苏云金芽胞杆菌杀虫晶体蛋白的异源表达和遗传改良
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,Bt)是一种自然界中广泛分布的好气芽胞杆菌,由于对昆虫具有特异性毒杀作用,不污染环境和对人畜无害,成为目前应用最广、产量最大的生物杀虫剂菌种。其杀虫活性主要依赖于在芽胞期产生的杀虫晶体蛋白(Insecticidal Crystal Proteins,ICPs)或称δ-内毒素。
     本文研究了Bt杀蚊毒素蛋白在水生革兰氏阴性菌中的异源表达及表达调控分析,并进行了Bt杀虫毒素的遗传改良,分别获得了几株杀虫活性和持效性得到改良的杀蚊和杀虫工程菌株。
     在蚊幼虫天然食物之一的离中不粘柄菌(Asticcacaulis excentricus,Ae)中已成功表达Bti的杀蚊毒素Cry11Aa的基础上,将另一个具有协同杀蚊作用和阻抑蚊虫抗性产生的Bti杀蚊毒素的基因cyt1Aa转入Ae中表达。分别构建了含有cyt1Aa基因和同时含有cry11Aa基因的重组质粒pSODCyt20和pSODCryCyt20,获得相应的Ae重组子Ae-Cyt20和Ae-CC20。尽管重组质粒pSODCryCyt20中插入的cyt1Aa基因和cry11Aa的DNA序列正确,而且在重组菌株Ae-CC20中能检测到cry11Aa和cyt1Aa基因的mRNA,然而Ae-Cyt20和Ae-CC20只能分别表达Cyt1Aa和Cry11Aa蛋白,Ae-CC20菌株不能共表达两类毒素蛋白,因此认为Ae-CC20中cyt1Aa的表达受转录后水平因子调控。为了进行cyt1Aa和cry11Aa的共表达,在pSODCryCyt20中cyt1Aa基因的上游插入一个单独的启动子,构建了同时含有两基因的重组质粒pSODCryPCyt20,获得重组子Ae-CPC20,结果两基因都获得表达,表达产物对目标蚊幼虫具有协同毒杀作用。因此,认为cry11Aa和cyt1Aa在Ae中的共表达需要两个独立的启动子,这可能与其有着特殊的RNA系统、修饰限制系统有关。
     虽然表达的Cyt1Aa蛋白影响了Ae-CPC20的生长和发育,导致该重组菌株生长缓慢、终培养液的菌密度较低,但由于Cyt1A与Cry11A的协同杀蚊作用,Ae-CPC20对敏感和抗性致倦库蚊(Culex quinquefasciatus)的毒力分别是Ae-CC20的2.21倍和12.6倍。此外,Ae-CPC20菌株抗紫外线的能力比野生型Bti菌株强,因此该工程菌株在蚊虫的生物防治中具有潜在的应用价值。
     同时,本研究通过Bt不同Cry蛋白之间毒性区域的结构域交换而获得具有特异性杀虫活性的杂交晶体蛋白。通过Cry1Ca和Cry1Ab、Cry11Aa和Cry11Bb的结构域Ⅱ-Ⅲ的互换,在Bt无晶体突变菌株中进行了杂交毒素蛋白Cry1CAA和Cry11ABB的表达,得到了形态、蛋白质分子量大小和免疫原性都与野生型蛋白相符合的伴胞晶体。生物测定表明,杂交晶体Cry1CAA对棉铃虫的毒力(按LC_(50)计算)分别是Cry1Ab和Cry1Ca的55.8%和3.26倍,对甜菜夜蛾的毒力分别是Cry1Ab和Cry1Ca的4.08倍和35.5%;杂交晶体Cry11ABB对敏感和抗性库蚊的LC_(50)值分别为339.2和245.1 ng/ml、其毒力分别比野生型的Cry11Aa分别高40%和25%。证明晶体蛋白不同结构域的片段交换可以用于晶体蛋白的遗传改良,此研究将为探究Cry蛋白的不同结构域的功能及不同结构域相互作用的关系和筛选高效的毒素蛋白奠定基础。
Bacillus thuringiensis, a widely distributed Gram-positive, spore-forming,aerobic bacterium, has been the most used biological pesticide due to its specificactivity, which is mainly contributed from the crystalline inclusion body formedduring sporulation composed of one or more insecticidal crystal proteins (ICPs, orδ-endotoxins), against target insects with environmental safety.
     In this paper, the heterogenous expression of ICPs from B. thuringiensis as wellas the regulation analysis in an aquatic recipient strain and the genetical modificationof ICPs were studied to improve the activity and persistence of the toxins againstlepidopteran and dipteran larvae.
     The cyt1Aa gene from Bti, whose product synergizes other mosquitocidal toxinsand functions as repressor of resistance developed by mosquitoes against Bacilliinsecticides, solely and alongside the cry11Aa gene from Bti as well, were introducedinto the aquatic Gram-negative bacterium Asticcacaulis excentricus, living in upperwaters as a natural food resource for mosquito larvae, who has been proved as asuccessful host for Bacilli mosquitocidal toxins. The genes were introduced as anoperon but, although DNA sequencing verified correct and mRNA was detected forboth genes, no Cyt1Aa toxin was detected even though cyt1Aa solely was expressedwell in another operon. Both Cyt1Aa and Cry11Aa were expressed using a constructin which a promoter was inserted upstream of each gene. The necessity of twopromoters for co-expression of cyt1Aa and cry11Aa in A. excentricus could becorrelated with the special RNA and restriction-modification system of A. excentricus.Recombinant A. excentricus expressing both toxins was found with nearly the samepace in toxicity to 3rd instar larvae of Culex quinquefasciatus but with slower growingpace, ultimately to be 2.21- and 12.6-fold as toxic as the recombinant expressing just Cry11Aa against susceptible and resistant C. quinquefasciatus larvae, respectively,suggesting that the expressed Cyt1Aa burdens the growth of, but synergizes Cry11Aaand thus increases the toxicity of recombinant A. excentricus cells. Furthermore, thisrecombinant A. excentricus co-expressing cry11Aa and cyt1Aa was less sensitive toultra-violet radiation than wild Bti stain was, potentially acting as a candidate forfurther mosquito control.
     In addition, hybrid toxins Cry1CAA and Cry11ABB, which were constructed byreplacing domainsⅡ-Ⅲof Cry1Ca and Cry11Aa by the corresponding domains ofCry1Ab and Cry11Bb, respectively, were expressed in Bt acrystalliferous strain.SDS-PAGE and Western blot showed that the recombinant strains could express twohybrid proteins in recombinant strains during sporulation, with molecule weight andimmunogenicity identical to the original wide-type toxins. Importantly, the twoproteins has improved activity to the tested insects than their origins. ProteinCry1CAA was 0.558- and 3.26-fold toxic to neonate Helicoverpa armigera larvaethan Cry1Ab and Cry1Ca respectively, and 4.08- and 0.355-fold toxic to neonateSpodoptera exigua than the two origins, respectively. The toxicity of hybrid toxinCry11ABB was not significantly higher than wide-type proteins, with LC50 values of339.2 and 245.1 ng/ml to susceptible and resistant third-instar larvae of C.quinquefasciatus, respectively, corresponding to 40 % and 25 % increase of toxicitythan Cry11Aa. It implies that domain swapping technology might be applied for thegenetical modification ofB. thuringiensis toxins.
引文
1. Nester E W, Thomashow L S, M.G. 100 Years of Bacillus thuringiensis: A critical Scientific Assessment. American Academy of Microbiology.2002.
    2. EHC. Environmental Health Criteria 217: Bacillus thuringiensis. United Nations Environmental Programme. International Labour Organization. World Health Organization. 1999.
    3. Priest F G. Biodiversity of the entomopathogenic, endospore-forming bacteria. Entomopathogenic bacteria: from laboratory to field application. London: Kluwer Academic Publishers.2000.
    4. Agaisse H, and Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol. 1995, 177: 6027-6032.
    5. Schnepf E, Crickmore N, Van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998, 62: 775-806.
    6. Orduz S, Diaz T, Restrepo N, et al. Biochemical, immunological and toxicological characteristics of the crystal proteins of Bacillus thuringiensis subsp, medellin. Mem Inst Oswaido Cruz. 1996, 91:231-237.
    7. Koni P A, and Ellar D J. Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins. Microbiology. 1994, 140 (Pt 8): 1869-1880.
    8. Chilcott C N, and Ellar D J. Comparative toxicity of Bacillus thuringiensis var. israelensis crystal proteins in vivo and in vitro. J Gen Microbiol. 1988, 134: 2551-2558.
    9. Feitelson J S, Payne J, Kim L. Bacillus thuringiensis: insects and beyond. Bio/Technology. 1992, 10: 271-275.
    10. Hofte H, and Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989, 53: 242-255.
    11. Padidam M. The insecticidal crystal protein CrylA(c) from Bacillus thuringiensis is highly toxic for Heliothis armigera. J Invertebr Pathol. 1992, 59:109-111.
    12. Ge A Z, Pfister R M, Dean D H. Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product. Gene. 1990, 93: 49-54.
    13. Moar W J, Masson L, Brousseau R, et al. Toxicity to Spodoptera exigua and Trichoplusia ni of individual PI protoxins and sporulated cultures of Bacillus thuringiensis subsp. kurstaki HD-1 and NRD-12. Appl Environ Microbiol. 1990, 56: 2480-2483.
    14. Chambers J A, Jelen A, Gilbert M P, et al. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp, aizawai. J Bacteriol. 1991, 173: 3966-3976.
    15. Davis P M, and Onstad D W. Seed mixtures as a resistance management strategy for European corn borers (Lepidoptera: Crambidae) infesting transgenic corn expressing CrylAb protein. J Econ Entomoi. 2000, 93: 937-948.
    16. Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680.
    17. Crickmore N, Zeigler D R, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998, 62: 807-813.
    18. Honee G, van der Salm T, Visser B. Nucleotide sequence of crystal protein gene isolated from B. thuringiensis subspecies entomocidus 60.5 coding for a toxin highly active against Spodoptera species. Nucleic Acids Res. 1988, 16: 6240.
    19. Smith G P, Men-ick J D, Bone E J, et al. Mosquitocidal activity of the CryIC delta-endotoxin from Bacillus thuringiensis subsp, aizawai. Appl Environ Microbiol. 1996, 62: 680-684.
    20. Nayar J K, Knight J W, Ali A, et al. Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar, israelensis against two Florida mosquito species. J Am Mosq Control Assoc. 1999, 15: 32-42.
    21. Gonzalez J M, Jr., and Carlton B C. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid. 1980, 3: 92-98.
    22. Gonzalez J M, Jr., and Carlton B C. A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid. 1984, 11: 28-38.
    23. Gonzalez J M, Jr., Dulmage H T, Carlton B C. Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid. 1981, 5: 352-365.
    24. de Maagd R A, Bravo A, Berry C, et al. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet. 2003, 37: 409-433.
    25. Brown I D, Watson T M, Carter J, et al. Toxicity of VectoLex (Bacillus sphaericus) products to selected Australian mosquito and nontarget species. J Econ Entomol. 2004, 97:51-58.
    26. Wiwat C, Lertcanawanichakul M, Siwayapram P, et al. Expression of chitinase-encoding genes from Aeromonas hydrophila and Pseudomonas maltophilia in Bacillus thuringiensis subsp, israelensis. Gene. 1996, 179: 119-126.
    27. Adams L F, Visick J E, Whiteley H R. A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp, israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol. 1989, 171: 521-530.
    28. Salamitou S, Agaisse H, Bravo A, et al. Genetic analysis of cryⅢA gene expression in Bacillus thuringiensis. Microbiology. 1996, 142 (Pt 8): 2049-2055.
    29. Glatron M F, and Rapoport G. Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie. 1972, 54: 1291-1301.
    30. Maldonado Blanco M G, Galan Wong L J, Rodriguez Padilla C, et al. Evaluation of polymer-based granular formulations of Bacillus thuringiensis israelensis against larval Aedes aegypti in the laboratory. J Am Mosq Control Assoc. 2002, 18: 352-358.
    31. Macintosh S C, Stone T B, Sims S R, et al. Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J invertebr Pathol. 1990, 56: 258-266.
    32. van Frankenhuyzen K, Gringorten J L, Miine R E, et aL Specificity of Activated CrylA Proteins from Bacillus thuringiensis subsp, kurstaki HD-1 for Defoliating Forest Lepidoptera. Appl Environ Microbiol. 1991, 57: 1650-1655.
    33. Moar W J, Trumble J T, Hice R H, et al. Insecticidal activity of the CryIIA protein from the NRD-12 isolate of Bacillus thuringiensis subsp, kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leaf-colonizing strain of Bacillus cereus. Appl Environ Microbiol. 1994, 60: 896-902.
    34. Haider M Z, Knowles B H, Ellar D J. Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Eur J Biochem. 1986, 156:531-540.
    35. Crickmore N. Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol. 2005, 13: 347-350.
    36. Li J D, Carroll J, Eilar D J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature. 1991,353: 815-821.
    37. Grochulski P, Masson L, Borisova S, et al. Bacillus thuringiensis CrylA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol. 1995, 254: 447-464.
    38. Li J, Koni P A, Ellar D J. Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol. 1996, 257: 129-152.
    39. Galitsky N, Cody V, Wojtczak A, et al. Structure of the insecticidal bacterial delta-endotoxin Cry3Bbl of Bacillus thuringiensis. Acta Crystallogr D Biol Crystallogr. 2001, 57:1101-1109.
    40. Li J, Derbyshire D J, Promdonkoy B, et al. Structural implications for the transformation of the Bacillus thuringiensis delta-endotoxins from water-soluble to membrane-inserted forms. Biochem Soc Trans. 2001,29: 571-577.
    41. Boonserm P, Davis P, Ellar D J, et al. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol. 2005, 348: 363-382.
    42. Morse R J, Yamamoto T, Stroud R M. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure. 2001,9:409-417.
    43. Crickmore N, Zeigler D R, Schnepf E, et al. Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex..ac.uk/Home/Neil_Crickmore/Bt/. 2006.
    44. Bravo A. Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. J Bacteriol. 1997, 179: 2793-2801.
    45. de Maagd R A, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 2001, 17: 193-199.
    46. Hofmann C, Vanderbruggen H, Hofte H, et al. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci U S A. 1988, 85: 7844-7848.
    47. Hofmann C, and Luthy P. Binding and activity of Bacillus thuringiensis delta-endotoxin to invertebrate cells. Arch Microbiol. 1986, 146: 7-11.
    48. Rajamohan F, AIcantara E, Lee M K, et al. Single amino acid changes in domain Ⅱ of Bacillus thuringiensis CrylAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J Bacteriol. 1995, 177: 2276-2282.
    49. Van Rie J, Jansens S, Hofte H, et al. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur J Biochem. 1989, 186: 239-247.
    50. Nishimoto T, Yoshisue H, lhara K, et al. Functional analysis of block 5, one of the highly conserved amino acid sequences in the 130-kDa CrylVA protein produced by Bacillus thuringiensis subsp, israelensis. FEBS Lett. 1994, 348: 249-254.
    51. English L H, and Cantley L C. Delta endotoxin is a potent inhibitor of the (Na, K)-ATPase. J Biol Chem. 1986, 261: 1170-1173.
    52. Gill S S, Cowles E A, Pietrantonio P V. The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol. 1992, 37: 615-636.
    53. Knowles B H, Francis P H, Ellar D J. Structurally related Bacillus thuringiensis delta-endotoxins display major differences in insecticidal activity in vivo and in vitro. J Cell Sci. 1986, 84: 221-236.
    54. Dean D H, Rajamohan F, Lee M K, et al. Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis—a minireview. Gene. 1996, 179: 111-117.
    55. Hodgman T C, and Ellar D J. Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by compilational analysis. DNA Seq. 1990, 1: 97-106.
    56. Gazit E, La Rocca P, Sansom M S, et al. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an "umbrella-like" structure of the pore. Proc Natl Acad Sci U S A. 1998, 95: 12289-12294.
    57. Gazit E, and Shai Y. The assembly and organization of the alpha 5 and alpha 7 helices from the pore-forming domain of Bacillus thuringiensis delta-endotoxin. Relevance to a functional model. J Biol Chem. 1995, 270: 2571-2578.
    58. Aronson A I, Geng C, Wu L. Aggregation of bacillus thuringiensis CrylA toxins upon binding to target insect larval midgut vesicles. Appl Environ Microbiol. 1999, 65: 2503-2507.
    59. Gerber D, and Shai Y. Insertion and organization within membranes of the delta-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J Biol Chem. 2000, 275: 23602-23607.
    60. Kumar A S, and Aronson A I. Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis delta-endotoxin. J Bacteriol. 1999, 181: 6103-6107.
    61. Tigue N J, Jacoby J, Ellar D J. The alpha-helix 4 residue, Asn135, is involved in the oligomerization of CrylAcl and CrylAb5 Bacillus thuringiensis toxins. Appl Environ Microbiol. 2001, 67:5715-5720.
    62. Vachon V, Prefontaine G, Coux F, et al. Role of helix 3 in pore formation by the Bacillus thuringiensis insecticidal toxin CrylAa. Biochemistry. 2002, 41: 6178-6184.
    63. de Maagd R A, van der Klei H, Bakker P L, et al. Different domains of Bacillus thuringiensis delta-endotoxins can bind to insect midgut membrane proteins on ligand blots. Appl Environ Microbiol. 1996, 62: 2753-2757.
    64. Ge A Z, Shivarova N I, Dean D H. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis delta-endotoxin protein. Proc Natl Acad Sci U S A. 1989, 86: 4037-4041.
    65. Lu H, Rajamohan F, Dean D H. Identification of amino acid residues of Bacillus thuringiensis delta-endotoxin CryⅠAa associated with membrane binding and toxicity to Bombyx mori. J Bacteriol. 1994, 176: 5554-5559.
    66. Lee M K, Milne R E, Ge A Z, et al. Location of a Bornbyx rnori receptor binding region on a Bacillus thuringiensis delta-endotoxin. J Biol Chem. 1992, 267:3115-3121.
    67. Abdullah M A, Alzate O, Mohammad M, et al. Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl Environ Microbiol. 2003, 69: 5343-5353.
    68. Masson L, Mazza A, Gringorten L, et al. Specificity domain localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system. Mol Microbiol. 1994, 14: 851-860.
    69. Rajamohan F, Hussain S R, Cotrill J A, et al. Mutations at domain Ⅱ, loop 3, of Bacillus thuringiensis CryⅠAa and CryⅠAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts. J Biol Chem. 1996, 271: 25220-25226.
    70. Wu S J, and Dean D H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryⅢA delta-endotoxin. J Mol Biol. 1996, 255: 628-640.
    71. Yousten A A, Benfield E F, Campbell R P, et al. Fate of Bacillus sphaericus 2362 spores following ingestion by nontarget invertebrates. J Invertebr Pathol. 1991, 58: 427-435.
    72. Schnepf H E, Tomczak K, Ortega J P, et al. Specificity-determining regions of a lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis. J Biol Chem. 1990, 265: 20923-20930.
    73. Castro S D, Colombi E, FIores L N, et al. [Biolarvicide Bacillus sphaericus-2362(GRISELESF) for the control of malaria in a health area of the Republic of Honduras]. Rev Cubana Med Trop. 2002, 54: 134-141.
    74. Smith G P, and Ellar D J. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryⅠC delta-endotoxin affects insecticidal specificity. Biochem J. 1994, 302 (Pt 2): 611-616.
    75. AbduI-Rauf M, and Ellar D J. Mutations of loop 2 and loop 3 residues in domain Ⅱ of Bacillus thuringiensis Cry1C delta-endotoxin affect insecticidal specificity and initial binding to Spodoptera littoralis and Aedes aegypti midgut membranes. Curr Microbiol. 1999, 39: 94-98.
    76. Lee M K, Rajamohan F, Jenkins J L, et al. Role of two arginine residues in domain Ⅱ, loop 2 of Cry1Ab and Cry1Ac Bacillus thuringiensis delta-endotoxin in toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N. Mol Microbiol. 2000, 38: 289-298.
    77. Lee M K, Jenkins J L, You T H, et al. Mutations at the arginine residues in alpha8 loop of Bacillus thuringiensis delta-endotoxin Cry1Ac affect toxicity and binding to Manduca sexta and Lymantria dispar aminopeptidase N. FEBS Lett. 2001,497:108-112.
    78. Gomez I, Miranda-Rios J, Rudino-Pinera E, et al. Hydropathic complementarity determines interaction of epitope (869)HITDTNNK(876) in Manduca sexta Bt-R(1) receptor with loop 2 of domain Ⅱ of Bacillus thuringiensis Cry1A toxins. J Biol Chem. 2002, 277:30137-30143.
    79. Rajamohan F, Cotrill J A, Gould F, et al. Role of domain Ⅱ, loop 2 residues of Bacillus thuringiensis CryⅠAb delta-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens. J Biol Chem. 1996, 271: 2390-2396.
    80. Phizicky E M, and Fields S. Protein-protein interactions: methods for detection and analysis. Microbiology Reviews. 1995, 59: 94-123.
    81. Chen X J, Lee M K, Dean D H. Site-directed mutations in a highly conserved region of Bacillus thuringiensis deita-endotoxin affect inhibition of short circuit current across Bombyx mori midguts. Proc Natl Acad Sci U S A. 1993, 90:9041-9045.
    82. Lee M K, Young B A, Dean D H. Domain Ⅲ exchanges of Bacillus thuringiensis CryⅠA toxins affect binding to different gypsy moth midgut receptors. Biochem Biophys Res Commun. 1995, 216: 306-312.
    83. de Maagd R A, Weemen-Hendriks M, Stiekema W, et al. Bacillus thuringiensis delta-endotoxin Cry1C domain Ⅲ can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl Environ Microbiol. 2000, 66:1559-1563.
    84. de Maagd R A, Bakker P L, Masson L, et al. Domain Ⅲ of the Bacillus thuringiensis delta-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N. Mol Microbiol. 1999, 31: 463-471.
    85. Karlova R, Weemen-Hendriks M, Naimov S, et al. Bacillus thuringiensis delta-endotoxin Cry1Ac domain Ⅲ enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids. J Invertebr Pathol. 2005, 88: 169-172.
    86. Aronson A I, Wu D, Zhang C. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J Bacteriol. 1995, 177: 4059-4065.
    87. Ballester V V, Granero F, de Maagd R A, et al. Role of bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth. Appl Environ Microbiol. 1999, 65: 1900-1903.
    88. Schwartz J L, Potvin L, Coux F, et al. Permeabilization of model lipid membranes by Bacillus sphaericus mosquitocidal binary toxin and its individual components. J Membr Biol. 2001, 184: 171-183.
    89. Smedley D P, and Ellar D J. Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. Microbiology. 1996, 142(Pt 7): 1617-1624.
    90. Gomez I, Dean D H, Bravo A, et al. Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain Ⅱ of Cy1Ab toxin. Biochemistry. 2003, 42: 10482-10489.
    91. Jenkins J L, and Dean D H. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. Genet Eng (N Y). 2000, 22: 33-54.
    92. Honee G, Convents D, Van Rie J, et al. The C-terminal domain of the toxic fragment of a Bacillus thuringiensis crystal protein determines receptor binding. Mol Microbiol. 1991, 5: 2799-2806.
    93. Rang C, Vachon V, de Maagd R A, et al. Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins. Appl Environ Microbiol. 1999, 65: 2918-2925.
    94. Widner W R, and Whiteley H R. Location of the dipteran specificity region in a lepidopteran-dipteran crystal protein from Bacillus thuringiensis. J Bacteriol. 1990, 172: 2826-2832.
    95. de Maagd R A, Kwa M S, van der Klei H, et al. Domain Ⅲ substitution in Bacillus thuringiensis delta-endotoxin CryⅠA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol. 1996, 62: 1537-1543.
    96. Bosch D, Schipper B, van der Kleij H, et al. Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnology (N Y). 1994, 12: 915-918.
    97. Malvar T, and Gilmer A. Broad-spectrum delta-endotoxins. WO 98/22595, 1998.
    98. Budiansky S. Creatures of our own making. Science. 2002, 298: 80-86.
    99.张用梅.球形芽胞杆菌及其杀蚊原理和应用.第一版.北京:科学出版社出版.1995.
    100.喻子牛.苏云金芽胞杆菌.第一版.北京:科学出版社出版.1990.
    101. Lacey L A, Lacey C M, Padua L E. Host range and selected factors influencing the mosquito larvicidal activity of the PG-14 isolate of Bacillus thuringiensis var. morrisoni. J Am Mosq Control Assoc. 1988, 4: 39-43.
    102. Thiery I, and Hamon S. Bacterial control of mosquito larvae: investigation of stability of Bacillus thuringiensis var. israelensis and Bacillus sphaericus standard powders. J Am Mosq Control Assoc. 1998, 14: 472-476.
    103. Thanabalu T, and Porter A G. Efficient expression of a 100-kilodalton mosquitocidal toxin in protease-deficient recombinant Bacillus sphaericus. Appl Environ Microbioi. 1995, 61: 4031-4036.
    104. Thanabalu T, Hindley J, Jackson-Yap J, et al. Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1. J Bacteriol. 1991, 173: 2776-2785.
    105. Pei G, Oliveira C M, Yuan Z, et al. A strain of Bacillus sphaericus causes slower development of resistance in Culex quinquefasciatus. Appl Environ Microbiol. 2002, 68: 3003-3009.
    106. Charles J F, and Nielsen-LeRoux C. Mosquitocidal bacterial toxins: diversity, mode of action and resistance phenomena. Mem Inst Oswaldo Cruz. 2000, 95 Suppl 1: 201-206.
    107. Rodcharoen J, and Mulla M S. Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus. JAm Mosq Control Assoc. 1996, 12: 247-250.
    108. Yuan Z M, Pei G F, Regis L, et al. Cross-resistance between strains of Bacillus sphaericus but not B. thuringiensis israelensis in colonies of the mosquito Culex quinquefasciatus. Med Vet Entomol. 2003, 17: 251-256.
    109. Silva-Filha M H, and Regis L. Reversal of low-level resistance to Bacillus sphaericus in a field population of the southern house mosquito (Diptera:Culicidae) from an urban area of Recife, Brazil. J Econ Entomol. 1997, 90: 299-303.
    110. Rao D R, Mani T R, Rajendran R, et al. Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Am Mosq Control Assoc. 1995, 11: 1-5.
    111. Goldberg L J, and Margalit J. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti and Culexpipiens. Mosquito News. 1977, 37: 355-358.
    112. Thomas W E, and Ellar D J. Bacillus thuringiensis var israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci. 1983, 60: 181-197.
    113. Knowles B H, Blatt M R, Tester M, et al. A cytolytic delta-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett. 1989, 244: 259-262.
    114. Donovan W P, Dankocsik C, Gilbert M P. Molecular characterization ofa gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. J Bacteriol. 1988, 170: 4732-4738.
    115. Ward E S, Ridley A R, Ellar D J, et al. Bacillus thuringiensis var. israelensis delta-endotoxin. Cloning and expression of the toxin in sporogenic and asporogenic strains of Bacillus subtilis. J Mol Biol. 1986, 191: 13-22.
    116. Crickmore N, Bone E J, Williams J A, et al. Contribution of the individual components of the delta-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis var. israelensis. FEMS Microbiology Letters. 1995, 131: 249-254.
    117. Federici B A, Lfithy P, Ibarra J E. The para-sporal body of Bacillus thuringiensis subsp. israelensis: structure, protein composition and toxicity. In Bacterial control of mosquitoes and blackflies: biochemistry, genetics, and application of Bacillus thuringiensis and Bacillus sphaericus. De Barjac H and Sutherland S (eds). New Brunswick, N.J.: Rutgers University Press, 1990. pp. 16-44.
    118. Poncet S, Anello G, Delecluse A, et al. Role of the CryⅣD polypeptide in the overall toxicity of Bacillus thuringiensis subsp, israelensis. Appl Environ Microbiol. 1993, 59: 3928-3930.
    119. Angsuthanasombat C, Crickmore N, Ellar D J. Comparison of Bacillus thuringiensis subsp, israelensis CryⅣA and CryⅣB cloned toxins reveals synergism in vivo. FEMS Microbiol Lett. 1992, 73: 63-68.
    120. Delecluse A, Poncet S, Klier A, et al. Expression of cryⅣA and cryⅣB Genes, Independently or in Combination, in a Crystal-Negative Strain of Bacillus thuringiensis subsp, israelensis. Appl Environ Microbiol. 1993, 59: 3922-3927.
    121. Nishiura J T. Fractionation of two mosquitocidal activities from alkali-solubilized extracts of Bacillus thuringiensis subspecies israelensis spores and parasporal inclusions. J Invertebr Pathol. 1988, 51: 15-22.
    122. Armstrong J L, Rohrmann G F, Beaudreau G S. Delta endotoxin of Bacillus thuringiensis subsp, israelensis. J Bacteriol. 1985, 161: 39-46.
    123. Insell J P, and Fitz-James P C. Composition and Toxicity of the Inclusion of Bacillus thuringiensis subsp, israelensis. Appl Environ Microbiol. 1985, 50: 56-62.
    124. Wu D, Johnson J J, Federici B A. Synergism of mosquitocidal toxicity between CytA and CryⅣD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol Microbiol. 1994, 13: 965-972.
    125. Ibarra J E, and Federici B A. Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp, israelensis. J Bacteriol. 1986, 165: 527-533.
    126. Sayyed A H, Crickmore N, Wright D J. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl Environ Microbiol. 2001, 67: 5859-5861.
    127. Held G A, Huang Y S, Kawanishi C Y. Effect of removal of the cytolytic factor of Bacillus thuringiensis subsp, israelensis on mosquito toxicity. Biochem Biophys Res Commun. 1986, 141: 937-941.
    128. Perez C, Fernandez L E, Sun J, et al. Bacillus thuringiensis subsp, israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci USA. 2005, 102: 18303-18308.
    129. Manceva S D, Pusztai-Carey M, Russo P S, et al. A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Biochemistry. 2005, 44: 589-597.
    130. Butko P. Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol. 2003, 69: 2415-2422.
    131. Wirth M C, Delecluse A, Federici B A, et al. Variable cross-resistance to Cry11B from Bacillus thuringiensis subsp, jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to single or multiple toxins of Bacillus thuringiensis subsp, israelensis. Appl Environ Microbiol. 1998, 64:4174-4179.
    132. Wirth M C, Walton W E, Federici B A. Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol. 2000, 37: 401-407.
    133. Wirth M C, Federici B A, Walton W E. Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae). Appl Environ Microbiol. 2000, 66: 1093-1097.
    134. Wirth M C, Park H W, Walton W E, et al. Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl Environ Microbiol. 2005, 71: 185-189.
    135. Manasherob R, Zaritsky A, Ben-Dov E, et al. Effect of accessory proteins P19 and P20 on cytolytic activity of Cyt1Aa from Bacillus thuringiensis subsp, israelensis in Escherichia coli. Curr Microbiol. 2001,43: 355-364.
    136. Wu D, and Federici B A. A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. J Bacteriol. 1993, 175: 5276-5280.
    137. Xu Y, Nagai M, Bagdasarian M, et al. Expression of the p20 gene from Bacillus thuringiensis H-14 increases Cry11A toxin production and enhances mosquito-larvicidal activity in recombinant gram-negative bacteria. Appl Environ Microbiol. 2001, 67: 3010-3015.
    138. Shao Z, and Yu Z. Enhanced expression of insecticidal crystal proteins in wild Bacillus thuringiensis strains by a heterogeneous protein P20. Curt Microbiol. 2004, 48: 321-326.
    139. Delecluse A, Rosso M L, Ragni A. Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp.jegathesan encoding a highly mosquitocidal protein. Appl Environ Microbiol. 1995, 61: 4230-4235.
    140. Khasdan V, Ben-Dov E, Manasherob R, et al. Mosquito larvicidai activity of transgenic Anabaena PCC 7120 expressing toxin genes from Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett. 2003, 227: 189-195.
    141. McLean K M, and Whiteley H R. Expression in Escherichia coli of a cloned crystal protein gene of Bacillus thuringiensis subsp, israelensis. J Bacteriol. 1987, 169: 1017-1023.
    142. Ben-Dov E, Boussiba S, Zaritsky A. Mosquito larvicidal activity ofEscherichia coli with combinations of genes from Bacillus thuringiensis subsp, israelensis. J Bacterioi. 1995, 177:2851-2857.
    143. Li T, Sun F, Yuan Z, et al. Coexpression of cyt1Aa of Bacillus thuringiensis subsp. israelensis with Bacillus sphaericus binary toxin gene in acrystalliferous strain of B. thuringiensis. Curr Microbiol. 2000, 40: 322-326.
    144. Park H W, Bideshi D K, Federici B A. Recombinant strain of Bacillus thuringiensis producing Cyt1A, Cry11B, and the Bacillus sphaericus binary toxin. Appl Environ Microbiol. 2003, 69:1331-1334.
    145. Bourgouin C, Delecluse A, de la Tone F, et al. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp, israelensis and their expression. Appl Environ Microbiol. 1990, 56: 340-344.
    146. Sun F, Yuan Z M, Cai Q X, et al. Reduction of resistance of Culexpipiens larvae to the binary toxin from Bacillus sphaericus by co-expression of cry4Ba from Bacillus thuringiensis sub. israelensis with the binary toxin gene. World Journal of Microbiological Biotechnology. 2001, 17: 385-389.
    147. Merritt R W, Dadd R H, Walker E D. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol. 1992, 37: 349-376.
    148. Thanabalu T, Hindley J, Brenner S, et al. Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp, israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae. Appl Environ Microbiol. 1992, 58: 905-910.
    149. Yap W H, Thanabalu T, Porter A G. Influence of transcriptional and translational control sequences on the expression of foreign genes in Caulobacter crescentus. J Bacteriol. 1994, 176: 2603-2610.
    150. Vellanoweth R L, and Rabinowitz J C. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol. 1992, 6:1105-1114.
    151. Van Ert M, and Staley J T. Gas-vacuolated strains of Microcyclus aquaticus. J Bacteriol. 1971, 108: 236-240.
    152. Yap W H, Thanabalu T, Porter A G. Expression of mosquitocidal toxin genes in a gas-vacuolated strain of Ancylobacter aquaticus. Appl Environ Microbiol. 1994, 60: 4199-4202.
    153. Angsuthanasombat C, and Panyim S. Biosynthesis of 130-kiiodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol. 1989, 55: 2428-2430.
    154. Murphy R C, and Stevens S E, Jr. Development of a cyanobacterial biolarvicide. Mem lnst Oswaldo Cruz. 1995, 90:109-113.
    155. Kuhlemeier C J, Thomas A A, van der Ende A, et al. A host-vector system for gene cloning in the cyanobacterium Anacystis nidulans R2. Plasmid. 1983, 10:156-163.
    156. Xudong X, Renqiu K, Yuxiang H. High larvicidal activity of intact recombinant cyanobacterium Anabaena sp. PCC 7120 expressing Gene 51 and Gene 42 of Bacillus sphaericus sp. 2297. FEMS Microbiology Letters. 1993, 107: 247-250.
    157. de Marsac N T, Torre F d I, Szulmajster J. Expression of the larvicidal gene of Bacillus sphaericus 1593M in the cyanobacterium Anacystis nidulans R2. Molecular General Genetics. 1987, 209: 396-398.
    158. Chungjatupornchai W. Expression of the mosquitocidalprotein genes of Bacillus thuringiensis subs. israelensis and the herbicide-resistance gene bar in Synechocystis PCC6803. Current Microbiology. 1990, 21: 283-288.
    159. Wu X, Vennison S J, Huirong L, et al. Mosquito larvicidal activity of transgenic Anabaena strain PCC 7120 expressing combinations of genes from Bacillus thuringiensis subsp, israelensis. Applied and Environmental Microbiololgy. 1997, 63: 4971-4975.
    160. Manasherob R, Ben-Dov E, Zaritsky A, et al. Protozoan-enhanced toxicity of Bacillus thuringiensis var. israelensis delta-endotoxin against Aedes aegypti larvae. J lnvertebr Pathol. 1994, 63: 244-248.
    161. Manasherob R, Otieno-Ayayo Z N, Ben-Dov E, et al. Enduring toxicity of transgenic Anabaena PCC 7120 expressing mosquito larvicidal genes from Bacillus thuringiensis ssp. israelensis. Environ Microbiol. 2003, 5: 997-1001.
    162. Manasherob R, Ben-Dov E, Xiaoqiang W, et al. Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp, israelensis expressed in Anabaena PCC 7120. Curt Microbiol. 2002, 45: 217-220.
    163. Boussiba S, Wu X-Q, Ben-Dov E, et al. Nitrogen fixing cyanobacteria as gene delivery system for expressing mosquitocidal toxins of Bacillus thuringiensis subsp, israelensis. Journal of Applied Phycology. 2000, 12:461-467.
    164. Lluisma A O, Karmacharya N, Zarka A, et al. Suitability of Anabaena PCC7120 expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp, israelensis for biotechnological application. Appl Microbiol Biotechnol. 2001, 57: 161-166.
    165. Romero M, Gii F M, Orduz S. Expression of mosquito active toxin genes by a Colombian native strain of the gram-negative bacterium Asticcacaulis excentricus. Mem lnst Oswaldo Cruz. 2001, 96: 257-263.
    166. Soltes-Rak E, Kushner D J, Williams D D, et al. Factors regulating crylVB expression in the cyanobacterium--Synechococcus PCC 7942. Mol Gen Genet. 1995, 246: 301-308.
    167. Sangthongpitag K, Penfold R J, Delaney S F, et al. Cloning and expression of the Bacillus sphaericus 2362 mosquitocidal genes in a non-toxic unicellular cyanobacterium, Synechococcus PCC6301. Appl Microbiol Biotechnol. 1997, 47: 379-384.
    168. Liu J W, Yap W H, Thanabalu T, et al. Efficient synthesis of mosquitocidai toxins in Asticcacaulis excentricus demonstrates potential of gram-negative bacteria in mosquito control. Nat Biotechnol. 1996, 14: 343-347.
    169. Armengol G, Guevara O E, Orduz S, et al. Expression of the Bacillus thuringiensis mosquitocidal toxin Cry11Aa in the aquatic bacterium Asticcacaulis excentricus. Curr Microbiol. 2005, 51: 430-433.
    170. Khampang P, Chungjatupornchai W, Luxananil P, et al. Efficient expression of mosquito-larvicidal proteins in a gram-negative bacterium capable of recolonization in the guts of Anopheles dirus larva. Appl Microbiol Biotechnol. 1999, 51: 79-84.
    171. Shi Y, Yuan Z, Cai Q, et al. Cloning and expression of the binary toxin gene from Bacillus sphaericus IAB872 in a crystal-minus Bacillus thuringiensis subsp, israelensis. Curr Microbiol. 2001, 43: 21-25.
    172. Shi Y X, Zheng D S, Yuan Z M. Toxicity of Bacillus sphaericus LP1-G against susceptible and resistant Culex quinquefasciatus and the cloning of the mosquitocidal toxin gene. Curr Microbioi. 2003, 47: 226-230.
    173. Xue J L, Cai Q X, Zheng D S, et al. The synergistic activity between Cry1Aa and Cry1C from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera. Lett Appl Microbiol. 2005, 40: 460-465.
    174. Yuan Z, Rang C, Maroun R C, et al. Identification and molecular structural prediction analysis of a toxicity determinant in the Bacillus sphaericus crystal larvicidai toxin. Eur J Biochem. 2001, 268:2751-2760.
    175. Liu M, Cai Q X, Liu H Z, et al. Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol. 2002, 93: 374-379.
    176.郭青云,蔡全信,韩蓓,等.苏云金芽胞杆菌杀虫晶体蛋白Cry1Aa和Cry1Ca结构域交换对晶体形态和杀虫活性影响.微生物学报.2006,46:906-911.
    177. Makrides S C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 1996, 60:512-538.
    178. Ward E S, Ellar D J, Todd J A. Cloning and expression in Escherichia coli of the insecticidal delta-endotoxin gene of Bacillus thuringiensis var. israelensis. FEBS Lett. 1984, 175: 377-382.
    179. Sevrez C. Develope a bacterial mosquitocide. Brighton: University of Sussex. 2004. pp. 12-35.
    180. Munoz-Olaya J M. Malaria control: development of biological mosquitocide. Brighton: University of Sussex. 2005. pp. 12-19.
    181. Dervyn E, Poncet S, Klier A, et al. Transcriptional regulation of the cryⅣD gene operon from Bacillus thuringiensis subsp, israelensis. J Bacteriol. 1995, 177: 2283-2291.
    182.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南.第二版.北京:科学出版社.1993.
    183. Ringquist S, Shinedling S, Barrick D, et al. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol. 1992, 6: 1219-1229.
    184. Tanapongpipat S, Luxananil P, Promdonkoy B, et al. A plasmid encoding a combination of mosquito-larvicidal genes from Bacillus thuringiensis subsp, israelensis and Bacillus sphaericus confers toxicity against a broad range of mosquito larvae when expressed in Gram-negative bacteria. FEMS Microbiol Lett. 2003, 228: 259-263.
    185. Thomas C M, Meyer R, Helinski D R. Regions of broad-host-range plasmid RK2 which are essential for replication and maintenance. J Bacteriol. 1980, 141: 213-222.
    186. Schmidhauser T J, and Helinski D R. Regions of broad-host-range plasmid RK2 involved in replication and stable maintenance in nine species of gram-negative bacteria. J Bacteriol. 1985, 164: 446-455.
    187. Waters S H, Rogowsky P, Grinsted J, et al. The tetracycline resistance determinants of RPI and Tn1721: nucleotide sequence analysis. Nucleic Acids Res. 1983, 11: 6089-6105.
    188. WHO. Informal consultation on the development of Bacillus sphaericus as microbial larvicide. TDR/BCV/SPHAER1CUS/85.3. 1985.
    189. Douek J, Einav M, Zaritsky A. Sensitivity to plating of Escherichia coli cells expressing the cryA gene from Bacillus thuringiensis var. israelensis. Mol Gen Genet. 1992, 232: 162-165.
    190. Myasnik M, Manasherob R, Ben-Dov E, et al. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Curr Microbiol. 2001, 43: 140-143.
    191. Becker N, Zgomba M, Ludwig M, et al. Factors influencing the activity of Bacillus thuringiensis var. israelensis treatments. J Am Mosq Control Assoc. 1992, 8: 285-289.
    192. Pusztai M, Fast P, Gringorten L, et al. The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochem J. 1991, 273(Pt 1): 43-47.
    193. Ignoffo C M, Couch T L, Garcia C, et al. Relative activity of Bacillus thuringiensis var. kurstaki and B. thuringiensis var. israelensis against larvae of Aedes aegypti, Culex quinquefasciatus, trichoplusia hi, Heliothis zea, and Heliothis virescens. J Econ Entomol. 1981, 74:218-222.
    194. Griego V M, and Spence K D. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl Environ Microbiol. 1978, 35: 906-910.
    195. Cohen E, Rozen H, Joseph T, et al. Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation. J lnvertebr Pathol. 1991, 57: 343-351.
    196. Araoz R, Shelton M, Lebert M, et al. Differential behaviour of two cyanobacterium species to UV radiation. Artificial UV radiation induces phycoerythrin synthesis. J Photochem Photobiol B. 1998, 44:175-183.
    197. Ehling-Schulz M, Bilger W, Scherer S. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol. 1997, 179: 1940-1945.
    198. Goetz T, Windhoevel U, Boeger P, et al. Protection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC7942. Plant Physiol Rockville. 1999, 120: 599-604.
    199.薛建莉.苏云金芽胞杆菌Cry1Aa、Cry1C的协同作用和同源重组的研究.武汉:中国科学院武汉病毒研究所.2004.pp.10-20.
    200. Sanchis V, Lereclus D, Menou G, et al. Nucleotide sequence and analysis of the N-terminal coding region of the Spodoptera-active delta-endotoxin gene of Bacillus thuringiensis aizawai 7.29. Mol Microbiol. 1989, 3: 229-238.
    201. Visser B, Munsterman E, Stoker A, et al. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J Bacteriol. 1990, 172: 6783-6788.
    202. Crickmore N, Nicholls C, Earp D J, et al. The construction of Bacillus thuringiensis strains expressing novel entomocidal delta-endotoxin combinations. Biochem J. 1990, 270: 133-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700