黄河包头段沉积物重金属吸附机制及污染生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河包头段水体集高含沙水流水质环境和工业污染于一体,拥有宏大的沉积物群体比表面与周围水介质构成的微界面体系,具有独特的水动力学过程,同时包头市的工业污水排放使黄河包头段重金属污染严重。开展黄河包头段重金属在水-沉积物界面的吸附机制及其在环境中的时空分布、迁移转化和污染迭加等研究具有典型性和代表性。
     本研究以环境地球化学、生物地球化学、污染生态学及现代沉积学的理论和方法为指导,注重环境污染载体有关信息的综合获取及时空变化规律的对比,以重金属的地球化学特性及其吸附机制为主线,深入开展了黄河包头段沉积物粒径和水体常见离子对重金属吸附的影响、重金属间的竞争吸附及矿物组成对重金属形态分布的影响等一系列重金属吸附解吸机制研究,探讨了黄河包头段重金属的时空分布、迁移转化、污染迭加等动态过程;首次开展了黄河包头段天然鱼群及沿岸植物对重金属富集能力的研究,为重金属生物有效性、生物地球化学循环及生态风险评价积累了基础数据。本研究取得了如下主要成果和进展。
     1.推导了不同粒级沉积物的表面分形分维计算公式,计算了不同粒级沉积物的表面分形分维值、黄河包头段沉积物整体的表面分形分维值(1.91)和<63μm沉积物的表面分形分维值(1.36);获得了Cu>Pb>Zn≈Cd的粒径对四种重金属吸附影响程度的序列,Cu、Pb在大粒径颗粒物中的平衡吸附量有一定的升高,Zn、Cd则随粒径增大,平衡吸附量减小:分形校正吸附模型较Freundlich和Langmuir吸附模型对重金属在不同粒径沉积物中的吸附具有更好的适用性。
     2.不同浓度范围的Na~+、K~+、Mg~(2+)、Ca~(2+)、Cl~-、SO_4~(2-)等离子对重金属吸附作用的影响机制不同。因离子强度增大而引起的重金属离子活度减小或双电层压缩作用和结构或物理化学性质相似的环境阳离子与重金属间的竞争作用及环境阴离子与重金属的络合作用等均可引起溶液内重金属吸附与解吸平衡的移动。
     3.重金属离子间竞争吸附存在于重金属离子浓度的各个阶段,无论吸附反应体系是否达到饱和吸附。竞争吸附不是简单的以占据吸附点位形式存在的“零和效应”过程,重金属浓度不同,相互间竞争吸附的主导机制也不同。此外,据竞争吸附实验得出了Pb~(2+)>Cu~(2+)>Zn~(2+)≥Cd~(2+)的水-沉积物环境中重金属离子间竞争吸附能力的一般序列。
     4.伊利石和绿泥石是黄河包头段颗粒物中携带重金属的主要粘土矿物,同时该两种矿物对重金属次生相的形态分布也具有重要影响;碳酸钙(方解石)则通过对水环境CO_3~(2-)浓度的调节,间接影响重金属的形态分布及其运移能力;石英、正长石、斜长石及钠闪石等对可交换态重金属影响较大。
     5.黄河沉积物在不同水期所起的源/汇功能与强度不同。因枯水期和平水期利于悬浮物的沉积和重金属在水-沉积物微界面的吸附,沉积物对重金属具有汇的功能;而丰水期由于黄河流量和含沙量增大,对底层沉积物的冲刷作用较强,使其发生再悬浮,导致吸附在沉积物中的重金属重新释放进入上覆水体,形成二次污染,对上覆水体中的重金属起到源的作用。各水期沉积物对重金属的富集能力排序为,枯水期>平水期>丰水期。
     6.首次开展了黄河包头段天然鱼群及沿岸植物对重金属富集能力研究,为重金属的生物有效性、生物地球化学循环及生态风险评价奠定了基础并积累了第一手资料。研究揭示,沿岸植物和天然鱼群对重金属的富集能力具有元素差异性、点位差异性、物种差异性、营养部位差异性及鱼龄差异性。
The Yellow River contains large amounts of sands, resulting in a peculiarhydraulic condition which is characterized by a magnificent interface between theparticulates and water. In addition, Baotou section of the Yellow River suffers fromsevere heavy metal pollution receiving the industrial discharges from the Baotou city.Therefore, this study was carried out on Baotou section of the Yellow River based onits representativeness on the mechanism of heavy metal adsorption on water-sedimentinterface, and on the heavy metal spatial distribution, mobilization, transformation,and accumulation effects in sediments.
     Because of their persistence in the environment, heavy metals often pose threatsto aquatic lives and plants in the environment. Based on the theories and methods ofenvironmental geochemistry, biogeochemistry, pollution ecology and modernsedimentology, the adsorption mechanisms and the geochemistry characters of theheavy metals in Baotou section of the Yellow River are researched in this paper. Tosay concretely, the adsorption-desorption mechanisms of the selected heavy metalsonto the sediments in the Yellow River are studied, which includes the impacts of thegrain sizes of the sediments and the usual ions in aquatic environment on theadsorption of the selected heavy metals, the competitive adsorption of the selectedheavy metals and the impact of the mineral composition of the sediments on thespecies distribution of the heavy metals. Meanwhile, spatial distribution, mobilization,transformation, and accumulation effects of the selected heavy metals in Baotousection of the Yellow River are discussed. In addition, it can be worth notice that the biological enrichment of heavy metals in coastal plants and natural fishes in Baotousection of the Yellow River is also analyzed for the first time, which may providevaluable database for the studies of biological availability, biogeochemical cycle andecological risk assessment of heavy metals in Baotou section of the Yellow River.The results are described as follows:
     1. The expression of surface fractal dimension (SFD) for size fractions of theYellow River sediment was deduced. Based on the expression, the SFD value ofdifferent size fractions of the sediment was calculated. The SFD value of thesediment in the Baotou section of the Yellow River is 1.91, and the SFD value of thesediment smaller than 63μm is 1.36. The variation extents of equilibrium adsorptioncapacity influenced by different grain size are ranked as Cu>Pb>Zn≈Cd. The Cu andPb present higher adsorption capacity at relatively large grain sizes; whereas, for Znand Cd, the adsorption capacity decreases with increasing grain size. The modifiedfractal model, Freundlich model and Langmuir model are used in this study, and themodified fractal model is found to fit the data of heavy metal (Cu, Pb, Zn and Cd)adsorption well compared to Freundlich model and Langmuir model.
     2. The heavy metals in the water system are affected by usual ions (such as Na~+,K~+, Mg~(2+), Ca~(2+), Cl~- and SO_4~(2-)) through different adsorption and desorptionmechanisms, which is caused by different dominant mechanism in different usual ionconcentration ranges. According to the results of the experiments, with the increasingof the ionic strength of the additional ions in the solutions, the adsorption capacitiesof the heavy metals increase when the compression of the electric double layerdominates on sediment-water interface, whereas decrease when the ionic activities ofthe heavy metals dominate; there is competitive adsorption between the heavy metalsand the additional cations when the structures or physicochemical properties of theadditional cations are similar to the heavy metals'; the complexations between theanions and the heavy metals lead to decrease of ionic activities and the valence statesof the heavy metals, and have influence on physical adsorption of the heavy metalswhich is caused by electrostatic attraction.
     3. The competitive adsorption exists in different concentrations of heavy metalsolution and is not simply as occupying adsorption sites. The competitive adsorptionmechanisms are different in different concentration gradient of heavy metaladsorption reaction systems. And the competitive adsorption abilities of heavy metalson sediment-water interface in Baotou section of the Yellow River are ranked as:pb~(2+)>Cu~(2+)>Zn~(2+)≥Cd~(2+).
     4. The illite and chlorite which are important minerals of carrying the heavymetals via particulates in Baotou section of the Yellow River have significantinfluence on species distribution of the heavy metals in secondary phase. And theregulation effect of calcium carbonate (calcite) on the concentration of CO_3~(2-) hasindirect influence on the species distributions of the heavy metals in sediment inaquatic environment, and further impact on the mobility of the heavy metals withother minerals. Furthermore, the quartz, orthoclase, plagioclase and riebeckite havesignificant influence on exchangeable form of the heavy metals.
     5. The sediments in the Yellow River have different functions as sink or source indifferent periods. The sediments can function as sink in low-water period andmedium water period, in which it is propitious of suspended matter deposition inwater system and heavy metal adsorption on sediment-water interface; whereas it canfunction as source in high-water period, in which the heavy metals adsorbed bysurface sediments would be transferred into the water phase again, then cause thesecondary pollution. The enrichment abilities of heavy metals in different periods areranked as: low-water period>medium water period>high-water period.
     6. The concentrating abilities of coastal plants and natural fishes to heavy metalsin Baotou section of the Yellow River are investigated for the first time. This papernot only lays foundations but also provides valuable firsthand database for the studiesof biological availability, biogeochemical cycle and the ecological risk evaluation.The concentrating abilities of coastal plants differ in different elements, samplingsites, plant species, and different nutritive organs. And the concentrating abilities ofnatural fishes differ in different elements, fish ages, fish species and different nutritive organs.
引文
[1] 李学垣主编.土壤化学[M].北京:高等教育出版社,2001
    [2] 陈静生等.铜在沉积物各相中分配的实验模拟与数值模拟研究——以鄱阳湖为例[J].环境科学学报,1987,7(2):140-149
    [3] Needleman H L, The future challenge of lead toxicity[J]. Environ. Health Perspec., 1990, 89: 85-89.
    [4] Yanagisawa H, Wade O. Toxic tubulo-interstitial nephropathies[J].Nippon Naika Gakkai Zasshi. 1999, 88 (8):1446-1453.
    [5] Naseem R, Tahir S S. Removal of Pb(Ⅱ) from aqueous-acidic solutions by using bentonite as an adsorbent[J] Water Res., 2001, 35: 3982-3986.
    [6] 丁维功,赵德山,江世益.中国医学化学进展[M].上海:百家出版社,1996
    [7] Templeton DM, Wang Z, Miralem T[J]. Toxicology Letters, 1998, 95(1): 1~8.
    [8] Lin C J, Yang PC, Hsu M T, et al. Toxicology[M], 1998, 127(1-3): 157~166
    [9] Berglund M, Akesson A, Bjellerup P, et al. Toxicology Letters, 2000:219~225.
    [10] Howarth, I. D. Monthly Notices of the Royal Astronomical Society[M], 1983
    [11] Thomton, I., Applied Erivironmental Geochemistry[M]. Academic Ress, London. 1983.
    [12] Forstner U. Contaminated sediments. Lecture notes in earth sciences[M]. Berlin: Springer-Verlag. 1989.156.)
    [13] C. Savvides, A. Papadopoulos, K. J. Haralambous and M.Loizidou. Sea sediments contaminated with heavy metals metal speciation and removal[J]. Wat. Sci. Tech. 1995, 32(9-10): 65-73.
    [14] Clotilde Bertin and Alain C.M. Bourg. Trends in the heavy metal content (Cd, Pb, Zn) of river sediments in the drainage basin of smelting activities[J]. Res. 1995, 29(7):1729-1736
    [15] H,M.V.M Soares, R.A.R. Boaventura, A.A.S.C. Machado, et al. Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data.[J]. Environmental Pollution, 1999, 105:311-323
    [16] Jain C. K., Sharma M. K. Distribution of trace metals in the Hindon River system, India[J]. Journal of Hydrology, 2001, 253(1-4): 81-90.
    [17] Lin Saulwood, Hsieh I-Jy, Huang Kuoming. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments[J]. Chemical Geology, 2002, 182(2-4): 377-394
    [18] Shi Changxing, Zhang David Dian,You Lianyuan. Sediment budget of the Yellow River delta, China: the importance of dry bulk density and implications to understanding of sediment dispersal[J]. Marine Geology, 2003, 199(1-2): 13-25.
    [19] Pagnanelli F., Moscardini E., Giuliano V.Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series[J]. Environmental Pollution, 2004, 132(2): 189-201
    [20] Ryder, K., Temara A., Holdway, D.A., Avoidance of crude-oil contaminated sediment by the Australian seastar, Patiriella exigua (Echinodetmata: Asteroidea)[J]. Marine Pollution Bulletin. 2004, 49(11-12): 900-909.
    [21] NystrA Am Gunvor M., Ottosen Lisbeth M., Villumsen Arne.Test of experimental set-ups for electrodialytic removal of Cu, Zn, Pb and Cd from different contaminated harbour sediments[J].Engneering Geology, 2005, 77(3-4): 349-357.
    [22] Woitke P, Wellmitz J, Helm D, et al. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube [J]. Chemosphere, 2003, 51: 633-642.
    [23] R. Swennen, J.Vander Sluys, R.Hindel, A.Brusselmans. Journal of Geochemical Exploration [J], 1998, Volume 62, Issue:1-3
    [24] Swennen R, Van Der Sluys J. Anthropogenic impact on sediment composition and geochemistry in vertical overbank profiles of river alluvium from Belgium and Luxembourg [J]. Journal of Geochemical Exploration, 2002, 75: 93-105.
    [25] Huang W., Campredom R., Abrao J. J., et al, Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil)-interpretation of geochemical data with the aid of multivariate analysis[J], Environmental Geology, 1994, 36(4): 241~247
    [26] Calmano W., Ahlf W., Forster U., Sediment quality assessment: chemical and biological approaches. In: Calmano W., Forster U., eds. Sediment and toxic substance: Environmental effects and ecotoxity[G]. Berlin: Springer, 1995, 1~36
    [27] Santschi P. H., Hoehener P., Benoit G. et al, Chemical processes at the sediment-water interface[J], Mar. Chem., 1990, 30(1~3), 269~315
    [28] Martlnez F, Sanchez J. Assessment of heavy metal levels in Almendares River sediments—Havana City, Cuba [J]. Water Research, 2005, 39: 3945-3953.
    [29] Audry S, Schafer J, Blanc G, et al. Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France) [J]. Environmental Pollution, 2004, 132: 413-426.
    [30] Karuppiah M, Gupta G. Chronological changes in toxicity of and heavy metals in sediments of two Chesapeake Bay tributaries [J]. Journal of Hazardous Materials, 1998, 59:159-166.
    [31] Lawson N. M., Mason R. P., Laporte J. M., The fate and transport of mercury, methylmercury, and other trace metals in Chesapeake Bay tributaries[J], Wat. Res., 35 (2),501~515
    [32] Landajo A, Arana G, De Diego A, et al. Analysis of heavy metal distribution in superficial estuarine sediments (estuary of Bilbao, Basque Country) by open-focused microwave-assisted extraction and ICP-OES [J]. Chemo-sphere, 2004, 56: 1033-1041.
    [33] 李然,李嘉,赵文谦.水环境中重金属污染研究概述[J].四川环境,1997,16(1):18~22
    [34] Atanassova I., Competitive effect of copper, zinc, cadmium and nickel on ion adsorption and desorption by soil clays[J]. Water, Air, and Soil Pollution, 1999, 113, 115~125
    [35] Loganathan P., Burau R.G., Sorption of heavy metal ions by a hydrous manganese oxide[J]. Geochimica CosmochimicaActa, 1973, 37, 1277~1293
    [36] Dvis J. A., Leckie J. O., Surface ionization and complexation at the oxid/water interface, Ⅱ. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions[J]. Journal of Colloid and Interface Science, 1978, 67, 90~107
    [37] Barow N. J., Bowden J. W., Posner A. M., et al, Describing the adsorption of copper, zinc and lead on a variable charge mineral surface[J] Australian Journal of Soil Research, 1981, 19, 309~321
    [38] Sato H, Yanai S, Nagasaka Y, et al. Influence of land use on suspended sediment discharge fromwatersheds crop-tying into Funka Bay, southwestern Hokkaido, northern Japan [J]. J Jpn Soc Hydrol Water Resour, 2002, 15: 117-127.
    [39] Nagano T, Yanase N, Tsuduki K, et al. Particulate and dissolved elemental loads in the Kuji River related to dis-charge rate [J]. Environment International, 2003, 28: 649-658.
    [40] Mier M. V., Callejas R. L., Gehr R., et al, Heavy metal removal with Mexican clinoptilolite: multi-component ionic exchange[J]. Wat. Res., 2001, Vol 35 (2), 373~378
    [41] Jain A., Loeppert R. H., Effect of competing anion on the adsorption of arsenate and arsenite by ferrihydrite[J]. J. Environ. Qual., 2000, 29, 1422~1430
    [42] Temminghoff, E. J. M., Van Der Zee, S. E. A. T. M. and Dehaan, E A. M., Speciation and calcium competition effects on cadmium sorption by sandy soil at various pHs[J]. European Journal of Soil Science. 1995, 46:649-655
    [43] Spark, K. M., Johnson, B. B. and Wells, J. D., Characterizing heavy-metal adsorption on oxides and oxyhydroxides[J]. European Journal of Soil Science, 1995, 46:621-631
    [44] Tessier A.,Campdell P, G. C. & Bisson M. Sequential extraction procedure fore the speciation of particulate trace metals[J]. Anal. Chem, 1979, 51: 844~851
    [45] JL Gomez Ariza, I Giraldez, D Sanchez Rodas, et al. Metal readsorption and redistribution during the analytical fractionation of trace elemants in oxic estuarine sediments[J]. Anal Chem.Acta, 1999, 399: 295~307
    [46] Urea M, Quevauvillier Ph [in]Muntau H et al., EUR Report[G], nr.14763. C. E. C., Brussels, 1992
    [47] Davidson C M,Thomas R P, McVey S E et al.. Evaluation of a Sequential Extraction Procedure for the Speciation of Heavy Metals In Sediments[J]. Anal Chim. Acta, 1994, 291:277~286
    [48] Arunachalam J, Emons H, Krasnodebska B, Sequential Extraction Studies on Homogenized Forest Soil Samples[J]. Sequential Total Environ., 1996, 181: 147~159
    [49] 王晓蓉,章慧珠,周爱和等.金沙江重金属在颗粒物中的分布及其基本特征[J].环境化学,1982,1(2):140-146.
    [50] 陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社,1992.
    [51] 金相灿.黄河中游悬浮物对铜、铅、锌的吸附[J].中国环境科学,1983,4:10-17.
    [52] 金相灿.黄河中游悬浮物对铜、铅、锌的吸附与释放研究[J].中国环境科学,1984,4:54-60)
    [53] 张朝生,王立军,章申.长江中下游河流沉积物和悬浮物中金属元素的形态特征[J].中国环境,1995,15(5):342-347
    [54] 贾振邦,赵智杰,杨小毛等.洋涌河、茅洲河和东宝河沉积物中重金属的污染及评价[J].环境化学,2001,20(3):212-219
    [55] 张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究[J].环境化学,1997,16(5):429-434
    [56] 王立军,张朝生.珠江广州段水体沉积物和悬浮物中27种元素的含量与形态分布特征[J].应用基础与工程科学学报,1997,7(1):12-20.
    [57] 吕殿隶,吕兴娜,贾振邦.柴河水库沉积物中Pb、Zn对水库水质的影响分析[J].辽宁城乡环境科技.1998,18(6):45-48
    [58] 陈静生,王飞越,宋吉杰.中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J].环境化学,1996,15(1):8-14
    [59] 陈静生,王飞越.程成旗中国东部主要河流颗粒物的元素组成[J].北京大学学报(自然科学版),1996,32(2):206-214
    [60] 宋菲,郭玉文,刘孝义等.土壤中重金属镉锌铅复合污染的研宄[J].环境科学学报.1996,16(4),431~436
    [61] 余国营,吴燕玉.土壤环境中重金属元素的相互作用及其对吸持特性的影响[J].环境化学.1997,16(1):30~36
    [62] 刘继芳,曹翠华,蒋以超等.重金属离子在土壤中的竞争吸附动力学初步研究Ⅰ竞争吸附动力学的竞争规律与竞争系数[J].土壤肥料.2000,(2):30~34
    [63] 刘继芳,曹翠华,蒋以超等.重金属离子在土壤中的竞争吸附动力学初步研究Ⅱ铜与镉在褐土中竞争吸附动力学[J].土壤肥料,2000,(3):10~15
    [64] 文湘华.水体沉积物重金属质量基准研究[J].环境化学.1993,05
    [65] 陈静生,洪松,范文宏等.各国水体沉积物重金属质量基准的差异及原因分析[J].环境化学,2001,20(5):417-424)
    [66] 刘文新,栾兆坤,汤鸿宵.河流沉积物重金属污染质量控制基准的研究(II):相平衡分配法(EqP)[J],环境科学学报,1999,19(3):230~235
    [67] 方涛,肖邦定,张晓华.曝气对两种不同类型沉积物中重金属释放的影响)[J].中国环境科学,2002,22(4):355~359
    [68] 陈振楼,许世远,柳林.上海滨岸潮滩沉积物重金属元素的空间分布与累积)[J].地理学报,2000,55(6):641-651
    [69] 张朝生,王立军,章申.长江水系沉积物重金属元素含量的计算方法研宄)[J].环境科学学报,1995,15(3):257~264
    [70] 张朝生,章申,张立成等.长江中下游河流沉积物和悬浮物中金属元素的形态特征.中国环境科学,1995.15(5):342~347
    [71] 张朝生,章申,何建邦.长江水系沉积物重金属元素含量空间分布特征研究——地统计学方法.地理学报,1997,52(2):184~192
    [72] 张朝生,章申,何建邦.长江水系沉积物重金属元素含量空间分布特征研究——空间自相关与分形方法[J].地理学报,1998,53(1):87~96
    [73] 张朝生,章申,王立军等.长江与黄河沉积物金属元素地球化学特征及其比[J]较.地理学报,1998,53(4):172~176
    [74] 何孟常,王子健,汤鸿霄.乐安江沉积物重金属污染及生态风险性评价[J],环境科学,1999,20(1):7~10.
    [75] 何孟常,王子健.利用综合评价方法和等级模型评价乐安江水体重金属污染[J].生态学报,2002,22(1): 80~86
    [76] 霍文毅,黄风茹,陈静生等.河流颗粒物重金属污染评价方法比较研究)[J].地理科学,1997,17(1):81~86
    [77] 霍文毅,陈静生.我国部分河流重金属水—固分配系数及在河流质量基准研究中的应用[J].环境科学,1997,18(4),10~13)
    [78] 汤鸿霄.试论重金属的水环境容量[J].中国环境科学,1985,5(5):38~43
    [79] 庞淑薇等.连续化学提取法测定底泥中不同形态汞的探讨[J].环境科学学报,1981,1(3):234~241
    [80] 张兰田,吴吉琨等.第二松花江哈达-哨口江段底质中汞形态分布的研究[J].环境科学,1985,(3):83~86
    [81] 林玉环,康德梦等.蓟运河底泥中汞的形态分布)[J].环境科学,1983,2(6):10~19
    [82] 汤鸿霄.环境科学中的化学问题—环境水质学中的几个化学前沿问题[J].化学进展,2000,12(4):415~422.
    [83] Jens M Skei. A review of assessment and remediation strategies for hot spot sediments[J]. Hydrobiologia, 1992, 235/236: 629~638.
    [84] 陈静生,王飞越.关于水体沉积物质量基准问题[J].环境化学,1992,11(3):60~70.
    [85] 曹蕾.粘土矿物在环境矿物学中的应用研究[J].安庆师范学院学报(自然科学版),2005,11(4):38-41
    [86] 刘云,吴平霄.粘土矿物与重金属界面反应的研究进展[J].环境污染治理技术与设备,2006,7(1):17-21
    [87] 汤鸿霄.环境微界面过程研究论文专辑[J].环境科学学报,2003,23(2):1
    [88] 叶常明著.多介质环境环境污染研究[M].北京:科学出版社,1997
    [89] 孙卫玲,倪晋仁.泥沙吸附重金属研究中的若干关键问题.泥沙研究,2002,6:53-59
    [90] 朱文涛.物理化学下册[M].北京:清华大学出版社,1995.
    [91] 何燧源,金云云.环境化学[M].上海:华东化工学院出版社,1989
    [92] 刘静宜,汪安璞,彭安等.环境化学[M].北京:中国环境科学出版社,1987
    [93] Mayer, L. M., Rossi, P. M. Specific surface areas in coastal sediments: relationships with other textural factors[J]. Mar. Geol. 1982, 45: 241
    [94] DeFlaun, M. F., Mayer, L. M. Relationships between bacteria and grain surface in intertidal sediments[J]. Limnol. Oceanogr. 1983, 18: 873
    [95] Schoer, J. Iron-oxo-hydroxides and their significance to the behavior of heavy metals in estuaries[J]. Environ. Technol. Letters. 1985, 6: 189
    [96] Mayer, L. M., Fink, L. K. Granulometric dependence of chromium accumulation in estuarine sediments in Maine[J]. Estuarine Coastal Mar. Sci. 1980, 11: 491
    [97] Loring, D. H. Geochemical factors controlling the accumulation and dispersal of heavy metals in the Bay of Fundy sediments[J]. Can. J. Earth Sci. 1982, 19: 930
    [98] Williams, S. C., Simpson. H. J., Olsen, C. R., Bopp, R. F. Sources of heavy metals in sediments of the Hudson River estuary[J]. Mar. Chem. 1978, 6: 195
    [99] Ackerman. F. A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments[J]. Environ. Technol. Lett. 1980, 1: 518
    [100] Forstner, U., Salomons, W. Trace metal analysis on polluted sediments. I. Assessment of sources and intensities[J]. Environ. Technol. Lett. 1980, 1: 494
    [101] Wheeler, R. B., Anderson, J. B., Schwarzer, R. R., Hokanson, C. L. Sedimentary processes and trace metal contaminates in the Buccaneer oil/gas field[J], North western Gulf of Mexico. Environ. Geol. 1980, 3: 163
    [102] Fu, G. et al. Cadmium adsorption by oxic sediment[J]. Water Res., 1992, 26(1): 225~233
    [103] Warren, L. A., andZimmerman. The influence of temperature and NaCl on cadmium, copper and zinc partitioning among suspended particulate and dissolved phases in an urban river[J]. Wat. Res., 1994, 28(9): 1921-1931
    [104] Srivastava, A., and Srivastava. Adsorption-Desorption Behaviour of Zinc (Ⅱ) at Iron (Ⅲ) Hydroxide-Aqueous Solution Interface as Influenced by pH and Temperature[J]. Environmental Pollution, 1990, 68(1): 171~180.
    [105] Barrow. A brief discussion on the effect of temperature on the reaction of inorganic ions with soil[J]. Journal of Soil Science, 1992, 43(1): 37~45
    [106] Zhu B, Alva A K. Differential adsorption of trace metals by soils as influenced by exchangeable cation and ionic strength[J]. Soil Sci, 1993, 155: 61~67.
    [107] 李英,曹军骥.柞水银铅矿地表径流沉积物中污染物相态分析[J].西安工程学院学报,1998,20(1):24-28
    [108] Isabel Cacador, Carlos Vale, Fernando Catarino. Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus Estuary salt marshes, Portugal [J]. Estuarine Coastal and Shelf Science, 1996, (42): 393-403.
    [109] 关伯仁.黄河水资源保护文集[M].北京:北京大学出版社,1990
    [110] 金相灿.黄河中悬浮物对铅,铜,锌的吸附[in].见:黄河水资源保护文集[M].北京:北京大学出版社,1990.104-113
    [111] 赵佩纶,申献臣,夏军等.泥沙对黄河水质影响及重点河段水质污染控制[M].郑州:黄河水利出版社.1998.
    [112] 李利民,郭益群,胡青.黄河泥沙对某些重金属离子的特性吸附及影响因素研究[J].环境科学研究,1994,7(5):12~16
    [113] 李改枝,刘颖,李景峰等.黄河水中悬浮粒子对镉离子的交换吸附等温线[J].中国环境科学,1999,19(4):330~332
    [114] Li Gai-zhi, Guo Bo-shu and Liu Ying et al, Study on the isotherms of the interaction between suspended particles and Cu(ll) in the Huang He River[J]. Chinese Journal of Oceanology and Limnology, 2000, 18(2): 178~182
    [115] 杨宏伟,刘颖,焦小宝等.黄河水中氨基酸对铅(Ⅱ)与悬浮粒子相互作用的影响[J].环境科学与技术,2000,(2):18~23.
    [116] 杨宏伟,郭博书,段毅文等.黄河水中铅(Ⅱ)与悬浮粒子相互作用的研究[J].环境科学研究,2001,14(1):27~30.
    [117] 申献辰,冯惠华,王凤荣等.重金属在黄河中游输送和迁移的水质模拟研究[J].水利学报,1997,(11): 49~55
    [118] 高宏,暴维英.泥沙对黄河重金属的影响[in],见:泥沙对黄河水质影响及重点河段水污染控制[M].郑州:黄河水利出版社,1998
    [119] 高宏,臧小平,冯化涛等.黄河沉降物对重金属和氮化物污染行为的影响[in].见:多沙河流污染化学和生态毒理学研究[M].郑州:黄河水利出版社,2001.54-82
    [120] 赵蓉,倪晋仁,张岚等.碳酸盐对铜离子在黄土中吸持及形态影响的实验研究[J].2002,21(4):349-355
    [121] 张岚,孙卫玲,赵蓉等.添加不同化合态结合的铜离子对其在黄土中吸持及形态的影响[J].环境化学.2002,21(3):224-229
    [122] 《2003年包头市环境质量报告书》,包头市环境监测站
    [1] 《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [2] Tessier, A., Campbell, P.G.C. and Sisson, M., Sequential extraction procedure for the speciation of paniculate trace metals [J]. Analytical Chemistry, 1979, 51 (7): 844-212
    [3] 陈静生,王飞越,陈江麟.论小于63μm粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转换模型研究[J].环境科学学报,1994,14(4):419-425
    [1] Christiaan Gischler. Pathways of Heavy Metals and Implication for Stakeholders [D], Sonso Lagoon, Colombia TRITA-LWR Master Thesis. 2005.
    [2] 黄岁梁,万兆惠,王兰香.不同粒径泥沙解吸重金属污染物静态试验研究[J].水动力学研究与进展A辑,1995,10(2):204~213
    [3] 孙培德,楼菊青.环境系统模型及数值模拟[M].北京:中国环境科学出版社,2005
    [4] 汤鸿霄.环境纳米污染物与微界面水质过程[J].环境科学学报,2003,23(2):146~155
    [5] 潘纲.亚稳平衡态吸附(MEA)理论—传统吸附热力学理论面临的挑战与发展[J].环境科学学报,2003,23(2):156~173
    [6] Mandelbrot B B. Fractal Form, Chance and Dimension [M]. Freeman. San Fracisco, 1982
    [7] Feder J. Fractals [M]. New York: Plenum Press, 1988
    [8] Fumiaki Kano,Ikuo Abe,Hiroshi Kamaya, et al. Fractal model for adsorption on activated carbon surfaces: Langmuir and Freundlich adsorption[J]. Surface Sciece, 2000, 467:131~138
    [9] 谢云霞.多重分形表面的吸附模型[J].四川理工学院学报(自然科学版),2006,19(3):107~110
    [10] 李嘉,周鲁,李克锋.泥沙粒径分布函数的分形特征与吸附性能[J].泥沙研究,2003,3:17~20
    [11] 辛厚文.分形理论及其应用[M].北京:中国科技大学出版社.1993
    [12] 赵旭,王毅力,郭瑾珑等.颗粒物微界面吸附模型的分形修正—朗格缪尔(Langmuir)、弗伦德利希(Freundlich)和表面络合模型[J].环境科学学报,2005,25(1):52~57
    [13] 王毅力,芦家娟,周岩梅等.沉积物颗粒表面分形特征的研究[J].环境科学学报,2005,25(4):457~463
    [1] Kingniburgh D G. The H~+/M~(2+) exchange stoichiometry of calcium and zinc adsorption by ferrihydrite[J]. J Soil Sci, 1983, 34:759-768
    [2] Ankomah A B. Magnesium and pH effect on zinc sorption by goethite[J]. Soil Sci, 1992, 154:206-213
    [3] 徐明岗,李菊梅,陈世宝.共存阳离子对土壤吸附Cu~(2+)的影响吸附[J].农业环境科学学报.2004,23(5):935-938
    [4] 杨亚提,张平.离子强度对恒电荷土壤胶体吸附Cu~(2+)和Pb~(2+)的影响[J].环境化学,2001,20(6):566-571
    [5] 邹献中,徐建民,赵安珍等.离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J].土壤学报.2003,40(6):845-851
    [6] 张波涛,董德明,杨帆等.自然水体悬浮颗粒物吸附铅和镉的特性[J].吉林大学学报,2005,43(6):867-872
    [7] 杨宏伟,郭博书,段毅文等.黄河水中铅(Pb)与悬浮粒子相互作用的研究[J]..环境科学研究,2001,14(1):27-30
    [8] 周代华,徐凤琳,董元彦等.氧化物表面重金属专性吸附实验区分的有关问题——兼论陪补阴离子效应[J].科学通报.1996,41(16):1523-1526
    [9] 吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2006
    [10] Verburg. K, Baveye. P. Hysteresis in the binary exchange of cations on 2:1 clay minerals: a critical review[J]. Clay and Clay Mineral, 1994, 42:207-220
    [1] 汤鸿霄.环境科学中的化学问题环境水质学中的几个化学前沿问题[J].化学进展,2000,12(4):415-422
    [2] 霍文毅,黄风茹,陈静生.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997,17(1):81-86
    [3] Christiaan Gischler. Pathways of Heavy Metals and Implication for Stakeholders [D], Sonso Lagoon, Colombia TRITA-LWR Master Thesis 05: 13. Stockholm -Sweden. 2005.
    [4] 郝红,周怀东,王剑影等.漳卫南运河沉积物重金属污染及其潜在生态风险评价[J].中国水利水电科学研究院学报,2005,3(2).
    [5] 王绍芳,魏明瑞,林景星.大连湾近100年来重金属污染度的演变[J].地学前缘,2002,9(3).
    [6] 栾兆坤,汤鸿宵,尾矿砂颗粒表面特征与吸附作用的研究[J].环境化学,1993,12(5),347-355.
    [7] Rosa Galvez-cloutier & Jean-sebastien Dube, An evaluation of fresh water sediments contamination: the Lachine canal sediments case, Montreal, Canada. Pan Ⅱ: heavy metal paniculate speciation study[J]. Water, air, and soil pollution, 1998, Vol. 102, 281-301.
    [8] W. Petersen, E. Wilier, C. willamowski, Remobilization of trace elements from polluted anoxic sediments after resuspension in oxic water [J]. Water, air, and soil pollution, 1997, Vol. 99, 515-522.
    [9] Filius, Angelika et al., Cadmium sorption and desorption in limed topsoils as influenced by pH: isotherms and simulated leaching[J]. Journal of Environmental Quality, 1998, Vol. 27: 12-18.
    [10] M. L. Nicole, P. M. Robert & L. Jean-Michel, The fate and transport of mercury, methylmercury, and other trace metals in Chesapeake bay tributaries [J]. Wat. Res., 2001, Vol. 35, 501-515.
    [11] Li Gai-zhi, Guo Bo-shu & Liu Ying et al. Study on the isotherms of the interaction between suspended panicles and Cu(Ⅱ) in the HuangHe River[J]. Chinese Journal of Oceanology and Limnology. 2000, Vol. 18, No. 2: 178-182.
    [12] 黄岁梁,万兆惠,王兰香.泥沙浓度和水相初始浓度对泥沙吸附重金属影响的研究[J].环境科学学报,1995,15(1),66-75.
    [13] 杜青,文湘华,李莉莉等.天然水体沉积物对重金属离子的吸附特性[J]_环境化学,1996,15(3):199-206.
    [14] 李利民,郭亦群,胡青.黄河泥沙对某些重金属离子的特性吸附及影响因素研究[J].环境科学研究,1994,7(5),12-16.
    [15] 李改枝,刘颖,李景峰等.黄河水中悬浮粒子对镉离子的交换吸附等温线[J].中国环境科学,1999,19(4),30-332.
    [16] 黄延林.水体沉积物中重金属释放动力学及试验研究[J].环境科学学报,1995,15(4),440-446.
    [17] 孙卫玲,倪晋仁.泥沙吸附重金属研究中的若干关键问题[J].泥沙研究,2002,(12):53-59.
    [18] 赵沛伦,申献臣。夏军等泥沙对黄河水质影响及重点河段水污染控制,黄河水利出版社,1998.
    [19] 吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2006
    [1] 汤鸿霄.环境纳米污染物与微界面水质过程[J].环境科学学报,2003,23(2):146~155
    [2] 汤鸿霄.环境科学中的化学问题环境水质学中的几个化学前沿问题[J].化学进展,2000,12(4):415-422
    [3] B.G. Lottermoser, P.M. Ashley, D.C. Lawie. Environmental geochemistry of the Gulf Creek copper mine area, north-eastern New South Wales[J], Australia. Environmental Geology, 1999, 39(1): 61-74
    [4] Malcolme.Cox, Micaela Preda. Trace Metal Distribution Within Marine andEstuarine Sediments of Western Moreton Bay, Queensland, Australia: Relation to Land Use and Setting[J]. Geographical Research, 2005, 43(2): 173-193
    [5] J.F. Boylel, A. W. Mackay2, N. L. Rose et al. Sediment heavy metal record in Lake Baikal: natural and anthropogenic sources[J]. Journal of Paleolimnology, 1998, 20:135-150
    [6] F. Kulahci, M. Dogru. Physical and chemical investigation of water and sediment of the Keban Dam Lake, Turkey: Part 2: Distribution of radioactivity, heavy metals and major elements[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006, 38(3):529-537
    [7] 张效龙,徐家声,金永德等.天津永定新河口海区海底表层沉积物的污染[J].海洋地质动态,2006,22(5):11-14
    [8] 程晓东,郭明新.河流底泥重金属不同形态的生物有效性[J].农业环境保护,2001,20(1):19-22
    [9] 孙卫玲,倪晋仁,泥沙吸附重金属研究中的若干关键问题[J].泥沙研究,2002,(12):53-59.
    [10] 赵沛伦,申献臣,夏军等.泥沙对黄河水质影响及重点河段水污染控制[M].黄河水利出版社,1998.
    [11] Tessier A.et al. Sequential extraction procedure fore the speciation of particulate trace metals[J]. Anal. Chem, 1979, 51: 844~851
    [12] 吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2006
    [13] 蒋昊,胡岳华,蒋玉仁等.固体浓度对方解石动电行为的影响[J].矿冶工程,1999,19(1):38-40
    [14] 吴宏海,黄瑞敏,胡勇有等.石英与水溶液作用的界面反应特征[J].化学研究与应用,2001,13(3):280-283
    [15] 吴宏海,吴大清,彭金莲.重金属离子与石英表面反应的实验研究[J].地球化学,1998,27(6):523-531
    [16] M.C.Fuerstensu et al. Flotation, A M Gaudin memorial volume. AIME, 1976, 1:148-196
    [17] 傅平青,刘丛强,万鹰昕等.水环境中腐殖质对重金属吸附行为的影响[J].矿物岩石地球化学通报,2002,21(4):277-281
    [18] Warren L A, Zimmerman A R Suspended particulate oxides and organic matter interactions in trace metal sorption reactions in small urban river[J]. Biogeochemistry, 1994,23: 21-34.
    [19] Zachara J M, Resch C T, Smith S C. Influence of humic substances on Co~(2+) sorption by a subsurface mineral separate and its mineralogic components[J]. Geochim. Cosmochim. Acta, 1994,58: 533-566.
    [1] 刘文新,汤鸿霄.河流沉积物重金属污染质量控制基准的研究.Ⅰ.C-B-T质量三合一方法(Triad)[J].环境科学学报,1999,19(2):120~126
    [2] Sina S N, Chuaa H, Lob W. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong[J]. Environment International, 2001, 26:297~301
    [3] Damian S. Development sediment quality criteria[J]. Environmental Sciences Technology, 1988, 22(11): 1256~1261
    [4] Millward G E, Glegg G A. Fluxes and retention of trace metals in the Humber estuary[J]. Estuarine, Coastal Shelf Science, 1997, 44:97~105
    [5] Calmano W, Hong J, Forstner U. Binding and mobilization of heavy metal in contaminated sediments affected by pH and redox potential[J]. Water Sci. Technol., 1993, 28(8~9): 223~235
    [6] Kwon Y T, Lee C W. Application of multiple ecological risk indices for the evaluation of heavy metal contamination in a coastal dredging area[J]. The Science of the Total Environment, 1998, 214:203~210
    [7] Ghirardini V, Birkemeyer T, Novelli A A, et al. An integrated approach to sediment quality assessment: the Venetian lagoon as a case study[J]. Aquatic Ecosystem Health and Management, 1999, 2:435~447
    [8] Tam N F Y, Wong Y S. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps[J]. Environmental Pollution, 2000, 110:195~205
    [9] Owen R B, Sandhu N. Heavy metal accumulation and anthropogenic impact on Tolo Harbour, Hong Kong[J]. Marine Pollution Bulletin, 2000, 40(2): 174~180
    [10] 王国平,刘景双,高峰.向海湿地沉积芯重金属对流域环境污染示踪[J].地理科学,2001,21(6):549~553
    [11] 贾振邦,霍文毅,赵智杰等.应用次生相富集系数评价柴河沉积物重金属污染[J].北京大学学报(自然科学版),2000,36(6):808-812
    [12] 霍文毅,黄风茹,陈静生.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997,11(1):81-86
    [1] 康维钧,孙汉文.环境重金属污染水体及土壤的生态毒理诊断及修复研究进展[J].河北工业科技.2006,23(1):61-64
    [2] 常晋娜,瞿建国.水体重金属污染的生态效应及生物监测[J].四川环境.2005,24(4):29-33
    [3] 内蒙古植物志第四版[M].呼和浩特,内蒙古人民出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700