamma transactivation. Nat. Cell Biol,2007,9:1273-1285.
    [40]Sekelsky JJ, Newfeld SJ, Reftery LA, et al. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster[J], Genetics,1995,139:1347-1358.
    [41]Labbe E, Silvestric, Hoodless PA, et al. Smad2 and Smad3 positively and negatively regulate TGF [bate]-dependent transcription through the forkhead DNA-binding protein FAST2[J], Mol CELL,1998,2:109-120.
    [42]Arai T, Akiyama Y, Okabe S, et al. Genomic structure of the human Smad3 gene and its infrequent alteration in clorectal cancer[J], Cancer Lett,1998,122:157-163.
    [43]Zhang Y, Feng X, Wu R,et al. Receptor associated Mad homologues synergize as effectors of the TGF-β responses[J]. Nature,1996,383:168-172.
    [44]Nakayama T, Snyder MA, Grewal SS, et al. Xenopus Smad8 acts downstream of BMP4 to modulate its activity during vertebrate embryonic patterning[J]. Development,1998,125:857-867.
    [45]Yamaoto N, Akiyama S, Katagiri T, et al. Smadl and Smad5 act downstream of intracellular signalings of BMP-2 the inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts[J]. Biochem Biophys, 1997,238:574-580.
    [46]Lee RC. Feinbaum RL. Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993, 75(5):843-854.
    [47]Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in caenorhabditis elegans[J]. Nature,2000,403(6772): 901-906.
    [48]Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development[J]. Ccience,2005,309:310-311.
    [49]Lakshmipathy U, Love B, Goff, L.A., et al. MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells[J]. Stem Cells Dev,2007,16:1003-1016.
    [50]Wong C.F, Tellam R.L. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis[J]. J Biol Chem,2008,283: 9836-9843.
    [51]Luzi E, Marini F, Sala S.C. et al. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor[J]. J Bone Miner Res,2008,23:287-295.
    [52]Mizuno Y, Yagi K, Tokuzawa Y. et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun[J],2008,368:267-272.
    [53]Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration[J]. Tissue Eng,2002,8:295-308.
    [1]Schrier L, Ferns SP, Barnes KM, et al. Depletion of resting zone chondrocytes during growth plate senescence[J]. J Endocrinol 2006 (Apr),189:27-36.
    [2]Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes[J]. Microsc Res Tech 1994 (Augl5),28:505-19.
    [3]Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, Nilsson O, et al. The role of the resting zone in growth plate chondrogenesis[J]. Endocrinology 2002 (May), 143:1851-7.
    [4]Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through beta-catenin[J]. Science 2002,296:1644-6.
    [5]Nilsson O, Marino R, De LF, Phillip M, Baron J. Endocrine regulation of the growth plate[J]. Horm Res 2005,64:157-65.
    [6]Horton WA. Skeletal development:insights from targeting the mouse genome[J]. Lancet 2003 (Aug 16); 362:560-9.
    [7]van Donkelaar CC, Huiskes R. The PTHrP-Ihh feedback loop in the embryonic growth plate allows PTHrP to control hypertrophy and Ihh to regulate proliferation[J]. Biomech Model Mechanobiol,2007 (Jan 6):55-62.
    [8]Kronenberg HM. PTHrP and skeletal development[J]. Ann N Y Acad Sci,2006 (Apr):1068:1-13.
    [9]Kobayashi T, SoegiartoDW, Yang Y, et al. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest 2005(Jul),115:1734-42.
    [10]Akiyama H, Shigeno C, Iyama K, Ito H, Hiraki Y, Konishi J, et al. Indian hedgehog in the late-phase differentiation in mouse chondrogenic EC cells, ATDC5:upregulation of type X collagen and osteoprotegerin ligand mRNAs. Biochem Biophys Res Commun 1999 (Apr 21),257:814-820.
    [11]Su WC, Kitagawa M, Xue N, et al. Activation of Statl by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type Ⅱ dwarfism. Nature 1997 (Mar 20),386:288-92.
    [12]van der Eerden BC, Karperien M, Wit JM. Systemic and local regulation of the growth plate[J]. Endocr Rev,2003 (Dec),24:782-801.
    [13]Huelsken J, Birchmeier W. New aspects of Wnt signaling pathways in higher vertebrates[J]. Curr Opin Genet Dev,2001,11:547-53.
    [14]Strutt D. Frizzled signalling and cell polarisation in Drosophila andvertebrates [J]. Development,2003; 130:4501-13.
    [15]Huang HC, Klein PS. The Frizzled family:receptors for multiple signal transduction pathways[J]. Genome Bio,l 2004,5:234.
    [16]Church V, Nohno T, Linker C, Marcelle C, Francis-West P. Wnt regulation of chondrocyte differentiation[J]. J Cell Sci,2002,115:4809-18.
    [17]Tuan RS. Cellular signaling in developmental chondrogenesis:N-cadherin, Wnts, and BMP-2[J]. J Bone Joint Surg Am,2003,85-A(Suppl 2):137-41.
    [18]Liu C, Li Y, Semenov M, et al. Control of β-Catenin phosphorylation/ degradation by a dual-kinase mechanism[J]. Cell,2002,108(6):837-847.
    [19]Logan CY, Nusse R. The Wnt signaling pathway in development and disease[J]. Annu Rev Cell Dev Biol,2004,20:781-810
    [20]Nusse R. Wnt signaling in disease and in development[J]. Cell Res,2005, 15:28-32
    [21]Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases[J]. Gene,2004,341:19-39
    [22]Baron R, Rawadi G, Roman-Roman S. Wnt signaling:a key regulator of bone mass[J]. Curr Top Dev Biol,2006,76:103-127
    [23]Kuhl M. The Wnt/calcium pathway:biochemical mediators, tools and future requirements[J]. Frontiers in Bioscience,2004,9:967-974.
    [24]李宝新,李玉坤.Wnt信号通路对骨调节研究新进展[J].国际骨科学杂志,2008,29(3):179—181.
    [25]polqkis P. Related Theadenomatous polyposis coli(APC) tumomr suppressor[J]. Biophys Acta 1997,1332:F127-147.
    [26]Sakanaka C, Weiss JB, Williams LT. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin mediated transcription[J]. Proe Ncad SCi,1998,95:3020-3023
    [27]Takemaru KI, Moon RT. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 2000,49:249-254。
    [28]Zhao ZQ, Morris CD, Budde JM, et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion[J]. Cardiovasc Res,2003,59(1):132-142.
    [29]Kajstum J, Cheng W, Reiss K, et al. Apoptotic and necmtic myocytecell deaths are independent contributing variables of infarct size in rats[J]. Lab Invest, 1996,74(1):86-107.
    [30]ZouH, Henzel WJ, LiuX, et al. Apaf-1, a human protein homologous to C Elegans CED-4. participates in cytochrome C dependent activation of caspase-3[J]. Cell,1997,90(3):405-413。
    [31]Fie X, Sem Nov M, et al. LDL receptor—related proteins 5 and 6 in Wnt/catenin signaling:Arrows point the way [J]. Development,2004,131: 1663-1677.
    [32]Qin F, Liang MC, Liang CS. Progressive left ventricular remodeling。myocyte apoptosis and protein signaling cascades after myocardial Infarction in rabbits[J]. Biochim Biophys Acta,2005,1740(3):499-513.
    [33]Soeda J, Miyagawa S, Sano K, et al. Cytochrome Crelease into cytosol with subsequent caspase activating during warm ischemia In rat liver[J]. Am J Physiol Gestrointest Liver Physiol,2001,281(4):G1115-G1123.
    [34]Martin, T.J., Sims, N.A., Ng, K.W.,2008. Regulatory pathways revealing new approaches to the development of anabolic drugs for osteoporosis. Osteoporos. Int.19,1125-1138.
    [35]Morvan, F., Boulukos, K., Clement-Lacroix, P.,2006. Deletion of a single allele of the Dkkl gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res.21,934-945.
    [36]Zhang, Y., Wang, Y., Li, X.,2004. The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol. Cell. Biol.24,4677-4684.
    [37]Bodine PV,Zhao W, Kharode YP, et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice[J]. Molecular EndocrinologY,2004,18(5):1222-1237.
    [38]Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators[J]. Oncogene,2006,25(57):7469-7481.
    [39]Mao B, wu W, Davidson G。et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signaling[J]. Nature,2002,417(6889):664-667
    [40]Li J, Sarosi I, Catfley RC, et a 1. Dkkl-mediated inhibition of Wnt signaling in bone results in osteopenia[J]. Bone,2006,39:754-766.
    [41]Olivarea-Navarrete R, Hyzy S, Widand M, et al. The roles ofWnt signaling modulators Diekkopf-1(Dkk1)and Dickkopf-2(Dkk2)and cell maturation state in osteogenesis on microstructured titanium surfacea[J]. Biomaterials,2010,31; 2015-2024.
    [42]Urist, M.R.,1965. Bone:formation by autoinduction. Science 150,893-899.
    [43]Sampath, T.K., Muthukumaran, N., Reddi, A.H.,1987. Isolation of osteogenin, an extracellular matrix-associated, bone-inductive protein, by heparin affinity chromatography. Proc. Nat1. Acad. Sci. U.S.A.84,7109-7113.
    [44]Chen, D., Zhao, M.,Mundy, G.R.,2004. Bone morphogenetic proteins. Growth Factors 22,233-241.
    [45]Devlin, R.D., Du, Z., Pereira, R.C, et al. Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology,2003,144: 1972-1978.
    [46]Chen, Y., Whetstone, H.C., Youn, A, et al. Beta-catenin signaling pathway is crucial for bone morphogenetic protein2 to induce new bone formation[J]. Biol. Chem.2007,282:526-533.
    [47]Tam, C.S., Heersche, J.N., Murray, T.M., et al. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action:differential effects of intermittent and continuous administration[J]. Endocrinology,1982, 110:506-512.
    [48]Kulkarni N.H, Halladay D.L, Miles, R.R,et al. Effects of parathyroid hormone on Wnt signaling pathway in bone[J]. Cell. Biochem,2005,95:1178-1190.
    [49]Tobimatsu T, Kaji H, Sowa H, et al. Parathyroid hormone increases beta-catenin levels through Smad3 in mouse osteoblastic cells[J]. Endocrinology,2006,147: 2583-2590.
    [50]Wan M., Yang C, Li J, et al. Parathyroid hormone signaling through low-density lipoprotein-related protein6. Genes Dev,2008,22:2968-2979.
    [51]Bergenstock M.K, Partridge N.C. Parathyroid hormone stimulation of noncanonical Wnt signaling in bone[J]. Ann. N. Y. Acad. Sci.2007,1116: 354-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700