Pseudomonas sp. WBC-3菌株分解代谢4-硝基酚的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基芳香烃化合物是重要的化工原料,常作为医药、染料、农药等合成的前体。这类化合物能在环境中长期残留,已经对土壤、水体和大气造成了严重的污染。硝基芳香烃化合物能影响人体的物质代谢,有致癌、致畸和致突变等危险,严重威胁着人类的健康和生存。苯环结构的对称性和稳定性使硝基芳香烃化合物不易发生化学反应,而环境中的许多微生物却能够利用这些污染物作为唯一的碳源、氮源和能源来生长,能把这些污染物完全降解。微生物的这一特性使其在污染物的生物治理和生物修复中具有难以替代的优势,因而越来越受到人们的青睐。同时,对这些微生物的代谢途径和代谢基因的研究也成为本领域研究的热点。
     本论文的研究工作分为以下三个部分。
     第一部分是Pseudomonas sp.WBC-3对4-硝基酚的代谢途径研究。
     WBC-3是一株能够利用甲基对硫磷(Methyl Parathion,MP)和4-硝基酚(4-Nitrophenol,4-NP or PNP)做为唯一碳源、氮源及能源生长的革兰氏阴性菌。WBC-3降解MP的第一步是在甲基对硫磷水解酶(Methyl parathionhydrolase,MPH)的作用下生成4-硝基酚,然后再由其它的酶系完成4-硝基酚的代谢。
     目前报道的4-硝基酚的代谢途径主要有两种,根据其中间代谢产物的不同分别称之为对苯二酚途径和1,2,4-苯三酚途径。对苯二酚途径主要存在于在革兰氏阴性菌中,而1,2,4-苯三酚途径则在革兰氏阳性菌中广泛存在。我们前期的研究结果表明革兰氏阴性菌WBC-3是经对苯二酚途径降解4-硝基酚。在该途径中,4-硝基酚首先被氧化为对苯二醌(Benzoquinone),对苯二醌在还原酶作用下还原为对苯二酚(Hydroquinone),然后进入下面的开环途径。对苯二酚在对苯二酚双加氧酶的作用下开环生成γ-羟基粘康酸半醛(γ-Hydroxymuconic semialdehyde,HMSA),后者在脱氢酶作用下转化为马来酰乙酸(Maleylacetate,MA)。MA在MA还原酶作用下生成β-酮己二酸(β-ketoadipate)并最终进入三羧酸循环。
     目前唯一的与4-硝基酚代谢相关的基因及操纵子的报道来自于革兰氏阳性菌Rhodococcus opacus SAO101(Kitagawa et al,J Bacteriol,2004:4894),该菌经1,2,4-苯三酚途径降解4-硝基酚。目前尚没有关于4-硝基酚经对苯二酚途径代谢的分子生物学研究的文献报道。
     本研究通过基因组步移的方法,成功地获得了4-硝基酚经对苯二酚途径代谢的完整的基因簇。序列比对结果表明,在14 kb长的片断中可能包括了参与4-硝基酚代谢的全部基因。其中pnpA编码4-硝基酚单加氧酶,pnpB编码对苯二醌还原酶,pnpC编码对苯二酚双加氧酶,而γ-羟基粘康酸半醛脱氢酶和马来酰乙酸还原酶分别由pnpD和pnpE编码。WBC-3的代谢基因簇可能属于3个不同的操纵子,其中pnpA和pnpB反向转录,负责上游代谢途径,pnpCDE组成下游代谢操纵子,在它们的上游有一个可能编码LysR家族调控蛋白的基因。
     本研究通过体外表达和基因敲除鉴定了WBC-3代谢4-硝基酚途径中的两个关键酶基因,即催化初始反应的4-硝基酚单加氧酶(para-nitrophenol monooxygenase,PNPMO)和催化开环反应的对苯二酚双加氧酶(Hydroquinone dioxygenase,HQDO)。pnpA编码的4-硝基酚单加氧酶能够在体外催化4-硝基酚氧化为对苯二酚并同时释放等当量的亚硝酸根离子。序列分析结果表明,4-硝基酚单加氧酶属于典型的黄素蛋白单加氧酶家族,它与现有的所有功能类似的单加氧酶没有明显的亲缘关系,在进化过程中形成一个独立的分支。pnpC编码的对苯二酚双加氧酶也是WBC-3降解4-硝基酚的必需基因,序列比对及进化分析结果表明该酶属于苯三酚1,2-双加氧酶家族。
     对4-硝基酚单加氧酶的酶学特性的研究结果表明,该酶的酶活需要FAD和NADPH作为辅因子,每转化一个分子的4-硝基酚需要消耗两个分子的NADPH。该酶底物特异性很强,仅能催化4-硝基酚和4-硝基邻苯二酚的氧化反应,其中4-硝基酚是该酶的最适底物。
     本研究是首次在分子生物学水平上研究4-硝基酚的对苯二酚代谢途径和代谢机理。与R.opacus SAO101的苯三酚代谢途径相比,WBC-3无论是代谢途径,酶和基因,还是代谢操纵子的结构特点都与之完全不同。
     第二部分是Pseudomonas sp.WBC-3对芳香烃化合物的趋化特性研究。
     微生物的趋化是指微生物个体朝向或者远离某种刺激物的运动,是对外界环境变化作出的迅速的反应。根据趋化与微生物代谢的关系可以将微生物的趋化分为代谢依赖型趋化和代谢不依赖型趋化。对于降解有机污染物的微生物来讲,趋化可能是细菌进化产生的一种选择优势,但是细菌的趋化特性及其在生物降解和生物修复中的作用目前仍没有引起足够的重视。
     本研究采用drop assay方法研究WBC-3的趋化特性,结果表明,WBC-3不仅能够对其可代谢物4-硝基酚、4-硝基邻苯二酚和对苯二酚产生趋化反应,而且对多种其不能降解或转化的芳香烃化合物也能产生趋化反应。此外,WBC-3的趋化是组成型表达的,是不依赖于代谢的趋化,代谢基因的敲除不影响它的趋化反应。WBC-3对芳香烃化合物的趋化可能属于β-ketoadipate控制的趋化系统,这种趋化系统在降解有机污染物的微生物中广泛存在,是在进化过程中微生物获得的一种选择优势。
     第三部分是Pseudomonas sp.WBC-3的降解质粒pZWLO的部分基因组生物信息学分析和注释。
     质粒作为可移动遗传元件(Mobile Genetic Elements,MGEs)的一种在微生物对环境污染物的适应性进化中起着关键的作用,许多代谢途径的基因簇都定位在质粒上。目前已有多个降解质粒的全基因组序列测定完成,通过对其进行比较分析不仅能直接获得代谢基因簇的全序列,而且还可以用来研究代谢基因的起源和进化,并为质粒的复制调控机理及其进化研究提供了材料。
     Pseudomonas sp.WBC-3中的甲基对硫磷水解酶(MPH)基因就定位在一个约70kb的质粒(pZWLO)上,本研究对已获得的该质粒的基因组序列进行分析和注释。结果表明,在已获得的序列中,主要是与质粒的复制、稳定传代和接合转移有关的核心基因。从复制蛋白的序列来看,质粒pZWLO可能属于IncP不相容组,但具体属于哪个不相容亚组还不明确。pZWL0中质粒核心基因的氨基酸序列与数据库中同类蛋白的序列一致性都不高,这说明pZWL0与现有的已知序列的降解质粒在进化中的亲缘关系较远。序列分析结果表明WBC-3的甲基对硫磷水解酶基因(mph)定位于一个典型的Ⅰ型转座子上(Tn-mph1),而该转座子又是Ⅱ型转座子(Tn-mph2)的一部分。目前已知的两类有机磷水解酶(MPH和OPD)基因都定位在转座子上,这可能是它们在微生物中广泛存在的原因。进化分析结果表明二者起源于不同的祖先,经过独立的进化过程形成两种结构完全不同的同工酶。
Nitroaromatic compounds are common starting materials for the synthesis ofcomplex industrial N-containing compounds and can be major environmentalcontaminants, hazardous metabolic intermediates or dead-end products.Microorganisms play an important role in transforming these recalcitrantcontaminants and in the associated recycling of the nitrogen. In the pastdecades, the intensive research in this area has led to dramatic progress inunderstanding the microbial strategies and associated mechanisms for thedegradation of nitroaromatic compounds. A combination of increasingcommercial interest and advances in our understanding of the genetic andbiochemical basis of biodegradation is expected to produce a more rationalapproach to bioremediation technology.
     This dissertation is composed of three parts.
     The first part is determination of the molecular basis for 4-nitrophenoldegradation in Pseudomonas sp.strain WBC-3.
     WBC-3 can utilize methyl parathion (MP) and 4-nitrophenol (4-NP) as the solesource of carbon, nitrogen and energy. The key enzyme which catalyses theinitial reaction in MP degradation of WBC-3 is methyl parathion hydrolase(MPH), which converts MP to 4-NP stoichiometrically.
     To date, several 4-NP degrading bacteria have been isolated and theirdegradation pathways have been studied in details. The degradation pathway inwhich 4-NP is converted to maleylacetate via hydroquinone (hydroquinonepathway) was preferentially found in Gram-negative bacteria. The degradationpathway in which 4-NP is converted via 4-nitrocathechol (4-NCA) andhydroxyquinol (hydroxyquinol pathway) was preferentially found inGram-positive bacteria.
     The results of this study indicate that Pseudomonas sp. strain WBC-3 degraded4-NP through the typical hydroquinone pathway proposed by Spain inMoraxella (Spain et al, Appli.Environ.Microbiol., 1991: 812). The pathway proceeds through oxidative elimination of the nitro group to form benzoquinonewhich is subsequently reduced to hydroquinone in the presence of NADPH. Thelatter was cleavaged resulting in the formation ofγ-hydroxymuconicsemialdehyde by a soluble enzyme. Upon addition of catalytic amounts ofNAD~+,γ-hydroxymuconic semialdehyde was converted to maleylacetic acid,which enters the tricarboxylic acid cycle through theβ-ketoadipic acidpathway.
     Although many studies of 4-NP degradation have been reported, geneticinformation on 4-NP degradation remains limited and the only characterized4-NP degradation gene cluster originated from a Gram-positive bacterium,Rhodococcus opacus SAO101, which degradated 4-NP via hydroxyquinolpathway. No genes encoding degradation of 4-NP through hydroquinonepathway has been reported so far. Therefore, it was of great interest to cloneand characterize the catabolic genes involved in 4-NP metabolism to verify thehydroquinone pathway proposed by Spain. In particular, functionalcharacterization of the 4-nitrophenol monooxygenase, the enzyme involoved inthe initial reaction of the pathway, is highly desirable.
     In this report, a novel 4-NP degradation gene cluster from Gram-negativebacterium, Pseudomonas sp. WBC-3, was identified and characterized. First, abenzoquinone reductase gene, which is presumed to play a role in convertingbenzoquinone to hydroquinone in 4-NP degradation, was amplified by PCRbased on the conserved sequences. Second, the flanking regions of this genefragment were cloned and sequenced by genomic walking strategy. Finally, atotal of 14 kb contig was generated by assembling the sequence acquired fromthree genomic walking reactions. Fourteen possible ORFs were identified inthis contig and annotations of these ORFs were completed based on the resultsof BLAST analyses. Of these ORFs, the deduced amino acid sequence of PnpA,which was proposed to encode the para nitrophenol monooxygenase(PNPMO),shows moderate homology (25% identity) with pentachlorophenol4-monooxygenase of Sphingobium chlorophenolicum ATCC 39723 and pnpCappears to encode the dioxygenase for the cleavage of hydroquinone. Genesencoding benzoquinone reductase (pnpB),γ-hydroxymuconic semialdehydedehydrogenase (pnpD) and maleylacetic acid reductase (pnpE) were alsoidentified.
     Analyses of the sequenced region demonstrates that the genes involoved in thedegradation of 4-NP in WBC-3 were arranged in at least three operons, pnpBand pnpA are adjacent to each other but transcribed in opposite directions whilethe genes encoding the lower pathway of 4-NP degradation, pnpCDE, arenearby in operonic association with several open reading frames coding forproteins of unknown function. A putative regultor was also found upstream ofpnpCDE operon. Sequence alignment and phylogenetic anaylis indicate PnpArepresents a new member of FAD monooygenases and PnpC is a close relativeto hydroxyquinol 1, 2-dioxygenase family.
     In order to confirm the function of the putative genes, pnpA and pnpC wereexpressed in E.coli respectively. Conversion of 4-NP to hydroquinone wasobserved when expressed pnpA in E.coli with concomitant release of nitrite.Furthermore, either pnpA or pnpC deleted strain completely lost the ability togrow on 4-NP as sole carbon source. These results clearly suggested that bothpnpA and pnpC play essential roles in 4-NP mineralization in strain WBC-3.Characterization of PnpA as 4-nitrophenol monoxygenase was also conductedin the current study. PnpA demonstrates a narrow substrate range and E. colicells expressing pnpA can only attack 4-nitrophenol or 4-nitrocatechol. Theenzyme activity requires both FAD and NADPH as cofactors. NADH can serveas electron donor for the reaction but was less effective as NADPH.Interestingly, the reaction in crude extract required 2 mol of NADPH for theoxidation of each mol of 4-nitrophenol. These data suggest that the initialmonooxygenase converted 4-nitrophenol into benzoquinone at the expense of 1mol NADPH. The benzoquinone was then reduced to hydroquinone bybenzoquinone reductase at the expense of an additional mol of NADPH.
     The second part of this dissertation focuses on the chemotaxis features ofPseudomonas sp. strain WBC-3 toward aromatic compounds.
     The drop assay was used to show that multiple aromatic compounds arechemoattractants for Pseudomonas sp. strain WBC-3. Among thesechemoattractants, only 4-nitrophenol, 4-nitrocatechol and hydroquinone can bedegraded or transformed by WBC-3. The results presented here clearlysuggested that the chemotactic response of WBC-3 is constitutive and ismetabolism-independent based on the fact that (1) non-metabolizablecompounds are also attractants for WBC-3 and (2) the catabolic mutant strains do not affect its chemotaxis behavior. It was suggested that strain WBC-3 has aβ-ketoadipate chemotaxis system that responds to a wide range of aromaticcompounds, which is similar to that present in Pseudomonas PRS2000, themodel organism for chemotaxis study. The broad specificity of this chemotaxissystem works as advantage in WBC-3 and other soil bacterial because itsfunctions to dectect diverse carbon sources.
     The third part of this dissertation is the annotation of DNA sequence from thecatabolic plasmid pZWL0 of Pseudomonas sp. WBC-3.
     pZWL0 carrys the catabolic gene mph (methyl parathion hydrolase), which isresponsible for the conversion of methyl parathion to 4-nitrophenol inPseudomonas sp WBC-3. Analysis of the partial complete nucleotide sequence(76 kb) revealed 62 potential opening reading frames (ORFs) and most of thoseare related to the core functions of plasmid such as replication, stablemaintenance and transfer. The plasmid maybe attribute to the IncPincompatibility group based on the identities of the putative replicon protein ofpZWL0. However, the sequence and organization of the backbone genes ofpZWL0 show lower identities with known plasmids, which may imply itsdistant relationships with other catabolic plasmids.
     The sequence analysis also reveal that the mph gene in WBC-3 is flanked bytwo copies of insertion sequence (IS6100), which is the typical character ofclassⅠtransposon. This transposon, designated Tn-mph1, is a composition of alarge transposon, designated Tn-mph2, which is a classⅡtransposon accordingto its sequence and organization characters.
     To data, two types of organophosphate hydrolase had been identified, oneis MPH-like and the other is OPD-like. Genes encoding both enzymes areproposed to be physically located in a typical transposon, which may beresponsible for the widely distribution of these enzymes. However, these twokinds of enzymes share poor sequence identities and phylogenetic analysissuggested that organophosphate hydrolases were multioriginate and MPH,which evolved independently from OPD, diverged fromβ-lactamase family.
引文
1. Ellis LB, Roe D, Wackett LP: The University of Minnesota Biocatalysis/Biodegradation Database: the first decade. Nucleic Acids Res. 2006, 34: D517-D521.
    2. Haggblom MM: Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol. Rev. 1992, 9: 29-71.
    3. Spain JC: Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol. 1995, 49: 523-555.
    4. Ye J, Singh A, Ward OP: Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World Journal of Microbiology and Biotechnology 2004, 20: 117-135.
    5. Zhang C, Bennett GN: Biodegradation of xenobiotics by anaerobic bacteria. Appl. Microbiol. Biotechnol. 2005, 67: 600-618.
    6. Evans WC, Fuchs G: Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol. 1988, 42: 289-317.
    7. Sleat R., Robinson JP: The bacteriology of anaerobic degradation of aromatic compounds. J. Appl. Bacteriol. 1984, 57: 381-394.
    8. Rieger PG, Sinnwell V, Preuss A, Francke W, Knackmuss HJ: Hydride-Meisenheimer Complex Formation and Protonation as Key Reactions of 2, 4, 6-Trinitrophenol Biodegradation by Rhodococcus erythrapolis. J. Bacteriol. 1999, 181: 1189-1195.
    9. Nishino SF, Spain JC: Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl. Environ. Microbiol. 1993, 59: 2520-2525.
    10. Groenewegen PE, Breeuwer P, van Helvoort JM, LangenhoffAA, de Vries FP, de Bont JA: Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J. Gen. Microbiol. 1992, 138 Pt 8: 1599-1605.
    11. Haigler BE, Spain JC: Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT. Appl. Environ. Microbiol. 1993, 59: 2239-2243.
    12. Somerville CC, Nishino SF, Spain JC: Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 1995, 177: 3837-3842.
    13. He Z, Nadeau LJ, Spain JC: Characterization of hydroxylaminobenzene mutase from pNBZ139 cloned from Pseudomonas pseudoalcaligenes JS45. A highly associated SDS-stable enzyme catalyzing an intramolecular transfer of hydroxy groups. Eur. J. Biochem. 2000, 267: 1110-1116.
    14. He Z, Spain JC: Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45: removal of the amino group from 2-aminomuconic semialdehyde. Appl. Environ. Microbiol. 1997, 63: 4839-4843.
    15. He Z, Spain JC: A novel 2-aminomuconate deaminase in the nitrobenzene degradation pathway of Pseudomonas pseudoalcaligenes JS45. J. Bacteriol. 1998, 180: 2502-2506.
    16. Davis JK, Paoli GC, He Z, Nadeau LJ, Somerville CC, Spain JC: Sequence analysis and initial characterization of two isozymes of hydroxylaminobenzene mutase from Pseudomonas pseudoalcaligenes JS45. Appl. Environ. Microbiol. 2000, 66: 2965-2971.
    17. He Z, Davis JK. Spain JC: Purification, characterization, and sequence analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas pseudoalcaligenes 3S45. J. Bacteriol. 1998, 180: 4591-4595.
    18. Davis JK, He Z, Somerville CC, Spain JC: Genetic and biochemical comparison of 2-aminophenol 1, 6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: divergent evolution of 2-aminophenol meta-cleavage pathway. Arch. Microbiol. 1999, 172: 330-339.
    19. Park HS, Kim HS: Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12. J. Bacteriol. 2000, 182: 573-580.
    20. Nishino SF, Spain JC: Oxidative Pathway for the Biodegradation of Nitrobenzene by Comamonas sp. Strain JS765. Appl. Environ. Microbiol. 1995, 61: 2308-2313.
    21. Lessner DJ, Johnson GR, Parales RE, Spain JC, Gibson DT: Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl. Environ. Microbiol. 2002, 68: 634-641.
    22. Haigler BE, Spain JC: Biotransformation of nitrobenzene by bacteria containing toluene degradative pathways. Appl. Environ. Microbiol. 1991, 57: 3156-3162.
    23. Takenaka S, Murakami S, Shinke R, Aoki K: Metabolism of 2-aminophenol by Pseudomonas sp. AP-3: modified meta-cleavage pathway. Arch. Microbiol. 1998, 170: 132-137.
    24. Takenaka S, Murakami S, Kim YJ, Aoki K: Complete nucleotide sequence and functional analysis of the genes for 2-aminophenol metabolism from Pseudomonas sp. AP-3. Arch. Microbiol. 2000, 174: 265-272.
    25. He Z, Spain JC: Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonaspseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway). Arch. Microbiol. 1999, 171: 309-316.
    26. Chauhan A, Jain RK: Degradation of o-nitrobenzoate via anthranilic acid (o-aminobenzoate) by Arthrobacterprotophormiae: a plasmid-encoded new pathway. Biochem. Biophyvs. Res. Commun. 2000, 267: 236-244.
    27. Hasegawa Y, Muraki T, Tokuyama T, Iwaki H, Tatsuno M, Lau PC: A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonasfluorescens strain KU-7. FEMS Microbiol. Lett. 2000, 190: 185-190.
    28. Pandey G, Paul D, Jain RK: Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates. FEMS Microbiol Lett. 2003, 229: 231-236.
    29. Muraki T, Yaki M, Hasegawa Y, Iwaki H, Lau PC: Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3, 4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonasfluorescens strain KU-7. Appl. Environ. Microbiol. 2003, 69: 1564-1572.
    30. Cartwright NJ, Cain RB: Bacterial degradation of the nitrobenzoic acids. Biochem. J. 1959, 71: 248-261.
    31. Durham NN: Studies on the metabolism of p-nitrobenzoic acid. Can. J. Microbiol. 1958, 4: 141-148.
    32. Nadeau LJ, Spain JC: Bacterial degradation of m-nitrobenzoic acid. Appl. Environ. Microbiol. 1995, 61: 840-843.
    33. Groenewegen PEJ, Bont JAM: Degradation of 4-nitrobenzoate via 4-hydroxylaminobenzoate and 3, 4-dihydroxybenzoate in Comamonas acidovorans NBA-10. Archives of Microbiologu 1992, 158: 381-386.
    34. Rhys-Williams W, Taylor SC, Williams PA: A novel pathway for the catabolism of 4-nitrotoluene by Pseudomonas. J. Gen. Microbiol. 1993, 139: 1967-1972.
    35. Hughes MA, Williams PA: Cloning and characterization of thepnb genes, encoding enzymes for 4-nitrobenzoate catabolism in Pseudomonasputida TW3. J. Bacteriol. 2001, 183: 1225-1232.
    36. Yabannavar AV, Zylstra GJ: Cloning and characterization of the genes for p-nitrobenzoate degradation from Pseudomonas pickettii YH105. Appl. Environ. Microbiol. 1995, 61: 4284-4290.
    37. Peres CM, Russ R, Lenke H, Agathos SN: Biodegradation of 4-nitrobenzoate, 4-aminobenzoate and their mixtures: new strains, unusual metabolites and insights into pathway regulation. FEMS Microbiologv Ecology 2001, 37: 151-159.
    38. Haigler BE, Wallace WH, Spain JC: Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42. Appl. Environ. Microbiol. 1994, 60: 3466-3469.
    39. An D, Gibson DT, Spain JC: Oxidative release of nitrite from 2-nitrotoluene by a three-component enzyme system from Pseudomonas sp. strain JS42. J. Bacteriol. 1994, 176: 7462-7467.
    40. Parales JV, Kumar A, Parales RE, Gibson DT: Cloning and sequencing of the genes encoding 2-nitrotoluene dioxygenase from Pseudomonas sp. JS42. Gene 1996, 181: 57-61.
    41. Parales JV, Parales RE, Resnick SM, Gibson DT: Enzyme specificity of 2-nitrotoluene 2, 3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the C-terminal region of the alpha subunit of the oxygenase component. J. Bacteriol. 1998, 180: 1194-1199.
    42. Lee JY, Jung KH, Choi SH, Kim HS: Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonasputida for the mineralization of a benzene, toluene, and p-xylene mixture. Appl. Environ. Microbiol. 1995, 61: 2211-2217.
    43. Meyer D, Witholt B, Schmid A: Suitability of recombinant Escherichia coli and Pseudomonas putida strains for selective biotransformation of m-nitrotoluene by xylene monooxygenase. Appl. Environ. Microbiol. 2005, 71: 6624-6632.
    44. Robertson JB, Spain JC, Haddock JD, Gibson DT: Oxidation of nitrotoluenes by toluene dioxygenase: evidence for a monooxygenase reaction. Appl. Environ. Microbiol. 1992, 58: 2643-2648.
    45. James KD, Williams PA: ntn genes determining the early steps in the divergent catabolism of 4-nitrotoluene and toluene in Pseudomonas sp. strain TW3. J. Bacteriol. 1998, 180: 2043-2049.
    46. James KD, Hughes MA, Williams PA: Cloning and Expression ofntnD, Encoding a Novel NAD(P)+-Independent 4-Nitrobenzyl Alcohol Dehydrogenase from Pseudotnonas sp. Strain TW3. J. Bacteriol. 2000, 182: 3136-3141.
    47. Michan C, Delgado A, Haidour A, Lucchesi G, Ramos JL: In vivo construction of a hybrid pathway for metabolism of 4-nitrotoluene in Pseudomonas fluorescens. J. Bacteriol. 1997, 179: 3036-3038.
    48. Spiess T, Desiere F, Fischer P, Spain JC, Knackrnuss HJ, Lenke H: A new 4-nitrotoluene degradation pathway in a Mycobacterium strain. Appl. Environ. Microbiol. 1998, 64: 446-452.
    49. He Z, Spain JC: Reactions involved in the lower pathway for degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1. Appl. Environ. Microbiol. 2000, 66: 3010-3015.
    50. Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE: Biodegradation of 2, 4-dinitrotoluene by a Pseudomonas sp. Appl. Environ. Microbiol. 1991, 57: 3200-3205.
    51. Suen WC, Spain JC: Cloning and characterization of Pseudomonas sp. strain DNT genes for 2, 4-dinitrotoluene degradation. J. Bacteriol. 1993, 175: 1831-1837.
    52. Suen WC, Haigler BE, Spain JC: 2, 4-Dinitrotoluene dioxygenase from Burkholderia sp. strain DNT: similarity to naphthalene dioxygenase. J. Bacteriol. 1996, 178: 4926-4934.
    53. Haigler BE, Johnson GR, Suen WC, Spain JC: Biochemical and genetic evidence for meta-ring cleavage of 2, 4, 5-trihydroxytoluene in Burkholderia sp. strain DNT. J. Bacteriol. 1999, 181: 965-972.
    54. Johnson GR, Jain RK, Spain JC: Properties of the trihydroxytoluene oxygenase from Burkholderia cepacia R34: an extradiol dioxygenase from the 2, 4-dinitrotoluene pathway. Arch. Microbiol. 2000, 173: 86-90.
    55. Nishino SF, Paoli GC, Spain JC: Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2, 6-dinitrotoluene. Appl. Environ. Microbiol. 2000, 66: 2139-2147.
    56. Esteve-Nunez A, Caballero A, Ramos JL: Biological degradation of 2, 4, 6-trinitrotoluene. Microbiol. Mol. Biol. Rev. 2001, 65: 335-52, table.
    57. Johnson GR, Smets BF, Spain JC: Oxidative transformation of aminodinitrotoluene isomers by multicomponent dioxygenases. Appl. Environ. Microbiol. 2001, 67: 5460-5466.
    58. Fiorella PD, Spain JC: Transformation of 2, 4, 6-Trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl. Environ. Microbiol. 1997, 63: 2007-2015.
    59. French CE, Nicklin S, Brace NC: Aerobic Degradation of 2, 4, 6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase. Applied and Environmental Microbiology 1998, 64: 2864-2868.
    60. Schenzle A, Lenke H, Fischer P, Williams PA, Knackmuss HJ: Catabolism of 3-nitrophenol by Ralstonia eutropha JMP 134. Applied and Environmental Microbiology 1997, 63: 1421-1427.
    61. Schenzle A, Lenke H, Spain JC, Knackmuss HJ: 3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement. J. Bacteriol. 1999, 181: 1444-t450.
    62. Meulenberg R, Pepi M, de Bont JA: Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1, 2, 4-benzenetriol. Biodegradation. 1996, 7: 303-311.
    63. Zhao JS, Singh A, Huang XD, Ward OP: Biotransformation of hydroxylaminobenzene and aminophenol by Pseudomonasputida 2NP8 cells grown in the presence of 3-nitrophenol. Appl. Environ. Microbiol. 2000, 66: 2336-2342.
    64. Zhao JS, Ward OP: Cometabolic biotransformation of nitrobenzene by 3-nitrophenol degrading Pseudomonasputida 2NP8. Can. J. Microbiol. 2000, 46: 643-652.
    65. Zhao JS, Ward OP: Substrate selectivity of a 3-nitrophenol-induced metabolic system in Pseudomonas putida 2NP8 transforming nitroaromatic compounds into ammonia under aerobic conditions. Appl. Environ. Microbiol. 2001, 67: 1388-1391.
    66. Oren A, Gurevich P, Henis Y: Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui. Appl. Environ. Microbiol. 1991, 57: 3367-3370.
    67. O'Connor OA, Young LY: Effect of nitrogen limitation on the biodegradability and toxicity of nitro-and aminophenol isomers to methanogenesis. Arch. Environ. Contain Toxicol. 1993, 25: 285-291.
    68. Zeyer J, Kocher HP, Timmis KN: Influence of para-substituents on the oxidative metabolism of o-nitrophenols by Pseudomonasputida B2. Appl. Environ. Microbiol. 1986, 52: 334-339.
    69. Zeyer J, Kocher HP: Purification and characterization of a bacterial nitrophenol oxygenase which converts ortho-nitrophenol to catechol and nitrite. J. Bacteriol. 1988, 170: 1789-1794.
    70. Behrend C, Heesche-Wagner K: Formation of hydride-Meisenheimer complexes of picric acid (2, 4, 6-trinitrophenol) and 2, 4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Appl. Environ. Microbiol. 1999, 65: 1372-1377.
    71. Heiss G, Hofmann KW, Trachtmann N, Waiters DM, Rouviere P, Knackmuss HJ: npd gene functions ofRhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2, 4, 6-trinitrophenol degradation. Microbiology 2002, 148: 799-806.
    72. Ebert S, Fischer P, Knackmuss HJ: Converging catabolism of 2, 4, 6-trinitrophenol (picric acid) and 2, 4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation. 2001, 12: 367-376.
    73. Ebert S, Rieger PG. Knackmuss HJ: Function of coenzyme F420 in aerobic catabolism of 2, 4, 6-trinitrophenol and 2, 4-dinitrophenol by Nocardioides simplex FJ2-1A. J. Bacteriol. 1999, 181: 2669-2674.
    74. Lenke H, Knackmuss HJ: Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Appl. Environ. Microbiol. 1992, 58: 2933-2937.
    75. Lenke H, Pieper DH, Bruhn C, Knackmuss HJ: Degradation of 2, 4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2. Appl. Environ. Microbiol. 1992, 58: 2928-2932.
    76. Heiss G. Trachtmann N, Abe Y, Takeo M, Knackmuss HJ: Homologous npdGI genes in 2, 4-dinitrophenol-and 4-nitrophenol-degrading Rhodococcus spp. Appl. Environ. Microbiol. 2003, 69: 2748-2754.
    77. Blasco R, Moore E, Wray V, Pieper D, Timmis K, Castillo F: 3-nitroadipate, a metabolic intermediate for mineralization of 2, 4-dinitrophenol by a new strain of a Rhodococcus species. J. Bacteriol. 1999, 181: 149-152.
    78. Ecker S, Widmann T, Lenke H, Dickel O, Fischer P, Bruhn C, Knackmuss H-J: Catabolism of 2, 6-dinitrophenol by Alcaligenes eutrophus JMP 134 and JMP 222. Archives of Microbiology 1992, 158: 149-154.
    79. Munnecke DM, Hsieh DP: Pathways of microbial metabolism of parathion. Appl. Environ. Microbiol. 1976, 31: 63-69.
    80. Mulbry WW, Karns JS: Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J. Bacteriol. 1989, 171: 6740-6746.
    81. Harper LL, McDaniel CS, Miller CE, Wild JR: Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opal genes. Appl. Environ. Microbiol. 1988, 54: 2586-2589.
    82. Home I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG: Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 2002, 68: 3371-3376.
    83. Zhongli C, Shunpeng L, Guoping F: Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl. Environ. Microbiol. 2001, 67: 4922-4925.
    84. Liu H, Zhang JJ, Wang SJ, Zhang XE, Zhou NY: Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem. Biophys. Res. Commun. 2005, 334: 1107-1114.
    85. Ramanathan MP, Lalithakumari D: Complete mineralization of methylparathion by Pseudomonas sp. A3. Appl Biochem. Biotechnol 1999, 80: 1-12.
    86. Chaudhry GR, Ali AN, Wheeler WB: Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 1988, 54: 288-293.
    87. Gilbert ES, Walker AW, Keasling JD: A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Appl. Microbiol. BiotechnoL 2003, 61: 77-81.
    88. Walker AW, Keasling JD: Metabolic engineering of Pseudomonasputida for the utilization of parathion as a carbon and energy source. Biotechnol. Bioeng. 2002, 78: 715-721.
    89. Shimazu M, MulchandaniA, Chen W: Simultaneous degradation oforganophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol. Bioeng. 2001, 76: 318-324.
    90. Liu H, Wang SJ, Zhou NY: A new isolate of Pseudoraonas stutzerithat degrades 2-chloronitrobenzene. Biotechnol. Lett. 2005, 27: 275-278.
    91. Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY: Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonasputida strain ZWL73. Appl. Microbiol. Biotechnol. 2006.
    92. Reineke W: Development of hybrid strains for the mineralization of chioroaromaties by patchwork assembly. Annu. Rev. Microbiol. 1998, 52: 287-331.
    93. Cafaro V, Notomista E, Capasso P, Di Donato A: Mutation of Glutamic Acid 103 of Toluene o-Xylene Monooxygenase as a Means To Control the Catabolic Efficiency of a Recombinant Upper Pathway for Degradation of Methylated Aromatic Compounds. Applied and Environmental Microbiology 2005, 71:4744-4750.
    94. Yan DZ, Liu H, Zhou NY: Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl. Environ.Microbiol. 2006, 72:2283-2286.
    95. Jimenez JI, Minambres B, Garcia JL, Diaz E: Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ.Microbiol. 2002, 4:824-841.
    96. Weinel C, Nelson KE, Tummler B: Global features of the Pseudomonas putida KT2440 genome sequence. Environ. Microbiol. 2002, 4:809-818.
    97. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marliere P, Cohen GN, Medigue C: Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 2004, 32:5766-5779.
    98. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JL, Peres C, Harrison FH, Gibson J, Harwood CS: Complete genoine sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol. 2004, 22:55-61.
    99. Nogales J, Canales A, Jimenez-Barbero J, Garcia JL, Diaz E: Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. J.Biol. Chem. 2005, 280:35382-35390.
    100. Shen XH, Jiang CY, Huang Y, Liu ZP, Liu SJ: Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum. Appl.Environ.Microbiol. 2005, 71:3442-3452.
    101. Uberoi V, Bhattacharya SK: Toxicity and degradabgity of nitrophenols in anaerobic systems. Water Environment Research 1997, 69:146-156.
    102. Melgoza RM, Buitron G: Degradation of p-nitrophenol in a batch biofilter under sequential anaerobic/aerobic environments. Water Sci. Technol. 2001,44:151-157.
    103. Gorontzy T, Kuver J, Blotevogel KH: Microbial Transformation of Nitroaromatic Compounds Under Anaerobic Conditions. Journal of General Microbiology 1993, 139:1331-1336.
    104. Donlon BA, RazoFlores E, Lettinga G, Field JA: Continuous detoxification, transformation, and degradation of nitrophenols in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering 1996, 51:439-449.
    105. Harwood CS, Parales RE: The beta-ketoadipate pathway and the biology of self-identity. Annu.Rev.Microbiol. 1996, 50:553-590.
    106. Spain JC, Wyss O, Gibson DT: Enzymatic oxidation of p-nitrophenol. Biochem.Biophys. Res.Commun. 1979, 88:634-641.
    107. Hanne LF, Kirk LL, Appel SM, Narayan AD, Bains KK: Degradation and induction specificity in actinomycetes that degrade p-nitrophenol. Appl.Environ. Microbiol. 1993, 59:3505-3508.
    108. Bhushan B, Chauhan A, Samanta SK, Jain RK: Kinetics of Biodegradation of p-Nitrophenol by Different Bacteria. Biochemical and Biophysical Research Communications 2000, 274:626-630.
    109. Prakash D, Chauhan A, Jain RK: Plasmid-encoded degradation of p-nitrophenol by Pseudomonas cepacia. Biochem.Biophys.Res. Commun. 1996, 224:375-381.
    110. Spain JC, Gibson DT: Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp. Appl.Environ.Microbiol. 1991, 57:812-819.
    111. Jain RK, Dreisbach JH, Spain JC: Biodegradation of p-nitrophenol via 1,2,4-benzenctriol by an Arthrobacter sp. Appl.Environ.Microbiol. 1994, 60:3030-3032.
    112. Kadiyala V, Spain JC: A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Applied and Environmental Microbiology 1998, 64: 2479-2484.
    113. Schafer A, Harms H, Zehnder AJ: Biodegradation of 4-nitroanisole by two Rhodococcus spp. Biodegradation. 1996, 7: 249-255.
    114. Mitra D, Vaidyanathan CS: A new 4-nitrophenol 2-hydroxylase from a Nocardia sp. Biochem. Int. 1984, 8: 609-615.
    115. Rani NL, Lalithakumari D: Degradation of methyl parathion by Pseudomonas putida. Can. J. Microbiol. 1994, 40: 1000-1006.
    116. Roldan MD, Blasco R, Caballero FJ, Castillo F: Degradation ofp-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Arch. MicrobioL 1998, 169: 36-42.
    117. Kitagawa W, Kimura N, Kamagata Y: A novelp-nitrophenol degradation gene cluster from a Gram-positive bacterium, Rhodococcus opacus SAO101. J. Bacteriol. 2004, 186: 4894-4902.
    118. Takeo M, Yasukawa T, Abe Y, Niihara S, Maeda Y, Negoro S: Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J. Biosci. Bioeng. 2003, 95: 139-145.
    119. Sambrook J, Fritsh EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd edition, edn Cold Spring Harbor, Cold Spring Harbor Laboratory. 1989.
    120. Kate Wilson: Preparation and Analysis of DNA. In Current Protocols in Molecular Biology. Edited by Fred M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J. G. Seidman, John A. Smith, Kevin Struhl. John Wiley & Sons, Inc; 2004.
    121. Siebert PD, ChenchikA, Kellogg DE, Lukyanov KA, Lukyanov SA: An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995, 23: 1087-1088.
    122. Simon R, Priefer U, PuhlerA: A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotech 1983, 1: 784-791.
    123. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP: A broad-host-range FIp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998, 212: 77-86.
    124. D ennis JJ, Zylstra GJ: Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl. Environ. Microbiol. 1998, 64: 2710-2715.
    125. Schweizer HP: Allelic exchange in Pseudomonas aeruginosa using novel ColEl-type vectors and a family of cassettes containing a portable oriT and the eounter-seleetable Bacillus subtilis sacB marker. Mol. Microbiol. 1992, 6: 1195-1204.
    126. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72: 248-254.
    127. Lessner DJ, Parales RE, Narayan S, Gibson DT: Expression of the Nitroarene Dioxygenase Genes in Comamonas sp. Strain JS765 and Acidovorax sp. Strain JS42 Is Induced by Multiple Aromatic Compounds. J. Bacteriol. 2003, 185: 3895-3904.
    128. Pandey G. Chauhan A, Samanta SK, Jain RK: Chemotaxis ofa Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem. Biophys. Res. Commun. 2002, 299: 404-409.
    129. Bhushan B, Samanta SK, Chauhan A, Chakraborti AK, Jain RK: Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem. Biophys. Res. Commun. 2000, 275: 129-133.
    130. Kumar S, Tamura K, Nei M: MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 2004, 5: 150-163.
    131. Lukashin AV, Borodovsky M: GeneMark. hmm: new solutions for gene finding. Nucleic Acids Res. 1998, 26: 1107-1115.
    132. Besemer J, Borodovsky M: GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005, 33: W451-W454.
    133. Chen Y, Zhang X, Liu H, Wang Y, Xia X: Study on Pseudomonas sp. WBC-3 capable of complete degradation of methylparathion. Wei Sheng Wu Xue. Bao. 2002, 42: 490-497.
    134. Kholodii G, Yurieva O, Mindlin S, Gorlenko Z, Rybochkin V, Nikiforov V: Tn5044, a novel Tn3 family transposon coding for temperature-sensitive mercury resistance. Res. Microbiol 2000, 151: 291-302.
    135. Enroth C, Neujahr H, Schneider G, Lindqvist Y: The crystal structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis. Structure. 1998, 6: 605-617.
    136. Weijer WJ, Hofsteenge J, Vereijken JM, Jekel PA, Beintema JJ: Primary structure of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Biochim. Biophys. Acta 1982, 704: 385-388.
    137. Eppink MH, Schreuder HA, Van Berkel WJ: Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Sci. 1997, 6: 2454-2458.
    138. Nordin K, Unell M, Jansson JK: Novel 4-chlorophenoi degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl. Environ. Microbiol. 2005, 71: 6538-6544.
    139. Haigler BE, Nishino SF, Spain JC: Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. J. Bacteriol. 1994, 176: 3433-3437.
    140. Orser CS, Lange CC, Xun L, Zahrt TC, Schneider BJ: Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coll. J. Bacteriol. 1993, 175: 411-416.
    141. Dai M, Rogers JB, Warner JR, Copley SD: A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). J. Bacteriol. 2003, 185: 302-310.
    142. Miyauchi K, Adachi Y, Nagata Y, Takagi M: Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. J. Bacteriol. 1999, 181: 6712-6719.
    143. Johnson GR, Jain RK, Spain JC: Origins of the 2, 4-dinitrotoluene pathway. J. Bacteriol. 2002, 184: 4219-4232.
    144. Cai M, Xun L: Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J. Bacteriol. 2002, 184: 4672-4680.
    145. Adler J: Effect of amino acids and oxygen on chemotaxis in Escherichia coll. J. Bacteriol. 1966, 92: 121-129.
    146. Adler J: Chemotaxis in bacteria. Science 1966, 153: 708-716.
    147. Adler J: Chemoreceptors in bacteria. Science 1969, 166: 1588-1597.
    148. Adler J, Dahl MM: A method for measuring the motility of bacteria and for comparing random and non-random motility. J. Gen. Microbiol. 1967, 46: 161-173.
    149. Armstrong JB, Adler J: Location of genes for motility and chemotaxis on the Escherichia coli genetic map. J. Bacteriol. 1969, 97: 156-161.
    150. Armstrong JB, Adler J: Complementation of nonchemotactic mutants ofEscherichia coli. Genetics 1969, 61: 61-66.
    151. Armstrong JB, Adler J, Dah1 MM: Nonchemotactic mutants of Escherichia coli. J. Bacteriol. 1967, 93: 390-398.
    152. Berg HC, Brown DA: Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 1972, 239: 500-504.
    153. Berg HC: Chemotaxis in bacteria. Annu.Rev.Biophys.Bioeng. 1975, 4:119-136.
    154. Berg HC, Tedesco PM: Transient response to chemotactic stimuli in Escherichia coli. Proc.Natl.Acad.Sci. U.S.A 1975, 72: 3235-3239.
    155. Berg HC: Bacterial behaviour. Nature 1975, 254: 389-392.
    156. Hoch JA: Two-component and phosphorelay signal transduction. Curr. Opin.Microbiol. 2000, 3: 165-170.
    157. DeRosier DJ: The turn of the screw: the bacterial flagellar motor. Cell 1998, 93:17-20.
    158. Mitchell JG, Kogure K: Bacterial motility: links to the environment and a driving force for microbial physics. FEMS Microbiol. Ecol. 2006, 55:3-16.
    159. Bren A, Eisenbach M: How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J. Bacteriol. 2000, 182: 6865-6873.
    160. Parkinson JS: Signal transduction schemes of bacteria. Cell 1993, 73: 857-871.
    161. Kofoid EC, Parkinson JS: Transmitter and receiver modules in bacterial signaling proteins. Proc.Natl.Acad.Sci. U.S.A 1988, 85: 4981-4985.
    162. Armitage JP: Bacterial tactic responses. Adv.Microb.Physiol 1999, 41:229-289.
    163. Bourret RB, Stock AM: Molecular information processing: lessons from bacterial chemotaxis. J.Biol.Chem. 2002, 277:9625-9628.
    164. Falke JJ, Hazelbauer GL: Transmembrane signaling in bacterial chemoreceptors. Trends Biochem.Sci. 2001, 26:257-265.
    165. Stock J, Levit M: Signal transduction: hair brains in bacterial chemotaxis. Curr. Biol. 2000, 10: R11-R14.
    166. Sourjik V: Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 2004, 12: 569-576.
    167. Pandey G, Join RK: Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl.Environ.Microbiol. 2002, 68:5789-5795.
    168. Grimm AC, Harwood CS: NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol. 1999, 181:3310-3316.
    169. Yamamoto K, Imae Y: Cloning and characterization of the Salmonella typhimurium-specific chemoreceptor Tcp for taxis to citrate and from phenol. Proc.Natl.Acad.Sci.U.S.A 1993, 90:217-221.
    170. Clancy M, Madill KA, Wood JM: Genetic and biochemical requirements for chemotaxis to L-proline in Escherichia coli. J. Bacteriol. 1981,146:902-906.
    171. Zhulin IB, Rowsell EH, Johnson MS, Taylor BL: Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1997, 179: 3196-3201.
    172. Bibikov SI, Biran R, Rudd KE, Parkinson JS: A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol. 1997, 179: 4075-4079.
    173. Greet-Phillips SE, Stephens BB, Alexandre G: An energy taxis transducer promotes root colonization by Azospirillum brasilense. J.Bacteriol. 2004, 186:6595-6604.
    174. Alexandre G, Greet SE, Zhulin IB: Energy taxis is the dominant behavior in Azospirillum brasilense. J. Bacteriol. 2000, 182:6042-6048.
    175. Zhulin IB, Bespalov VA, Johnson MS, Taylor BL: Oxygen taxis and proton motive force in Azospirillum brasilense. J. Bacteriol. 1996, 178:5199-5204.
    176. Armitage JP, Schmitt R: Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti-variations on a theme? Microbiology 1997, 143(Pt 12): 3671-3682.
    177. Taylor BL, Zhulin IB: In search of higher energy: metabolism-dependent behaviour in bacteria. Mol.Microbiol. 1998, 28:683-690.
    178. Taylor BL, Zhulin IB, Johnson MS: Aerotaxis and other energy-sensing behavior in bacteria. Annu.Rev.Microbiol. 1999, 53: 103-128.
    179. Zhutin IB, Johnson MS, Taylor BL: How do bacteria avoid high oxygen concentrations? Biosci.Rep. 1997, 17:335-342.
    180. Greer-Phillips SE, Alexandre G, Taylor BL, Zhulin IB: Aer and Tsr guide Escherichia coil in spatial gradients of oxidizable substrates. Microbiology 2003, 149: 2661-2667.
    181. Amin DN, Taylor BL, Johnson MS: Topology and boundaries of the aerotaxis receptor Aer in the membrane of Escherichia coll. J. Bacteriol. 2006, 188:894-901.
    182. Ma Q, Johnson MS, Taylor BL: Genetic analysis of the HAMP domain of the Aer aerotaxis sensor localizes flavin adenine dinucleotide-binding determinants to the AS-2 helix. J.Bacteriol. 2005, 187:193-201.
    183. Watts KJ, Ma Q, Johnson MS, Taylor BL: Interactions betweeu the PAS and HAMP domains of the Escherichia colil aerotaxis receptor Aer. J. Bacteriol. 2004, 186:7440-7449.
    184. Watts KJ, Sommer K, Fry SL, Johnson MS, Taylor BL: Function of the N-terminal cap of the PAS domain in signaling by the aerotaxis receptor Aer. J. Bacteriol. 2006, 188: 2154-2162.
    185. Watts KJ, Johnson MS, Taylor BL: Minimal requirements for oxygen sensing by the aerotaxis receptorAer. Mol.Microbiol. 2006, 59:1317-1326.
    186. Tso WW, Adler J: Negative chemotaxis in Escherichia coli. J Bacteriol. 1974, 118:560-576.
    187. Dharmatilake AJ, Bauer WD: Chemotaxis of Rhizobium meliloti towards Nodulation Gene-Inducing Compounds from Alfalfa Roots. Appl.Environ.Microbiol. 1992, 58:1153-1158.
    188. Parke D, Rivelli M, Ornston LN: Chemotaxis to aromatic and hydroaromatic acids: comparison of Bradyrhizobium japonicum and Rhizobium trifolii. J.Bacteriol. 1985, 163:417-422.
    189. Harwood CS, Rivelli M, Ornston LN: Aromatic acids are chemoattractants for Pseudomonas putida. J. Bacteriol. 1984, 160: 622-628.
    190. Lopez-de-Victoria G, Lovell CR: Chemotaxis of Azospirillum Species to Aromatic Compounds. Appl.Environ.Microbiol. 1993, 59:2951-2955.
    191. Nowlin DM, Nettleton DO, Ordal GW, Hazelbauer GL: Chemotactic transducer proteins of Escherichia coli exhibit homology with methyl-accepting proteins from distantly related bacteria. J Bacteriol. 1985, 163: 262-266.
    192. Sockett RE, Armitage JP, Evans MC: Methylation-independent and methylation-dependent chemotaxis in Rhodobacter sphaeroides and Rhodospirillum rubrum. J Bacteriol. 1987, 169:5808-5814.
    193. Craven RC, Montie TC: Chemotaxis of Pseudomonas aeruginosa: involvement of methylation. J Bacteriol. 1983,154: 780-786.
    194. Harwood CS, Parales RE, Dispensa M: Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl. Environ. Microbiol. 1990, 56: 1501-1503.
    195. Harwood CS: A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida. J. Bacteriol. 1989, 171: 4603-4608.
    196. Harwood CS, Nichols NN, Kim MK, Ditty JL, Parales RE: Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J. Bacteriol. 1994, 176: 6479-6488.
    197. Nichols NN, Harwood CS: PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J. Bacteriol. 1997, 179:5056-5061.
    198. Ditty JL, Harwood CS: Conserved cytoplasmic loops are important for both the transport and chemotaxis functions of PcaK, a protein from Pseudomona sputida with 12 membrane-spanning regions. J. Bacteriol. 1999, 181: 5068-5074.
    199. Hawkins AC, Harwood CS: Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl.Environ.Microbiol. 2002, 68:968-972.
    200. Parales RE, Ditty JL, Harwood CS: Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol. 2000, 66:4098-4104.
    201. Grimm AC, Harwood CS: Chemotaxis of Pseudomonas sp. to the polyaromatic hydrocarbon naphthalene. Appl.Environ.Microbiol. 1997, 63:4111-4115.
    202. Samanta SK, Jain RK: Evidence for plasmid-mediated chemotaxis of Pseudomonas putida towards naphthalene and salicylate. Can. J. Microbiol. 2000, 46:1-6.
    203. Marx RB, Aitken MD: Quantification of chemotaxis to naphthalene by Pseudomonas putida G7. Appl. Environ. Microbiol. 1999, 65:2847-2852.
    204. Marx RB, Aitken MD: A material-balance approach for modeling bacterial chemotaxis to a consumable substrate in the capillary assay. Biotechnol. Bioeng. 2000, 68:308-315.
    205. Pedit JA, Marx RB, Miller CT, Aitken MD: Quantitative analysis of experiments on bacterial chemotaxis to naphthalene. Biotechnol. Bioeng. 2002, 78: 626-634.
    206. XIN Yu-feng, LIU Hong. WANG Shu-jun, ZHOU Ning-yi: Chemotaxis of Ralstonia sp. U2 to naphthalene. CHINESE JOURNAL OF APPLIED & ENVIRONMENTAL BIOLOGY 2005, 11: 490-492.
    207. Samanta SK, Bhushan B. Chauhan A, Jain RK: Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem.Biophys.Res. Commun. 2000, 269: 117-123.
    208. Armitage JP: Taxing questions in development. Trends Microbiol 2003, 11: 239-242.
    209. Terracciano JS, Canale-Parola E: Enhancement of chemotaxis in Spirochaeta aurantia grown under conditions of nutrient limitation. J. Bacteriol. 1984, 159:173-178.
    210. Stelmack PL, Gray MR. Pickard MA: Bacterial adhesion to soil contaminants in the presence of surfactants. Appl. Environ.Microbiol. 1999, 65:163-168.
    211. Marx RB, Aitken MD: Bacterial Chemotaxis Enhances Naphthalene Degradation in a Heterogeneous Aqueous System. Environ.Sci. Technol. 2000, 34:3379-3383.
    212. Law AM, Aitken MD: Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid. Appl.Environ.Microbiol. 2003, 69: 5968-5973.
    213. O'Toole GA, Kolter R: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998, 30:295-304.
    214. Pratt LA, Kolter R: Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type Ⅰ pili. Mol.Microbiol. 1998, 30:285-293.
    215. Prigent-Combaret C, Vi(?)l O, Dorel C, Lejeune P: Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coil J.Bacteriol. 1999, 181:5993-6002.
    216. Watnick PI, Kolter R: Steps in the development of a Vibrio cholerae El Tor biofilm. Mol.Microbiol. 1999, 34:586-595.
    217. Parales RE, Harwood CS: Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr: Opin. Microbiol. 2002, 5:266-273.
    218. Harwood CS, Ornston LN: TOL plasmid can prevent induction of chemotactic responses to aromatic acids. J. Bacteriol. 1984, 160:797-800.
    219. Nojiri H, Shintani M, Omori T: Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl.Microbiol Biotechnol. 2004, 64: 154-174.
    220. Top EM, Springael D, Boon N: Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiology Ecology 2002, 42: 199-208.
    221. Lanfranconi MP, Alvarcz HM, Studdert CA: A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ.Microbiol. 2003, 5:1002-1008.
    222. Parales RE: Nitrobenzoates and aminobenzoates are chemoattraetants for Pseudomonas strains. Appl.Environ.Microbiol 2004, 70:285-292.
    223. Vardar G, Barbieri P, Wood TK: Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes. Applied Microbiology and Biotechnology 2005, 66:696-701.
    224. Leungsakul T, Keenan B, Smets B, Wood T: TNT and nitroaromatie compounds are chemoattractants for Burkholderia cepacia R34 and Burkholderia sp. strain DNT. Applied Microbiology, and Biotechnology 2005, 69:321-325.
    225. Aguilar JMM, Ashby AM, Richards AJM, Loake GJ, Watson MD, Shaw CH: Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J Gen Microbiol 1988, 134:2741-2746.
    226. Parke D, Ornston LN, Nester EW: Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens, J Bacteriol. 1987, 169:5336-5338.
    227. AshbyAM, Watson MD, Loake GJ, Shaw CH: Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. J Bacteriol. 1988, 170:4181-4187.
    228. Xin Yu-Feng. Thesis. The study ofchemotaxis of Ralstonia U2 and Pseudomonas.WBC-3. 2004. Wuhan Institute of Virology, Chinese Academy of Sciences.
    229. Parke D, D'Argenio DA, Ornston LN: Bacteria are not what they eat: that is why they are so diverse. J Bacteriol. 2000, 182:257-263.
    230. Kowalchuk GA, Hartnett GB, Benson A, Houghton JE, Ngai KL, Ornston LN: Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. Gene 1994, 146:23-30.
    231. Smets BF, Barkay T: Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat Rev.Microbiol 2005, 3:675-678.
    232. Frost LS, Leplae R, Summers AO, Toussaint A: Mobile genetic elements: the agents of open source evolution. Nat Rev.Microbiol 2005, 3:722-732.
    233. Gogarten JP, Townsend JP: Horizontal gene transfer, genome innovation and evolution. Nat Rev.Microbiol 2005, 3:679-687.
    234. Thomas CM, Nielsen KM: Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev.Microbiol 2005, 3:711-721.
    235. Sorensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S: Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 2005, 3:700-710.
    236. Dennis JJ: The evolution of IncP catabolic plasmids. Curr.Opin.Biotechnol. 2005, 16:291-298.
    237. Thomas CM: Paradigms of plasmid organization. Mol.Microbiol 2000, 37:485-491.
    238. Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ: Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol. 2001, 183:5684-5697.
    239. Trefault N, De 1, I, Molina AM, Manzano M, Ledger T, Perez-Pantoja D, Sanchez MA, Stuardo M, Gonzalez B: Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ.Microbiol 2004, 6:655-668.
    240. Sota M, Kawasaki H, Tsuda M: Structure of haioacetate-catabolic IncP-1beta plasmid pUO1 and genetic mobility of its residing haloacetate-catabolic transposon, J Bacteriol. 2003, 185:6741-6745.
    241. Vedler E, Vahter M, Heinaru A: The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol. 2004, 186:7161-7174.
    242. Maeda K, Nojiri H, Shintani M, Yoshida T, Habe H, Omori T: Complete nncleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol.Biol. 2003, 326:21-33.
    243. Li W, Shi J, Wang X, Han Y, Tong W, Ma L, Liu B, Cai B: Complete nueleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6. Gene 2004, 336:231-240.
    244. Dennis JJ, Zylstra GJ: Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J Mol.Biol. 2004, 341:753-768.
    245. Greated A, Lambertsen L, Williams PA, Thomas CM: Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ.Microbiol 2002, 4:856-871.
    246. Tan HM: Bacterial catabolic transposons. Appl.Microbiol Biotechnol. 1999, 51:1-12.
    247. Nakatsu C, Ng J, Singh R, Straus N, Wyndham C: Chlorobenzoate catabolic transposon Tn5271 is a composite class Ⅰ element with flanking class Ⅱ insertion sequences. Proc. Natl.Acad.Sci. U.S.A 1991, 88:8312-8316.
    248. van dM, Jr., Zehnder AJ, de Vos WM: Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J Bacteriol. 1991, 173:7077-7083.
    249. Sota M, Yano H, Ono A, Miyazaki R, Ishii H, Genka H, Top EM, Tsuda M: Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J Bacteriol. 2006, 188:4057-4067.
    250. Tsuda M, Iino T: Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Mol. Gen Genet. 1990, 223:33-39.
    251. Buchbinder JL, Stephenson RC, Dresser MJ, Pitera JW, Scanlan TS, Fletterick RJ: Biochemical characterization and crystallographic structure of an Escherichia coli protein from the phosphotriesterase gene family. Biochemistry 1998, 37:5096-5106.
    252. Scanlan TS, Reid RC: Evolution in action. Chem.Biol. 1995, 2:71-75.
    253. Garcia-Saez I, Mercuri PS, Papamicael C, Kahn R, Frere JM, Galleni M, Rossotini GM, Dideberg O: Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J.Mol.Biol. 2003, 325:651-660.
    254. Ullah JH, Walsh TR, Taylor IA, Emery DC, Verma CS, Gamblin SJ, Spencer J: The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. J.Mol.Biol. 1998, 284:125-136.
    255. Dong YJ, Bartlam M, Sun L, Zhou YF, Zhang ZP, Zhang CG, Rao Z, Zhang XE: Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol.Biol. 2005, 353:655-663.
    256. Szczepanowski R, Krahn I, Linke B, Goesmann A, Puhler A, Schluter A: Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Microbiology 2004, 150:3613-3630.
    257. Thomas CM, Smith CA: The trfB region of broad host range plasmid RK2: the nucleotide sequence reveals incC and key regulatory gene trfB/korA/korD as overlapping genes. Nucleic Acids Res. 1986, 14:4453-4469.
    258. Siddique A, Figurski DH: The active partition gene incC of IncP plasmids is required for stable maintenance in a broad range of hosts, J Bacteriol. 2002, 184:1788-1793.
    259. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U: Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol. 2005, 23:195-200.
    260. Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LM, Araya JE, Baia GS, Baptista CS, Barros MH, Bonaccorsi ED, Bordin S, Bove JM, Briones MR, Bueno MR, Camargo AA, Camargo LE, Carraro DM, Carter H, Colauto NB, Colombo C, Costa FF, Costa MC, Costa-Neto CM, Coutinho LL, Cristofani M, Dias-Neto E, Docena C, El Dorry H, Facincani AP, Ferreira AJ, Ferreira VC, Ferro JA, Fraga JS, Franca SC, Franco MC, Frohme M, Furlan LR, Gamier M, Goldman GH, Goldman MH, Gomes SL, Gruber A, Ho PL, Hoheisel JD, Junqueira ML, Kemper EL, Kitajima JP, Krieger JE, Kuramae EE, Laigret F, Lambais MR, Leite LC, Lemos EG, Lemos MV, Lopes SA, Lopes CR, Machado JA, Machado MA, Madeira AM, Madeira HM, Marino CL, Marques MV, Martins EA, Martins EM, Matsukuma AY, Menck CF, Miracca EC, Miyaki CY, Monteriro-Vitorello CB, Moon DH, Nagai MA, Nascimento AL, Netto LE, Nhani A, Jr., Nobrega FG, Nunes LR, Oliveira MA, de Oliveira MC, de Oliveira RC, Palmieri DA, Paris A, Peixoto BR, Pereira GA, Pereira HA, Jr., Pesquero JB, Quaggio RB, Roberto PG, Rodrigues V, de MRA, de RV, Jr., de Sa RG, Santelli RV, Sawasaki HE, da Silva AC, da Silva AM, da Silva FR, da SW, Jr., da Silveira JF, Silvestri ML, Siqueira WJ, de Souza AA, de Souza AP, Terenzi MF, Truffi D, Tsai SM, Tsuhako MH, Vallada H, Van Sluys MA, Verjovski-Almeida S, Vettore AL, Zago MA, Zatz M, Meidanis J, Setubal JC: The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 2000, 406:151-157.
    261. Kuldau GA, De Vos G, Owen J, McCaffrey G, Zambryski P: The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Mol. Gen Genet. 1990, 221:256-266.
    262. Pohlman RF, Genetti HD, Winans SC: Common ancestry between lncN conjugal transfer genes and macromolecular export systems of plant and animal pathogens. Mol.Microbiol 1994, 14:655-668.
    263. Furste JR Pansegrau W, Ziegelin G, Kroger M, Lanka E: Conjugative transfer of promiscuous IncP plasmids: interaction of plasmid-encoded products with the transfer origin. Proc.Natl.Acad.Sci. U.S.A 1989, 86:1771-1775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700