苏云金杆菌4.0718菌株的cry杀虫基因和功能蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究和发展现代植物保护生物技术,确保食品安全,保护生态环境和维护人类健康具有重要意义。近年来,利用苏云金芽孢杆菌(Bacillus thuringiensis,Bt)取代有残留杀虫化学农药控制植物害虫,实施生态农业计划,已成为国际上发展的新趋势。但在对提高Bt杀虫毒力、挖掘新的cry杀虫功能基因和研究其蛋白质组学上有待深入进行。
     本文利用微生物技术,分子生物学技术和蛋白质组学方法,选育出Bt4.0718新菌株,系统研究了cry基因,发现了新的杀虫基因,利用烟草几丁质酶基因tchi B与Bt4.0718菌株的cry1Ac基因重组,获得高效杀虫工程菌。首次对Bt的杀虫功能蛋白质组进行了研究。
     Bt作为微生物杀虫剂在生产上成功推广和应用,很大程度上取决于高毒力菌株的选育。本研究从湖南不同生态区域采集的858份土样中,分离出30份Bt菌株。从中筛选一株具有典型Bt菌落特征和较高杀虫毒力的701~(2c)为出发菌株,经紫外线和两次亚硝基胍(NTG+LiCl)的交替复合诱变,发现菌体的伴孢晶体的形状、大小、数量和芽孢同伴孢晶体的比例与杀虫毒力密切相关。以此特征为依据进行快速初筛和毒力生测复筛,获得一株高毒力突变杀虫新菌株4.0718。该突变株杀虫毒力与出发菌株相比提高了7.5倍,在6h、12h、和24h内供试小菜蛾三龄幼虫死亡率分别高达20%、97%和100%。此菌株经连续10代培养稳定遗传。这为高毒力杀虫菌株的选育提供了一种简单和快速的方法。在对4.0718进行单因子培养条件试验的基础上,采用正交设计试验和结合杀虫毒力生测,对该菌株进行发酵试验,获得了最佳发酵条件。
     Bt菌株的杀虫活性与其携带的编码杀虫晶体蛋白(ICPs)的cry基因密切相关。通过PCR扩增的产物电泳检测,4.0718含有cry1和cry类杀虫基因,显示出4.0718菌株cry基因类型丰富。将4.0718菌株质粒上的cry1Ac基因和烟草几丁质酶基因tchiB(去掉信号肽和去信号肽再加肠激酶位点)重组,经双酶切和亚克隆,将带有cry1Ac基因上游启动序列和下游终止序列的重组基因片段克隆至穿梭载体pHT315中,分别构建重组质粒pHUAccB6和pHUAccB7,转入E.coli,电转入Bt无晶体突变株XBU001中,获得重组菌株HAccB6和HAccB7。通过液体双相孢晶分离提取后,将晶体和上清液分别进行SDS-PAGE分析,双价重组基因与对照cry1Ac基因在无晶体突变株中表达量相比较,获得高效表达的双价融合蛋白。经定量分析:双价融合蛋白分别占总蛋白量的62.5%;Cry1Ac蛋白占蛋白总量的42.0%。经原子力显微镜和电子显微镜观察,表达后的融合蛋白呈菱形和椭圆形晶体,其规格约为1.5×3.0μm。经生测分析,两株工程菌HAccB6和HAccB7的重组基因表达的融合晶体蛋白二者在毒力上比较接近,而与对照工程菌HAc5和野生菌4.0718相比较,速杀时间提前36h。工程菌HAccB6对棉铃虫(Heli coverpa armigera)具有高效杀虫活性,其72h LC_(50)值为9.10μg/mL,为对照菌杀虫毒力的4.529倍。结果显示出tchiB基因与cry1Ac基因重组后的表达产物具有显著的杀虫增效作用。
     首次对Bt杀虫晶体蛋白质进行了研究。用液体双相法和等电点沉淀法纯化晶体蛋白,结合用2-DE分离的蛋白质进行质谱鉴定,确定了伴孢晶体蛋白总蛋白质的提取方法,获得了更清晰、分辨率更高和聚焦效果更好的2-DE图谱,建立了Bt晶体蛋白的双向电泳方法。对分别属于Bt的3个不同亚种的库斯塔克亚种4.0718、武汉亚种140菌株和以色列亚种H14菌株及相关工程菌株HAccB6和HAccB7的晶体蛋白质进行了系统的研究。工程菌HAccB6和HAccB7菌株分别检测到356±9和400±11个,其中两者129个蛋白质斑点相互匹配,平均匹配百分率为30%。等电点沉淀法双向电泳(2-DE)图谱中检测到90±9和193±11个蛋白质斑点数,其中两者的80个蛋白质斑点相互匹配,平均匹配百分率为40%,说明两者在毒力以及杀虫谱上的相似性和差异性。
     对2-DE胶上大部份蛋白质点进行了质谱分析,鉴定出各菌株的晶体蛋白成份中的7类功能蛋白质,即杀虫毒蛋白(Cry1Ac、Cry2Aa、CryIG,CryH2,Cry1Ab16,Cry2Ac_2)、晶体形成相关结构蛋白(伴侣蛋白dnak)、蛋白质折叠和组装的重要调节者热休克蛋白H_(SP)60,物质代谢酶类(分支链氨基酸转氨酶、烯醇酶、丙酮酸脱氢酶复合物E3)、蛋白质合成因子(ATP合成酶F1、ATP合成酶β-链、β-内酰胺酶、翻译延长因子Ts、Tu、G)、延长因子EF-Tu和EF-Ts、假想蛋白、转运蛋白(ABC transporter ATP-binding protein)、和蛋白引发因子(Trigger factor)等。从研究的Bt菌株中都鉴定有HSP-60,翻译延长因子Tu这两种蛋白,认为这两种蛋白很可能为晶体形成相关的重要蛋白,且杀虫晶体蛋白在结构与杀虫活性功能上的关系密切。这些表达谱和功能蛋白质组的研究将有助于对杀虫晶体蛋白杀虫机理的理解。特别是在Bt武汉亚种中新发现了Cry2Ac6蛋白。晶体蛋白种类的不同则有助于解释4.0718菌株高效杀虫的生化功能特征。结合利用CPHmodles、Ds ViewerProTrial和Swiss-Pdb Viewer软件,发现新型的Cry2Ac6与Cry2Aa的毒性核心片段空间结构有一定差异。说明与昆虫中肠受体蛋白结合的亲和力不同,引起其在杀虫毒力上的差异。
     总之,本项研究为苏云金芽孢杆菌高毒力杀虫菌株的选育、发酵条件、cry基因与外源毒素基因重组及亚种间功能蛋白质组学研究提供了一系列的方法和可借鉴的研究思路,鉴定了与杀虫毒力相关的cry基因及其功能蛋白质组,创新性研究了不同原毒素分子结构与杀虫活性之间的内在规律及其与昆虫细胞受体结合机制的信息。
Biotechnology of modern plant protect_is very important for insuring food safety and humanhealth. In the past few years, it has been a world-wide trend to use Bt to replace chemicalinsecticide for pest control in plant. However, further studies are needed to increase itsinsecticidal toxicity, seek new cry functional gene and deepen its proteome analysis.
     This paper employs microbial technology, molecular biotech and methodology ofProteomics. An insecticidal strain 4.0718 of Ballilus thuringiensis was bred, its cry gene wasstudied systematically and a new insecticidal gene was obtained. And for the first time, theinsecticidal crystal proteins from Balillus thruingiensis were researched using proteome analysis.Also, high toxin insecticidal recombinant strain was constructed by combining B. thuringiensiscry gene and tchiB gene from tobacco.
     The wide application of Bt as a microbial insecticide in agricultural production depends to alarge degree on the breeding of a high toxin strain. In the research, 30 strains of Bacillusthuringiensis were isolated from 858 samples of dry land, vegetable garden and rice soils indifferent ecological regions of Hunan province, and selected as an original from the 30 strainswas strain 701~(2c) typical of B. thuringiensis.
     By means of multiple mutagenesis of UV and double NTG+ LiCl and through microscopicexamination of smear dyeing, it was first found that the insecticidal property of B.thuringiensisis closely related with the shape, size and number of the crystal protein and the proportion ofspore and crystal protein. After screenings, one highly toxic mutant strain 4.0718 was obtained.Tests showed that its toxicity to the larval of Helicoverpa armigera was 4.527 times higher thanthat of the control strain and the lethal rate reached 20%, 97% and 100% respectively 6, 12 and24h after treatment. The virulence of 4.0718 did not change after ten-generation transmission.This method to a simple and efficient way of breeding high toxin insecticidal stains. Still, thefermentation conditions of a highly toxic mutant strain 410718 of Bacillus thuringiensis werediscovered by using orthogonal experiment and bioassays of insecticidal activity.
     Using a PCR strategy, this study identified rapidly Bacillus thuringiensis strain 4.0718 thatharbored the known cry1 and cry2 type genes. These results suggested the novel Bacillusthuringiensis 4. 0718 had plenty of cry -type genes. This was evidence that Bt 4. 0718 hasconsiderable application and research value. To construct a new fusion protein to enhance thetoxicity of crystal proteins, the cry1Ac gene of Bacillus thuringiensis strain 4.0718 wascombined with a tchiB (deleted signal peptide and Enterokinase site sequence). In this process,the Enterokinase site sequence was inserted into the midst of the two genes. Then the fusion gene fragment carrying the upstream promoter region and the downstream terminator region ofcry1Ac gene were cloned into the shuttle vector pHT315. And after a series of enzymedigestions and subclonings a new expression vector pHUAccB6and pHUAccB7 was obtained.The two vectors was transformed into B. thuringiensis acrystalliferous strain XBU001 withelectroporation to obtain the recombinant strain HAccB7 and HAccB6.Under AFM and SEM,there were some bipy ramidal crystals with a size of 1.5×3.0μm. Bioassay showed that the fusioncrystals from recombinant strain HAccB7 and HAccB6 were high toxic against third-instarlarvae of Plutella xylostella with the LC_(50) (after 72 h) value of 9.10μg/ml. The fusion proteinswhich have constructed had more toxicity than Cry1Ac crystal proteins. The study will enhancethe toxicity of B. thuringiensis Cry toxins protein and make a ground for construction the fusiongenes of B.thuringiensis cry gene and other foreign toxin genes and the recombinant strain withhightoxicity.
     Bt insecticidal protein has been separated, using two modified methods that two-phaseliquid partition and isoelectric sediment point. The extracted insecticidal crystal proteins werespearateed by 2DE, and submitted to MS identified.We systemly studied the ICPs proteome.Comparatively from three Bt kurstaki 4.0718、wuhanensis 140, israelensis H14 and twoengnerring strains Although pH3-10 and pH4-7gels were used by us, most of the spots were inthe gel pH range 4 to 7.The ICPs are usually high molecular weight, hydrophobic proteins. Thereare 129 matched spots between HAc5and HAccB5 maps (the matching rate was 10%), usingisoelectric point methods 90±9 spots in HAc5, 193±11spots in HAccB5 strain.There are 80matched spots between gels of HAc5and HAccB5 (the matching rate was 10%), Thecharacteristics of the 2-DE maps of ICPs from these three strains and two engineering strainpartially explain such differences.
     After digestion in gel with TPCK-trypsin, Cry1Ac amid the differentially expressedproteins were identified by MALDI-TOF-MS and searched in the SWISS-PROT database withMASCOT in two strains, it is found that the function of some of the different proteins, such astoxins protein (Cry1Ac、Cry2Aa、CryIG, CryH2, Cry1Ab16, Cry2Ac,), proteinsynthesis,transporter (ATPsynthase F1, gamma subunit, ATP synthase F1, beta subunit,translation elongation factor Ts, translation elongation factor G), metabolism (branched-chainamino acid aminotransferase, Enolase, pyruvate dehydrogenase complex E3 component,pyruvate dehydrogenase complex e1 component, beta subunit, fructose-bisphosphate aldolase,classⅱ, putative respiratory nitrate reductase delta chain, Negative regulator of geneticcompetence clpC/mecB), protein folding(chaperone protein dnak), hypothetical protein tlr2278,synthase beta chain, TEM-7 beta-lactamase, unknown hypothetical. we found two commonproteins. The heat shock proteins (Hsp60) and Translation Elongation Factor Tu, which help with protein refolding and prevent protein degradation, an exogenous insecticidal toxity gene hada significance effect on the expression sperectra of ICPs and on the virulence of the Bt strains aswell.
     In summary, it is a very usefull reference thought for us to screen, optimize fermentableconditions, fuse between cry gene and other gene, and analyse function protein for hight toxicitystrains from B.thuringiensis. Thus, the characteristic proteins of Cry, as identified in theirinsecticidal crystal proteomes, could also be used as new screening markers of the high toxicity.Cry and function proteomic has been identified the first systemic investigation B. thuringiensisstrain 4.0718, this bring forth new ideas that domain of different protoxin is close relationshipbetween insecticidal toxicity, recombinant mechanism and insect recepter.
引文
[1] 喻子牛.苏云金杆菌[M].北京:科学出版社,1990.
    [2] West A W. Persistence of Bacillus thuringiensis and Bacillus cereus in soil supplement with grass or manure [J]. Plant and Soil, 1985, 83:389-398.
    [3] 中国科学院微生物研究所.伯杰氏细菌鉴定手册[M].北京:科学出版社.
    [4] Hannay CL. Crystalline inclusions in aerobic spore-forming bacteria [J]. Nature, 1953, 172:1004.
    [5] Harmay CL, Fitz James P. The protein crystals of Bacillus thuringiensis Berliner [J]. Can J Microbiol, 1995, 1:674~710.
    [6] Adams L.F, Visick J.E, Whiteley H.R. A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp.israelensis 27-kilodalton crystal protein in Escherichia coli.J.Bacteriol. 1989, 171:521-530.
    [7] Meadows M P. Bacillus thuringiensis in the environment: ecology and risk assessment. In: Entwhistle P F, Croy J S, Bailey M J and Higgs S. Bacillus thuringiensis an Environmental Biopestitcide: Theory and Practice. New York: John Wiley&Sons [M].,1993, 195-220.
    [8] Hofmann C, H.Litht, R.Hutter, V.Pliska. Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brussicae) [J]. Eur.J.Biochem, 1988, 173:85-91.
    [9] Whiteley H R Schnepf E. Cloning expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli[J]. Proc Natl Acad Sci USA, 1981, 78(5):2893-2897.
    [10] Yoshisue H, Ihara K, Nishimoto T, et al. Expression of the genes for insecticidal crystal proteins in Bacillus thuringiensis: cryIVA, not cryIVB, is transcribed by RNA polymerase containing sigma H and that containing sigma E[J], FEMS Microbiol Lett, 1995, 127:65-72.
    [11] Leeadet M M, Franchon E. Updating the H-antigen classification of Bacillus thuingiensis[J]. Appl. Microbiol, 1999, 86: 660-672.
    [12] Schnepf, H.E, H.C.Wong, H.R.whiteley.The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence.J.biol.chem. 1985.260:6264-6272.
    [13] Crickmore N, Zeigler D R, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiol. Mol. Biol, 1998, 62:807-813.
    [14] Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein[J]. J. Bacteriol. 1995, 177:6027-6032.
    [15] 李荣森.苏云金杆菌的晶体蛋白质及芽孢包衣中的类晶体蛋白质成分,杀虫微生物纲要[M].北京:北京农业大学出版社,1991,65-71.
    [16] 戴美学,严芝学,李世国,等.苏云金杆菌SD-5菌株晶体蛋白的研究[J].山东师大学报,1995,10(4),424-428.
    [17] Li J, Carroll J, Ellar D J. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature[J]. 1991,353:815-821.
    [18] Grochulski P, Masson L, Borisova S, et al. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation[J]. J. Mol. Biol. 1995, 254:447-464.
    [19] Li J, Koni P A, Ellar D J. Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis subsp, kyushuensis and implications for membrane pore formation[J]. J. Mol. Biol. 1996, 257:129-152.
    [20] Morse R J, Stroud R M, Yarnamoto T. Structure of Cry2Aa suggests an unexpected receptor-binding epitope [J]. Structure. 2001, 9, 409-415.
    [21] Galitsky N, Cody V, Wojtczak A, et al. Structure of the insecticidal bacterial delta-endotoxin Cry3Bbl of Bacillus thuringiensis [J]. Acta Crystallogr.,2001, Sect.D 57, 1101.
    [22] Schnepf E, Crickmore N, Rie J V, et al. Bacillus thuringiensis and its pesticidal crystal proteins [J]. Microbiol Mol Biol Rev. 1998, 62(3): 775-806.
    [23] Bietlot H P, Carey P R, Pozsgay M, et al. Isolation of carboxyl-terminal peptides from proteins by diagonal electrophoresis: application to the entomocidal toxin from Bacillus thuringiensis[J]. Anal. Biochem. 1989, 181:212-215.
    [24] Brizzard B L, Schnepf H E, and Kronstad J W. Expression of the cryIB crystal protein gene of Bacillus thuringiensis [J]. Mol. Gen. Genet. 1991, 231: 59-64.
    [25] Wong H C, and Chang S. Identification of a positive retroregulator that stabilizes mRNA in bacteria [J]. Proc. Nacl. Acad. Sci. USA. 1986, 83:3233-3237.
    [26] Nierlich D P, and Murakawa G J. The decay of bacterial messenger RNA[J]. Prog. Nucl. Acid Res. Mol. Biol. 1996, 52:153-216.
    [27] Lee M K, Young B A, and Dean D H. Domain Ⅲ exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors [J]. Biochem. Biophys. Res. Commun. 1995, 216:306-312.
    [28] Ge Maagd R A, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world [J]. Trends Genet. 2001, 17(4): 193-199.
    [29] Flores H, Soberon X, Sanchez J, et al. Isolated domain Ⅱ and Ⅲ from the Bacillus thuringiensis CrylAb delta-endotoxin binds to lepidopteran midgut membranes [J]. FEBS Lett, 1997, 414:313-318.
    [30] Knight P J K, Crickmore N, Ellar D J. The receptor for Bacillus thuringiensis CryIA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N [J]. Mol Microbiol, 1994, 11: 429—436.
    [31] Hodgman T C, Ellar D J. Models for the .structure and function of the Bacillus thuringiensis δ-endotoxin determined by compilational analysis [J]. DNA Sequence, 1990, 1:97-106.
    [32] Gazit E, Diana D, Kerr L D, et al. The α-5 segment of Bacillus thuringiensis δ-endotoxin: invitroactivity, ion channel formation and molecular modeling [J]. Biochem J, 1994, 304: 895-902.
    [33] Wu D, Aronson A I. Localized mutagenesis defines regions of the Bacillus thuringiensis δ-endotoxin involved in toxicity and specificity [J]. J Biol Chem, 1992, 267:2311-2317.
    [34] Ghosh P, Shroud R M. Ion channels formed by a highly charged peptide [J]. Biochemistry, 1991, 30: 551-557.
    [35] Rapaport D, Shai Y J. Aggregation and organization of pardaxin in phospholipid membranes [J]. Biol Chem, 1992, 267:6502-6509.
    [36] Juan J E, Gregory W W, Martha A M, et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide. spectrum of activities against lepidopteran insects[J]. Proc Natl Acad Aci USA, 1996, 93: 5389-5394.
    [37] Agaisse H, and Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein [J]. J. Bacteriol. 1995, 177:6027-6032.
    [38] De Souza M T, Lecadet M, and Lereclus D. Full expression of the cryⅢA gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription [J]. J. Bacteriol. 1993, 175:2952:2960.
    [39] Perlak F J, Deaton R W, Armstrong T A, et al. Insect resistant cotton plants[J]. Bio/Technology. 1990, 8:939-943.
    [40] Bosch B, Bert S, Hilde V, et al. Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management[J]. Bio/Technology. 1994, 12:915-918.
    [41] 赵荣敏,范云六,石西四等.获得高抗虫转基因棉花研究[J].生物工程学报.1995,11(1):1-5.
    [42] 郭三堆,崔洪志,夏兰芹等.双价抗虫转基因棉花的研究[J].中国农业科学,1999,32(3):1-7.
    [43] Wiwat C, Lertcanawanichakul M, Siwayapram P, et al. Gene. 1996, 179(1):119-126.
    [44] Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp, pakistani. Appl Microbiol Biotechnol 56:395-401
    [45] Smirnoff W A.Effect of chitinase on the action of Bacillus thuringiensis.Can Entomol, 1971, 103:1829-1831.
    [46] Shapirom, preisler H K, RobertsonJ 1.Enhancement of baculovirus activity on gypsy moth (Lepidoptera, Lymantriidae) by chitinase. J Economic Entomol, 1987, 80; 1113-1116.
    [47] Barboza-Corona J E,Nieto-Mazzocco E, BautistaM, et al. Clong, sequence, and expression of the chitinase gene chiA74from Bacillus thuringiensis. Appl Enviro Microbiol, 2003, 69 (2):1023-1029.
    [48] Thamthiankul S, Suan-NgayS, TantimavanichS, el al.Chitinase from Bacillus thuringiensis subsp.pakistani. Appl Micro Biotech, 2001, 56:395-401.
    [49] Regev,Keller M, Strizhov N,et al.Synergistc activity of a Bacillus thuringiensis δ—endotoxin and a bacterial endochitinase against Spodoptera larvae. Appl Envir Microbiol, 1996, 62 (10):3581-3586.
    [50] Liu M, Cai QX, Liu HZ, Zhang BH, Yan JP, Yuan ZM (2002)
    [51] Chitinolytic activities in Bacillus thuringiensis and their synergism effects on larvicidal activity. J Appl Microbiol 93:374-379
    [52] Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spo doptera littoralis larvae. Appl Environ Mi crobiol 62:3581-3586
    [53] Sirichotpakom N, Rongnoparut P, Choosang K, Panbangred W (2001) Coexpression of chitinase and the cryllAal toxin genes in Bacillus thuringiensis serovar israelensis. J Invertebr Pathol 78:160-169
    [54] Tantimavanich S, Pantuwatana S, Bhumiratana A, Panbangred W (1998) Multiple chitinase enzymes from a single gene of Bacillus licheniformis TP-1. J Ferment Bioeng 85:259-265
    [55] Wiwat C,Thaithanum S,PantuwatanaS,et al.Toxicity of chitinase-producing Bacillus thuringiensis ssp.Kurstaki HD-1(G) toward Plutella xylostella. JInvert Pathol,2000,76 (4):270-277Sampson MN, Gooday GW. Microbiology. 1998, 144 (8): 2189-2194.
    [56] 王芳,顾奇才,武家才,张传溪.HaSNPV几丁质酶基因在大肠杆菌和昆虫细胞中的表达及其产物对Bt杀虫剂的增效作用[J].中国生物化学与分子生物学报,2004,20(6)792-797.
    [57] Wilkins M ea, (ed.), Proteome Research: New Frontiers in Functional Genomics 1997: Springer.
    [58] Champion, K. M., J. C. Nishihara, J. C. Joly, D. Arnott. Similarity of the Escherichia. coli proteome upon completion of different biopharmaceutical fermentation processes. Proteomics.2001, 1: 1133-1148.
    [59] Pandey A, Mann M. proteomics to study genes and genomes. Nature, 2000, 405(6788): 837-46
    [60]Brunet S, Thibault P, Gagnon E, Kearney P, Bergeron J J M, Desjardins M.Organelle proteomics :looking at less to see more. Trends Cell Biol, 2003 ,13 :629-638
    [61]Fields S. Proteomics - Proteomics in geomeland. Science, 2001,291 (5507):1221.
    [62]Agaton C, Uhlen M, and Hober S. Genome-based proteomics. Electrophoresis, 2004, 25(9): 1280-8.
    [63] Jang J H, Hanash S. Profiling of the cell surface proteome. Proteomics, 2003 ,3(10) :1947— 1954
    [64] Pen JM, Schwartz D, Elias JE, et al. Aproteomics approach to understanding protein ubiquitination. Nature Biotechnology, 2003,21(8):921-6.
    [65]Phizicky E, Bastiaens PI, Zhu H, et al. Protein analysis on a proteomic scale. Nature, 2003, 422(6928):208-15.
    
    [66]De Hoog CL, Mann M. Proteomics. Annu Rev Genomics Hum Genet, 2004, 5:267-93.
    [67]Kunst, N. Ogasawara, I. Moszer, A.M. Albertini, G. Alloni, V. Azevedo, M.G. Bertero, P. Bessieres, A; Bolotin, et al., The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature 390 (1997) 249 - 256.
    [68]Humphery-Smith I, Cordwell SJ, and Blackstock WP. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis, 1997, 18(8): 1217-42.
    [69] Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem .1996, 68, 850-858.
    [70] Abbott A.A post-genomic challenge: learning to read patterns of protein synthesis [J].Nature, 1999,402:715-720.
    [71]Antelmann, H., R. Sapolsky, B. Miller, E. Ferrari, G. Chotani, W. Weyler, A. Gaertner, and M. Hecker. Quantitative proteome profiling during the fermentation process of pleiotropic Bacillus subtilis mutants. Proteomics.2004,4:2408-2424.
    [72]Han, M.-J., and S. Y. Lee.Proteome profiling and its use in metabolic and cellular engineering. Proteomics. 2003, 3: 2317-2324.
    [73] Prentice Hd, Webster KA. Genomic and proteomic profiles of heart disease. Trends Cardiovasc Med,,2004,14(7):s282-8.
    [74]Dreger M. Proteome analysis at the level of subcellular structures. Eur J Biochem , 2003 , 270 (4) :589-599
    [75]Prokisch H ,Scharfc C ,Camp D G,2nd ,Xiao W,David L ,Andreoli C , Monroe M E ,Moore R J ,Gritsenko M A ,Kozany C ,Hixson K K,Mottaz HM, Zischka H ,Ueffing M, Herman Z S ,Davis R W,Meitinger T, Oefner P J, Smith R D , Steinmetz L M. Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol,2004,2 (6):795~804
    [76] Dreger M. Subecllular proteomics. Mass Spectrometry Reviews, 2003, 22(16):3369-77.
    [77] Kumar A, Adgarwal S, Heyman JA, et al. Subcellular localization of the yeast proteome. Genes & Development, 2002, 16(6):707-19.
    [78] Miksik I, Deyl Z. Separation of proteins and peptides by capillary electrophoresis in acid buffers containing high concentrations of surfactants [J]. J. Chromatogr. A, 1999, 852(1):325-336.
    [79] Gygi S P, Aebersold R. Mass spectrometry and proteomics [J].Current Opinion in Chemical Biology, 2000, 4:489-494.
    [80] Ishihama Y, Katayama H, Asakawa N. Surfactants Usable for Electrospray Ionization Mass Spectrometry [J]. Analytical Biochemistry, 2000, 287(10): 45-54.
    [81] Udiavar S, Apffel A, Chakel J, Swedberg S, Hancock W S, Pungor E. Anal. chem., 1998, 70(17):3572-3578.
    [82] Editor.Pittcon spotlight is on proteomics, Chem&Eng.news, 2001,79(14):47-49.
    [83] 陈润生.生物信息学[J].生物物理学报,1999,15(1):5-13.
    [84] Gygi S P, Aebersold R. Mass spectrometry and proteomics [J].Current Opinion in Chemical Biology, 2000, 4:489-494.
    [85] 兰彦,柳正良,钱小红.蛋白质组学—开辟21世纪药物研究的新思路[J].国外医学·药学分册,2000,27(30):129-133
    [86] Washburn MP, Wolters D, Yates JR. Nature Biotech.2001, 19:242-247.
    [87] Yao, X.Freas, A.Ramirez, J, Demirev PA, Fenselau C, Anal Chem, 2002, 73:2836-2842.
    [88] Chakraborty, A.Regnier, F. E. J. Chromatogr. A 2002, 949:173-184.
    [89] Ong, S. E.et al.Mol.Cell Proteomics, 2002, 1:376-386.
    [90] Jebanathirajah J, Steen H, Roepstorff P, Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning [J]. Am. Soc. Mass Spectrum2003, 14(7):777-784.
    [91] Herbert BR, Molloy MP, Walsh BJ.et.al. Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent [J].Electrophoresis, 1998, 19 (5):845-851.
    [92] Chevallet M, Santoni V, Poinas A, et al. New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis [J].Electrophoresis, 1998,19(11):1901.
    [93] Bateman KP, white RI, et al. Characterization of protein glycoforms by capillary-zone electrophoresis nano electrospray mass spectrometry [J].J. Chromatogr.A. 1998, 794:327-344.
    [94]Gorg A, Obermaier C, BOGUTH G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000,21(6):1037-53.
    [95]Gorg A, Weiss W, Dunn M J.current two-dimensional electrophoresis technology for proteomics, Proteomics,2004,4 (12) : 3665-85
    [96]Mauk MR, Mauk AG, Chen YL, Douglas D, Tandem mass spectrometry of protein-protein complexes: cytochrome c-cytochrome b5[J].Am. Soc.Mass Spectrum. 2002,13:39-71.
    [97]Lahm HW, Langen H. Mass spectrometry: A tool for the identification of proteins separated by gels. Electrophoresis, 2000,21(11):2105-14.
    [98]Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928): 198-207.
    
    [99]Gorg A, Obermaier C,Boguth G. et al. Very alkaline immobilized pH gradients for two di mensional electrophoresis of ribosomal and nuclear proteins [J]. Electro- phoresis. 1997,18 (3-4):328-337.
    [100]Gorg A, Boguth G, Obermaier C, Weiss W. Two-dimensional electrophoresis of proteins in an immobilized pH 4-12 gradient. Electrophoresis [J], 1998 19(8-9):1516-1519.
    [101]Gorg A, Obermaier C,Boguth G,et al. Recent developments in two-dimensional gel electrophoresis with immobilized pH gradients: wide pH gradients up to pH 12, longer separation distances and simplified procedures [J]. Electrophoresis, 1999,20(4-5):712-717.
    [102] Klose J. Genotypes and phenotypes [J]. Electrophoresis, 1999, 20 (4-5): 643-652. Steinberg TH, Lauber WM, Berggren K. Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution [J]. Electrophoresis, 2000,21(3):497-508.
    [103] Rabilloud T, Charmont S, Rabilloud T. Springer, Berlin, Heidelberg, New York 2000:107-126.
    [104]Lopez MF, Berggren K, Chernokalskaya E. A comparison of silver stain and SYPRO Ruby protein gel stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling [J]. Electrophoresis, 2000,21(17): 3673-3683.
    [105]Patton WF. A thousand points of light: the application of fluorescence detection technologies to two- dimensional gel electrophoresis and proteomics [J]. Electrophoresis, 2000,21(6):1123-1144.Electrophoresis, 2000,21 (6): 1123-1144.
    [106]Feng BB, Smith RD.J.Am.Soc. Mass Spectr.2000,1 l(l):94-99.
    [107]Meiring HD, Heeft EVD, Hove G.J, etc. Nanoscale LC-MS (n): technical design and applications to peptide and protein analysis [J].J. Sep.Sci.2002,25:557-568.
    [108]Nakai K, Horton P: PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999, 24:34-36.
    
    [109]Chait BT, Wang R, Beavis RC. Protein ladder sequencing [J].Science, 1993, 262 (5130):89-92.
    [110] Schwartz JC, Senko MW, Syka JEP. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer [J]. J Am Soc Mass Spectrom, 2002,13: 659-669.
    [111]Shevchenko A, Loboda A, end W et al. Anal.Chem. 2000,72(9):2132-2141.
    [112]Goodlett DR, Bruce JE, Anderson GA, Rist B, Pasa-Tolic L, FiehnO,Smith RD, Aebersold R.Anal. Chem.2000, 72 (6):1112-1118.
    
    [113]Michalski W P, Shiell B J. Anal. Chi m. Acta.1999,383 (1-2):27-46.
    [114]Banks J F, Gulcicek E E. Anal. Chem.1997, 69:3973-3978.
    [115]Fountoulakis M, Lahm HW.J. Hydrolysis and amino acid composition analysis of proteins [J].J.Chromatogr.A, 1998, 826:109-134.
    [116]Blonder J, Terunuma A, Conrads TP, Chan KC, Yee C, Lucas DA, Schaefer CF, Yu LR, Issaq HJ, Veenstra TD, Vogel JC: A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry. J Invest Dermatol 2004, 123:691-699.
    [117] Springer DL, Auberry DL, Ahram M, Adkins JN, Feldhaus JM, Wahl JH, Wunschel DS, Rodland KD: Characterization of plasma membrane proteins from ovarian cancer cells using mass spectrometry. Dis Markers 2003,19:219-228.
    [118]Blonder J, Goshe MB, Moore RJ, Pasa-Tolic L, Masselon CD, Lipton MS, Smith RD: Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res 2002,1:351-360.
    [119] Blonder J, Conrads TP, Yu LR, Terunuma A, Janini GM, Issaq HJ, Vogel JC, Veenstra TD: A detergent- and cyanogen bromide-free method for integral membrane proteomics: application to Halobacterium purple membranes and the human epidermal membrane proteome. Proteomics 2004,4:31-45.
    [120] Man P, Novak P, Cebecauer M, Horvath O, Fiserova A, Havlicek V, Bezouska K: Mass spectrometric analysis of the glycosphingolipid-enriched microdomains of rat natural killer cells. Proteomics 2005, 5:113-122.
    [121]Nielsen PA, Olsen JV, Podtelejnikov AV, Andersen JR, Mann M, Wisniewski JR: Proteomic mapping of brain plasma membrane proteins. Mol Cell Proteomics 2005, 4:402-408.
    
    [122]Ong, S. E.et al.Mol.Cell Proteomics, 2002,1:376-386.
    [123]Jebanathirajah J, Steen H, Roepstorff P, Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning [J]. Am. Soc. Mass Spectrum2003,14(7):777-784.
    [124]Nuhse TS, Stensballe A, Jensen ON, Peck SC: Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 2004, 16:2394-2405.
    [125]CashP. Characterization of bacterial proteomes by two-dimensional electropho- resis. Anal Chim Acta.1998,372:121-145.
    [126] Antelmann H, Scharf C, HeckerM. Phosphate Starvation-Inducible Proteins of Bacillus subtilis: Proteomics and Transcriptional Analysis [J] Journal of Bacteriology, 2000,182 (16): 4478 -4490.
    
    [127]Drewes G, Bouwmeester T. Global app roaches to protein-protein interactions (J) . CurrOp in Cell Biol 2003, 15 (2): 199-205.
    
    [128]Mannazzu I., Guerra E., Ferretti F., Pediconi D., Fatichenti F.Vanadate and copper induce overlapping oxidative stress responses in the vanadate tolerant yeast Hansenula polymorpha [J]. Biochim. Biophys. Acta, 2000,1475: 151 -156.
    [129] Kim Y H , Han K Y, Lee K, Heo J H , Kang H A , Lee J. Comparative proteome analysis of Hansenulapol ymorpha DL.And A16. Proteomics, 2004,4 :2005-2013.
    [130]Guerreiro N, Djordjevic M A, Rolfe B G. Proteome analysis of the model microsymbiont Sinorhizobium meliloti: Isolation and characterisation of novel proteins [J].Electrophoresis, 1999,20:818-825.
    [131]Voigt B , Schweder T, Becher D , Ehrenreich A ,Got t schalk G, Feesche J , Maurer K H , Hecker M. Aproteomic view of cell physiology of Bacillus licheniformis.Proteomics , 2004,4 : 1465-1490.
    [132]Antelmann H, Scharf C, HeckerM. Phosphate Starvation-Inducible Proteins of Bacillus subtilis: Proteomics and Transcriptional Analysis [J] Journal of Bacteriology, 2000,182 (16): 4478-4490.
    [133]Pferdeort V A, Wood T K, Reardon K F. Proteomicchanges in Escherichia coli TG1 after metabolic engineering1798 化工学报第 57 卷forenhancedtrichloroethene biodegradation. Proteomics, 2003,3 (6): 1066-1069.
    [134] Zhou H, Ranish J A, Watts J D, et al. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry.Nature Biotech, 2002 ,20 (5): 512 — 515
    [135] Wang Y K, Ma Z, Quinn D F ,et al. Inverse 15~N—metabolic labeling/ mass spectrometry for comparative proteomics and rapid identification of protein markers/ targets. Rapid Commun Mass Spectrom, 2002 ,16 (14): 1389-1397.
    [136]Steen H, Pandey A. Proteomics goes quantitative : measuring protein abundance. Trends Biotech, 2002 ,20 (9): 361-364.
    [137] Jung E, Heller M, Sanchez J C, Hochstrasser D F. Proteomics meets cell biology: the establishment of subcellular proteomes. Electrophoresis, 2000, 21 (16): 3369~3377
    [138] Brunet S, Thibault P, Gagnon E, Keamey P, Bergeron J J M, Desjardins M. Organelle proteomics:looking at less to see more. Trends Cell Biol, 2003, 13:629~638
    [139] Houry WA, Frishman D, Eckerskom C et al. Identification of in vivo substrates of chaperonin GroEL [J]. Nature, 1999, 402:147-154.
    [140] Mogk A, Tomoyasu T, Goloubinoff P, et. al. Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB [J]. EMBO J. 1999, 18: 6934-6949.
    [141] O. ConnorCD, AdamP, AlefounderP, etal. The analysis of microbial proteomes: Strategies and data exploitation [J]. Electrophoresis, 2000, 21: 1178-1186.
    [142] Molloy MP, Herbert BR, Slade MB, et al. Proteomic analysis of the Escherichia coli outer membrane[J]. Eur. J. Biochem. Eur J Biochem. 2000, 267 (10): 2871-2881.
    [143] DeBacker DM, DeHoogt RA, FroyenG, et.al. Single allele knock-out of Candida albicans CGT1 leads to unexpected resistance to hygromycin Band elevated temperature [J]. Microbiology, 2000, 146: 353-365.
    [144] Guerreiro N, Ksenzenko VN, Djordjevic MA, et.al. Elevated Levels of Synthesis of over 20 Proteins Results after Mutation of the Rhizobium leguminosarum Exopolysaccharide Synthesis Gene pssA[J]. Journal of Bacteriology, 2000, 182(16): 4521-4532.
    [145] Antelmann H, Scharf C, Hecker M. Phosphate Starvation-Inducible Proteins of Bacillus subtilis: Proteomics and Transcriptional Analysis [J]. Journal of Bacteriology, 2000, 182 (16): 4478-4490.
    [146] 唐冬生,禹宽平,汤熙翔,等.生物信息学技术克隆人类神经髓鞘蛋白零家族基因[J.生物化学与生物物理学报,2000,32(4):364-368.
    [147] 田芳,陈主初.运用生物信息学方法快速获取与肿瘤基因同源的EST及其新基因克隆的策略[J].生命科学,2000,12(2):72-75.
    [148] Chakravarti DN, Fiske MJ, Flectcher LD, et.al. Application of genomics and proteomicsfor identification of bacterial gene products as potential vaccine candidates [J]. Vaccine, 2001, 19: 601-612.
    [149] Marinda C. Oosthuizen, Bridgitta Steyn, Denise Lindsay.etal. Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm. FEMS Microbiology Letters 194 (2001) 47-51.
    [150] Marinda C. Oosthuizen, Bridgitta Steyn, Jacques Theron. etal. Proteomic Analysis Reveals Differential Protein Expression by Bacillus cereus during Biofilm Formation. Applied and Environmental Microbiology, 2002, 2770-2780.
    [151] Paula M. Periago, Willem van Schaik, Tjakko Abee.etal. Identification of Proteins Involved in the Heat Stress Response of Bacillus cereus ATCC 14579. Applied and Environmental Microbiology, 2002, 68(7): 3486-3495.
    [152] Anthony W. Francis, Christy E. Ruggiero, Andrew T. Koppisch.etal. Proteomic analysis of Bacillus anthracis Sterne vegetative cells. Biochimica et Biophysica Acta 1748 (2005) 191-200.
    [153] Erh-Min Lai, Nikhil D. Phadke, Maureen T. Kachman.etal. Proteomic Analysis of the Spore Coats of Bacillus subtilis and Bacillus anthracis. JOURNAL OF BACTERIOLOGY, 2003: 1443-1454.
    [154] Elizabeth J. Gray, Marcos Di Falco, Alfred Souleimanov.etal. Proteomic analysis of thebacteriocinthuricin17produced by Bacillus thuringiensis NEB17. FEMS Federation of European Microbiological Societies Microbial Lett255 (2006)27-32.
    [155] 邹先琼,夏立秋,孙运军.苏云金杆菌4.0718菌株杀虫晶体性质的研究.生命科学研究,2001,5(3):242-245.
    [156] 夏立秋,邹先琼,莫湘涛.苏云金杆菌4.0718菌株杀虫晶体65kD原毒素的质谱分析.激光生物学报,2001,10(4):281-284.
    [157] 丁学知,夏立秋,高必达.苏云金杆菌4.0718高毒力杀虫菌株发酵条件的研究.食品与发酵工业,2003,29(2):26-29.
    [158] 丁学知,夏立秋.苏云金杆菌高毒力菌株4.0718的快速选育.中国生物防治,2001,17(4):163-166.
    [159] Sreelatha T. Reddy, N. Suresh Kumar and G. Venkateswerlu. Comparative analysis of intracellular proteases in sporulated Bacillus thuringiensis strains. Biotechnology Letters, 1998, 20(3): 279-281.
    [160] Fu-Chu Chen, Li-Fen Shen, Ming-Chu Tsai.etal. The IspA protease's involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis. Biochemical and Biophysical Research Communications 2003,312: 708-715.
    [161] Rebecca J. McNall, Michael J. Adang. Identification of novel Bacillus thuringiensis CrylAc binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochemistry and Molecular Biology 2003,33,999-1010.
    [162] Janine M. Lamonica, MaryAnn Wagner, Michel Eschenbrenner. etal. Compar- ative Secretome Analyses of Three Bacillus anthracis Strains with Variant Plasmid Contents. INFECTION AND IMMUNITY, 2005,(73) 3646-3658.
    [163] Kwang Yong Lee, Eun Young Kang, Sooil Park.etal. Mass spectrometric sequencing of endotoxin proteins of Bacillus thuringiensis ssp. konkukian extracted from polyacrylamide gels. Proteomics 2006, 6, 1512-1517.
    [164]Charani Ranasinghe, Raymond J.Akhurst.Matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS)for detecting novel Bt toxins.Journal of Invertebrate Pathology. 2002,79,51-58.
    [165]Husi H, Grant SGN. Proteomics of the nervous system. Trends in Neurosciences, 2001, 24(5):259-66.
    [166]Peirce M J, Wait R,Begum S , Saklatvala J , Cope A P. Expression profiling of lymphocyte plasma membrane proteins. Mol Cell Proteomics, 2004 ,4(1) :56-65
    [167]Yi E C ,Marelli M,Lee H , Purvine S O ,AebersoId R Aitchison J D , Goodlett D R. Approaching complete peroxisome characterization by gas-phase fractionation. Electrophoresis ,2002 ,23(18) :3205-3216
    [168] Andersen J S ,Wilkinson CJ ,Mayor T ,Mortensen P ,Nigg E A ,Mann M. Proteomic characterization of the human centrosome by proteincorrelation profiling. Nature ,2003 ,426(6966) :570-574
    [169] Check E. Proteomics and cancer - Rdunning before we can walk? Nature, 2004, 429(6991):496-7.
    [170]F.W. McLafferty, E.K. Fridriksson, D.M. Horn, M.A. Lewis, R.A. Zubarev, Techview: biochemistry. Biomolecule mass spectrometry, Science 284 (1999) 1289 - 1290.
    [171]Saegusa A. Japan boosts proteomics and cell biology ··· Nature, 1999, 401(6751):313-.319
    [172]Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, et al. Proteomics in human disease: Cancer, heart and infectious diseases. Electrophoresis, 1999,20(10):2100-10.
    [173]Alaiya AA, Franzen B, Auer G, et al. Cancer proteomics: From identification of novel Markers to creation of artificial learning models for dftumor classification. Electrophoresis, 2000,21 (6): 1210-7.
    [174]Bell A W,Ward M A ,Blackstock W P ,Freeman H N ,Choudhary J S , Lewis A P ,Chotai D ,Fazel A ,Gushue J N ,Paiement J ,Palcy S ,Chevet E ,Lafreniere2Roula M,Solari R ,Thomas D Y,Rowley A ,Bergeron J J .Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem ,2001 , 276 (7) :5152-5165.
    [175] Adam P J ,Boyd R , Tyson K L , Fletcher G C , Stamps A , Hudson L , Poyser H R , Redpath N, Griffiths M, Steers G, Harris A L , Patel S , Berry J ,Loader J A, Townsend R R ,Daviet L ,Legrain P , Parekh R ,Terrett J A. Comprehensive proteomic analysis of breast cancer cellmembranes reveals unique proteins with potential roles in clinical Cancer. J Biol Chem ,2003 ,278(8) :6482-6489
    [176]Washburn M P ,Wolters D ,Yates J R ,3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol, 2001 , 19 (3) :242- 247
    [177] Taylor S W, Fahy E, Zhang B, Glenn G M,Wamock D E,Wiley S, Murphy A N, Gaucher S P, Capaldi R A, Gibson B W, Ghosh S S. Characterization of the human heart mitochondrial proteome. Nat Biotechno1,2003,21 (3):281~286
    [178] Hanash SM. Global profiling of gene expression in cancer using genomics and proteomics. Current Odpinion in Molecular Tdherapeutics, 2001, 3(6):538-45.
    [179] Ozawa T, Sako Y, Sato M, Kitamura T, Umezawa Y. A genetic approach to identifying mitochondrial proteins. Nat Biotechnol, 2003,21 (3):287~293
    [180] Hood L. Systems biology: New opportunities arising from genomics, proteomics and beyond. Experimental Hematology., 1998, 26(8):681-.
    [181] Hood L. Integrative systems biology: Genomics, proteomics, and computation. Adbstracts of Papers of the American Cdhemicald Society, 2002, 224:U205-U.
    [182] Blonder J, Goshe M B, Moore R J, Pasa-Tolic L, Masselon C D, Lipton M S, Smith R D. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res,2002,4:351~360
    [183] 喻子牛.苏云金芽孢杆菌制剂的生产和应用[M].北京:农业出版社,1993.66-83.
    [184] 乐超银,刘子铎,喻子牛,等.苏云金芽孢杆菌杀虫晶体蛋白基因cry3A在鳞翅目特异菌株中的表达及杀虫特性[J].微生物学报,2000,40(2):139-142
    [185] 夏立秋,丁学知,莫湘涛,等.苏云金杆菌高效速效杀虫新菌种的研究[A].中国微生物学会编.迎接21世纪微生物学研讨会论文摘要集[C].北京:中国微生物学会,2000.156.
    [186] 刘云霞,张刚应.拮抗细菌对Bt制剂杀虫效果的影响[J].中国生物防治,1999,15(2)70-72.
    [187] 陈在佴.一种从土壤中分离苏云金杆菌的新方法[J].中国生物防治,1996,12(2):75-77.
    [188] Hofte H, Whiteley H R. Insecticidal crystal protein of Bacillus thuringiensis [J]. Microbiol. Rev., 1989, 53:242-255.
    [189] 祖若夫.微生物学实验教程[M].上海:复旦大学出版社,1993.177-190.
    [190] 微生物所诱变育种组.微生物诱变育种[M].北京:科学出版社,1972.
    [191] 诸葛健,王正祥.工业微生物实验技术手册.北京:中国工业出版社,1994.391~392.
    [192] 陈代杰,朱宝泉.工业微生物菌种选育与发酵控制技术.上海:上海科学技术文献出版社,1995.
    [193] 袁晓华.植物生理生化实验.北京:高等教育出版社,1983.1~5.
    [194] Plummer D T. An Introduction to Practical Biochemistry. London: McGraw-Hill Book Co., Limited, 1978. 174~184.
    [195] 祖若夫,胡宝龙,周德庆,微生物学实验教程[M].上海:复旦大学出版社,1993.119.
    [196] 杜荣骞.生物统计学.北京:高等教育出版社,1984.215~218.
    [197] 申继忠,钱传范.苏云金杆菌(Bt)芽孢的杀虫作用,生物防治通报,1993,9(4):181~184.
    [198] 高影梅,李荣森,傅建红,等.杀鞘翅目苏云金杆菌新菌株及其杀虫剂的研究[J].微生物学报,1999,39(6):515-520.
    [199] 郭三堆.植物Bt抗虫基因工程研究进展[J].中国农业科学,1995,28(5):8-13.
    [200] Herve G. How does, Bacillus thuringiensis prduce so much insectiidal crystal protein [J]. J. of Biotech. 1995,177(21):6027-6032.
    [201] Brandt C R. The peritrophic membrane: ultrastructural analysis and Function as amechanical barrier to microbial infection in Orgyia pseudotsugata. J Invertebr Pathol, 1978, 32:12-14.
    [202] Smirnoff W A.Effect of chitinase on the action of Bacillus thuringiensis.Can Entomol, 1971, 103:1829-1831.
    [203] Shapirom, preisler H K, RobertsonJ l.Enhancement of baculovirus activity on gypsy moth (Lepidoptera, Lymantriidae) by chitinase. J Economic Entomol, 1987, 80, 1113-1116.
    [204] Barboza-Corona J E,Nieto-Mazzocco E, BautistaM, et al. Clong, sequence, and expression of the chitinase gene chiA74 from Bacillus thuringiensis. Appl Enviro Microbiol, 2003, 69 (2):1023-1029.
    [205] Yhamthiankul S, Suan-NgayS, Tantimavanich S, el al.Chitinase from Bacillus thuringiensis subsp.pakistani. Appl Micro Biotech, 2001, 56:395-401.
    [206] Regev,Keller M,Strizhov N,et al.Synergistc activity of a Bacillus thuringiensis δ—endotoxin and a bacterial endochitinase against Spodoptera larvae. Appl Envir Microbiol, 1996,62 (10):3581-3586.
    [207] Wiwat C,Thaithanum S,PantuwatanaS,et al.Toxicity of chitinase-producing Bacillus thuringiensis ssp.Kurstaki HD-1(G) toward Plutella xylostella. JInvert Pathol,2000,76 (4):270-277.
    [208] Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Micro Rev, 1989,53(2):242~255.
    [209] Schnepf E. Crickmore N, Lereclus D, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev,1998,62(3):775~806.
    [210] Crickmore N, Zeigler D R, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev, 1998,62(4):807~813
    [211] Ballester V, Granero F, Bosch D, et al. Role of Bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth. Appl Environ Microbiol, 1999, 65(5):1900~1903.
    [212] Sambrook J, Russell D.Molecular Clong, A Laboratory Manual, 3nd ed. New York: Cold Spring Harbor Laboratory Press, 2001.
    [213] Kalman S, Kiehne K L, Libs J L, et el. Clong of a novel cry1 Ctype gene from a strain of Bacillus thuringiensis subsp. Galleriae. Appl Environ Microbiol, 1993, 59: 1131-1137.
    [214] 魏芳,孙明,喻子牛.苏云金杆菌拟步行甲亚种质粒复制子oril65的克隆。微生物学报,2002,42(1):45—49.
    [215] 刘全兰,张何,陈宇,等.一种改进的提取苏云金杆菌质粒DNA的方法.湖南师范大学自然科学学报,2001,03:73-74.
    [216] 夏立秋,邹先琼,莫湘涛.苏云金杆菌4.0718菌株杀虫晶体65kD原毒素的质谱分析.激光生物学报,2001,04:280-284.
    [217] 胡宏源,高必达,丁学知,等.苏云金芽孢杆菌伴孢晶体20kb DNA中cry1Ac基因的克隆、高效表达和生物活性研究.生物工程学报,2004,20(5):656-661.
    [218] 钟连胜,谢天健,吴继星,等.棉铃虫作供食虫的苏云金杆菌制剂毒力生物测定的研究[J].生物防治通报,1990,6(增刊):1—5.
    [219] Ceron J, Ortiz A, Quintero R, et al. Specific PCR primers directed to identify cryⅠ and cryⅢ genes within a Bacillus thuringiensis strain collection. Appl Environ Microbiol, 1995, 61 (11): 3826~3831.
    [220] 宋福平,张杰,谢天健,等.苏云金芽孢杆菌cry基因PCR2RFLP鉴定体系的建立.中国农业科学,1998,31(3):13~18.
    [221] 夏立秋,张何,刘全兰,等.苏云金杆菌4.0718质粒上杀虫晶体蛋白基因的PCR分析.生物技术通报,2002,(2):35~37.
    [222] 夏立秋,孙运军,莫湘涛,等.苏云金杆菌杀虫晶体蛋白毒性片段的结构域在毒杀昆虫中的作用.生物工程进展,2002,22(1):73~76.
    [223] Haider MZ, Knowles B and Ellar DJ. Specificty of Bacillus thuringiensis Var. colmeri insecticidal delta-endotoxin by differenial processing of the protoxin by larval gut proteases [J]. Eur. J. Biochem, 1986, 156: 531-540.
    [224] E. Schnepf, N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, D. H. Dean, Bacillus thuringiensis and Its Pesticidal Crystal Proteins[J]. Microbiol. Mol. Biol. Rev, 1998, 62: 775-806.
    [225] 丁学知,高必达,夏立秋,等.苏云金芽孢杆菌4.0718菌株的杀虫晶体蛋白基因的分析.微生物学报,2003,43(3):413-417.
    [226] Hu Hongyuan, Xia Liqiu, Shi Hongjuan, et al. 2004. Cloning and superexpression of cry1Ac gene from 20kb DNA associated with Bacillus thuringiesis Cry1A crystal protein.. Chinese Journal of Biotechnoloby. 20: 656-661.
    [227] Palidam M. The insecticidal crystal protein Cry1A(c) from Bacillus thuringiensis in highly toxic for Heliothis armigera. J Invertebr Pathol, 1992, 59: 109-111.
    [228] Wong H C, Schnepf H E, Whiteley H R. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J Biol Chem, 1983, 258(3): 1960-1967.
    [229] Neirlich D P, Murakawa G J. The decay of bacterial messenger RNA. Prog. Nucl. Acid Res. Mol. Biol, 1996, 52: 153-216.
    [230] Chang L L, Grant R, Aronson A. Regulation of the packaging of Bacillus thuringiensis δ-endotoxins into inclusions. Appl Enviro Microbiol, 2001, 67(11): 5032-5036.
    [231] Perlak F J, Deaton R W, Armstrong T A, et al. Insect resistant cotton plants. Bio/Technology, 1990, 8: 939-943.
    [232] 郭三堆,崔洪志,夏兰芹,等.双价抗虫转基因棉花的研究.中国农业科学,1999,32(3):1-7.
    [233] Chen X J, Lee M K, Dean D H. Site-directed mutations in a highly conserved region of Sampson MN, Gooday GW. Microbiology. 1998, 144 (8): 2189-2194.
    [234] S. Tantimavanich, S. Pantuwatana, A. Bhumiratana, W. Panbangred, Cloning of a chitinase gene into Bacillus thuringiensis subsp, aizwai for enhanced insecticidal activity, J. Genet. Appl. Microbiol. 43 (1997) 341-347.
    [235] Hofte H, Whiteley H R. Insecticide crystal proteins of Bacillus thuringiensis. Micro Rev, 1989, 53 (2): 242-255.
    [236] Aronson A I. Bacillus thuringiensis and its use as a biological insecticide [J]. Plant Breed. Rev. 1989, 12(1):19-45.
    [237] Schnepf E, N Crickmore, J van Rie, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev, 1998, 62: 775-806.
    [238] 吴谋胜,范学工.蛋白质组学技术体系在细菌研究中的应用国外医学流行病学传染病学分册.2004,31(2):65—67.
    [239] Buttner K., J. Bernhardt, C. Scharf, R. Schmid, U. Mader, C. Eymann, H. Antelmann, A. Volker, U. Volker, M. Hecker A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 2001, 22:2908-2935.
    [240] Marinda C. Oosthuizen, Bridgitta Steyn, Denise Lindsay.et al. Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm [J]. FEMS Microbiology Letters 194 (2001) 47-51.
    [241] Marinda C. Oosthuizen, Bridgitta Steyn, Jacques Theron. etal. Proteomic Analysis Reveals Differential Protein Expression by Bacillus cereus during Biofilm Formation [J]. Applied and Environmental Microbiology, 2002, 6, 2770-2780.
    [242] Erh Min Lai, Nikhil D Phadke, Maureen T, et al. Proteomic analysis of the spore coats of Bacillus thuringiensis and Bacillus anthracis. Journal of Bacteriology, 2003, 185 (4): 1443-1454.
    [243] Ritsukokuwana, Yasuhiro Kasahara, Machiko Fujibayashi, et.al.proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology. 2002, 148, 3971-3982.
    [244] Michel Gohar, Nathalie Gilois, Richard Graveline et al.A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes [J]. Proteomics, 2005,5,3696-3711.
    [245] Ratnesh Chaturvedi, Vinod Bhakuni, Rakesh Tuli. The δ-endotoxin proteins accumulate in Escherichia coli as a protein-DNA complex that can be disscociated by Hydrophobic Interaction Chromatogarphy. Protein Expression and Purification,. 2000, 20: 21-26.
    [246] Charani Ranasinghe, Raymond J Akhurst. Matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for detecting novel Bt toxins. Journal of Invertebrate Pathology, 2002, 79: 51-58.
    [247] Luke Masson, Martin Erlandson, Marianne Puzstai-carey,et al.A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains[J].Applied and Environmental Microbiology 1998, 64(12):4782-4788.
    [248] Cabib E. The synthesis and degradation in chitin [J]. Advanced Enzymology, 1987, 59, 59-101.
    [249] 夏立秋,邹先琼,莫湘涛.苏云金杆菌4.0718菌株杀虫晶体65kD原毒素的质谱分析[J].激光生物学报,2001,10(4):281-284.
    [250] 丁学知,夏立秋,高必达.苏云金杆菌4.0718高毒力杀虫菌株发酵条件的研究[J].食品与发酵工业,2003,29(2):26-29.
    [251] White-Shang Kuo, Jong-Huon Lin, Ching-Chou Tzeng.etal.Cloning of Two New cry Genes from Bacillus thuringiensis subsp, wuhanensis strain [J].Current microbiology. 2000, 40: 227-232
    [252] 雷萍,张金松,周令,等.苏云金芽孢杆菌以色列亚种对花翅摇蚊作用特性研究[J].微生物学通报.31(3)2004,17-21.
    [253] 龙小山.苏云金杆菌crylAc基因与神经毒素基因hwtx-1的融合克隆表达及其融合蛋白的活性研究.中国优秀硕博论文全文数据库.2005.
    [254] 王瑛,白成,温洁.苏云金杆菌晶体与芽孢分离的研究.微生物学报,1980,20(3):285-288.
    [255] Bradford M M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding [J].Anal. Biochem. 1976 (72):248-254.
    [256] Bergman A C, Benjamin T, Alaiya A, et. al. Identification of gel separated tumor make proteins by mass spectrometry. Electrophoresis, 2000, 21 (3): 679-686.
    [257] 郭尧君.蛋白质电泳实验技术.北京:科学出版社,1999,141-142.
    [258] Charani Ranasinghe, Raymond J Akhurst. Matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for detecting novel Bt toxins [J]. Journal of Invertebrate Pathology, 2002, 79: 51-58.
    [259] Fernandez J, Gharahdaghi F, Misehe S M.Routine. Identification of proteins from sodiumdodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoridemembranes using matrix assisted laser desorption/ionization time of flight mass spectrometry(MALDI-TOF-MS).Electrophoresis, 1998, 19: 1036-1045.
    [260] Gharahdaghi F, Weinberg C R, Meagher D A, et al. Mass spectrometric identification of proteins from silver stained polyacrylamide gel: A method for the removal of silver ionsto enchance sensitivity. Electrophoresis, 1999, 20: 601-605.
    [261] Anna Shevchenko, Mirta Mittelstedt, Leal de Sousa, Patrice Waridel, Silvia Tolfo Bittencourt, Marcelo Valle de Sousa, and Andrej Shevchenko. Sequence Similarity-Based Proteomics in Insects: Characterization of the Larvae Venom of the Brazilian Moth Cerodirphia speciosa [J]. Journal of Proteome Research 2005(4)862-869.
    [262] Habermann B, Oegema J, Sunyaev S, Shevchenko A. The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches [J]. Mol Cell Proteomics. 2004(3): 238-49.
    [263] Jensen O N, Podtelejnikov A N, Mann M. Identification of the components of simple protein, mixtures by high-accuracy peptide mass mapping and database searching [J]. Anal Chem, 1997, 69: 4741-4750.
    [264] Poul Nissen, Jens Nyborg. EF-G and EF-Tu Structures andTranslation Elongation in Bacteria [J]. Encyclopedia of Biological Chemistry. 2004,2:1-5
    [265] 姚玉峰,卢捷,俞浩等.力复霉素产生菌地中海拟无枝菌酸菌U32丙氨酸脱氢酶基因克隆及表达[J].微生物学报.2003,43(2):206-213.
    [266] X.G.Ging, H.Hong.The fuction of HSP60 [J].Acta biochimicaet biophysica sinica. 2003,30(4):649
    [267] Rebecca J. McNall, Michael J. Adang. Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis [J]. Insect Biochemistry and Molecular Biology 33 (2003) 999-1010.
    [268] L.Q.Xia, Y.J.Sun. X.T.Mo.The Function for the Toxic Fragment. of Bacillus thuringiensis Insecticidal Crystal Proteins to Cause Death of Larvae [J]. Progress in Biotechnology. 2002, 22(1):73-78
    [269] Xuezhi D,Hezh,Yunjun S, et al. Cloning and Expression Analysis of the cry1Ac Gene from Bacillus thuringiensis Strain 4.0718. Acta Laser Biology Sinica.2006, 15: 649-656.
    [270] R.J.Morse, Yamaoto, R.M.Stroud. Structure of Cry2Aa Suggests an Unexpected Receptor Binding Epitope. Structure [J]. 2001,9:409 - 417.
    [271]Pawel Grochulski, Luke Masson, Svetlana Borisova, etal. Bacillus thuringiensis Cry I A(a) insecticidal toxin:Crystal structure and channel formation [J]. J Mol Biol, 1995, 254: 447-464.
    [272]Lu H, Rajamohan, F Dean, etal. Identification of amino acid residues of Bacillus thuringiensis δ -endotoxin Cry I A(a) associated with membrane binding and toxicity to Bombyx mori[J]. 1994, 176: 5554-5559.
    [273] Jeremy L, Jenkins, Mi Kyong Lee, etal. Bivalent sequential binding model of a Bacillus thuringiensis toxic to gypsy moth amimopeptidase N receptor [J]. The Journal of Biological Chemistry, 2000, 275(19): 14423-14431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700