光电集成加速度地震检波器的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业的飞速发展,对油气能源的需求日益增加。随着油气勘探开发的不断深入,面对的勘探目标越来越隐蔽,越来越复杂,提高勘探技术已成当务之急。地震勘探法是查明地下地质构造,寻求油气田或其他勘探目标的一种物探方法。地震检波器是地震勘探仪器正常工作的第一个环节,是任何一代地震勘探仪器不可缺少的一个组成部分,它的性能好坏对勘探系统有着直接的影响。
     本研究为国家自然科学基金资助项目“光电集成加速度地震检波技术理论和实验研究”(NO.40274047)的主课题。光电集成加速度地震检波器是一种新型微光机电加速度地震检波器,具有高精度、高灵敏度、体积小、集成度高等优点,适合在高温高寒等恶劣环境下稳定工作。本论文主要完成以下工作:
     1.详细分析了光电集成加速度地震检波器的工作原理。对简谐振子和波导干涉仪进行了详尽的理论和工艺实验研究,并获得了有参考价值的工艺参数。
     2.对光电集成加速度地震检波器的调制方法进行了深入研究,提出了两种调制方案。首先对声光波导相位调制器进行了理论和实验研究。根据声光调制的机理,从弹性波的理论出发,系统地分析了声表面波的激励及传播方式,对叉指换能器的工作机理进行了详细的分析推导。对氧化锌薄膜和叉指换能器进行优化设计,并深入探讨了氧化锌薄膜、叉指换能器的制备工艺,进行了大量实验研究,取得了较好的工艺参数。
     3.鉴于声光波导相位调制器制作工艺复杂,考虑系统单片集成的工艺性,本课题采用激光光源调制方案实现光电集成加速度地震检波器的信号调制。详细分析了带有反馈系统的半导体激光光源调制和信号处理电路的工作原理,提出了基于FPGA的数字信号处理电路的设计方案,该方案提高了电路的稳定性、灵活性,增强了抗干扰能力,而且具有修改简单的优点。详细讨论了低通滤波模块设计过程,基于ROM查找表法的分布式算法具有硬件资源占用少,结构紧凑,工作频率高的突出优点。进行了仿真验证,为系统的数字化奠定了基础。
     4.在理论分析、设计、计算和工艺实验的基础上,研制出光电集成加速度地震检波器实验样机,并进行了模拟实验研究,实验结果表明,所设计的样机在地震勘探频带范围内有良好的线性和较高的输出,各项性能指标达到设计要求。
With the development of modern industry, the demands for oil energy are expanding increase. Because the easily discoverable oil energy has been exploited, the prospecting becomes more and more difficult, and it is urgent for us to improve the prospecting technology. To survey the geologic structure under ground or explore the energy, people use the method of seismic prospecting. Seismic geophone, which works first in the seismic prospecting, decides the quality of the exploration system.
     The research work of the dissertation is the main research item of the project“The theoretical and experimental research on photo-electronic integrated acceleration seismic geophone technology”(NO.40274047), supported by National Natural Science Foundation of China. The photo-electronic integrated acceleration seismic geophone, which is a novel MOEMS (Micro-Optic-Electro-Mechanical- System) acceleration seismic geophone, is of the advantages such as potential high sensitivity, wide bandwidth, high degree of accuracy and environmental ruggedness, and suitable for mass production. The research work of the dissertation mainly includes four aspects as follows:
     1. The principle of the photo-electronic integrated acceleration seismic geophone is researched. Lots of theoretical researches and process craft researches of harmonic oscillator and waveguide interferometer have been done. A feasible process flow is made and valuable technological parameter is obtained.
     2. The principle of acousto-optic waveguide phase modulation is studied. Starting with the theory of elastic wave, the motivation and the transmission of the SAW (Surface Acoustic Wave) is researched and the principle of IDT (Interdigital Transducers) is discussed. The optimization structure design of ZnO thin film and IDT are obtained and lots of the experimental craft of them have been done.
     3. Because the fabrication technology of the acousto-optic waveguide phase modulator is complex, and it is very difficult and expensive to monolithic integrated with M-Z interferometer and harmonic oscillator, the laser diode modulation is proposed. The principles of the laser diode modulation with a feedback control system and the signal processing method are analyzed. The realization scheme of signal processing of the geophone using FPGA (Field Programmable Gate Array) is proposed, which can improve the stability, flexibility and anti-interference of the circuit. The LPF (Low-Pass Filter) modular in the signal processing of the geophoneis issued. The DA (Distributed arithmetic) has many merits such as compact, engaging little resource, high working frequency. The simulation of the processing is performed, and this work establishes the groundwork for the further digitalization of the geophone.
     4. On the basis of the theory analyze and craft experiments, the system prototype has been fabricated and tested. The experimental result shows that the there are good linearity and high output in seismic prospecting domain and performance indexes reach the demands.
引文
[1] 石油课题组,石油对国民经济的影响及石油安全问题探析,中国石油和化工经济分析,2004, 18: 12~17.
    [2] 何樵登,地质勘探原理和方法,地质出版社,1986.
    [3] 王文良,地震勘探仪器的发展、时代划分及其技术特征,石油仪器,2004,18(1): 1~8.·
    [4] 唱鹤鸣,地震勘探仪器基本原理,地质出版社,1985.
    [5] 付小宁,严正国,加速度过阻尼地震检波器测量的研究,传感器技术,2004,23(9): 16~17.
    [6] 宋玉龙,压电加速度地震检波器及其频率响应特性分析,石油仪器, 2004,8(4): 36~38.
    [7] 付清锋,周明,地震检波器的进展,石油仪器,2000,14(2): 25-27.
    [8] J.A.Hunter, B.Benjumea, J.B.Harris,Surface and downhole shear wave seismic methods for thick soil site investigations,Soil Dynamics and Earthquake Engineering, 2002,22: 931~941.
    [9] 赵镨,欧美应用地球物理现状-多波地震勘探,中国煤田地质,2004,16(6): 47~49.
    [10] 徐成明,徐爽,三维地震勘探在湖泊沼泽地区的应用,物探与化探,2002,26(2): 42~45.
    [11] F.B.Wooding, K.R.Peal, and J.A.Colllins, Broadband seismometry beneath the seafloor, OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000,Vol.2: 1227~1231.
    [12] K.Hirata, M.Aoyagi, H.Mikada, et al., Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone, IEEE J. Oceanic Engineering, 2002,27(2): 170~181.
    [13] 蓝光钊,井下地震震源和检波器的某些进展,石油仪器,1993,7(2): 78~82.
    [14] 刘光林,刘泰生,高中录等,地震检波器的发展方向,勘探地球物理进展,2003,26(3): 178~185.
    [15] M.Balascof, D.Chianesel, V.Cuomo,et al., Design of a New Prototype of Remote Station to Detect Electrical and Seismometric Parameters in a Seismic Area of Southern Italy, Phys. Chem. Earth (C), 200l,26(10-12): 787~791.
    [16] 张学营,曲秀敏,BOX 系统野外实用手册,物探装备,2002,12(4): 282~287.
    [17] 谭军,季广森,DGPS NR107V 在可控震源地震勘探中的应用, 2002,12(4): 258~260.
    [18] Dieter Seidl, Margaret Hellweg, Marta Calvache, The multiparameter station at Galeras Volcano (Colombia): concept and realization, Journal of Volcanology and Geothermal Research, 2003,125: 1~12.
    [19] 段文燊,吴朝容,地震资料解释工作站应用研究,物探化探计算技术,1999,21(1): 89~94.
    [20] Valis Tomas, Passive-quadrature Demodulated Localized Michelson Optical Fiber Strain Sensor Embedded in Composite Materials, Journal of Lightwave Technology, 1991,9(4): 535~544.
    [21] C.H. Chen, G.L. Ding, D.L. Zhang, et al., Michelson fiber-optic accelerometer, Rev.Sci.Instrum., 1998,69(9): 3123-3126.
    [22] C.H. Chen, D.L. Zhang, G.L. Ding, et al., Broadband Michelson fiber-optic accelerometer, Appl Opt., 1999,38(4): 628~630.
    [23] F.A.Donal, Interferometric Fiber-optic Sensing Based on the Modulation of Group Delay and First Order Dispersion: Application to Strain-Temperature Measured, Journal of Lightwave Technology, 1995,13(7): 1314~1323.
    [24] T.K.Lim., Zhou Y., Lin Y., et al., Fiber optic acoustic hydrophone with double Mach-Zehnder interferometers for optical path length compensation, Optics Communications, 1999,159(4-6): 301~308.
    [25] H.Sickinger, Fiber based Mach-Zehnder interferometer for measuring wave aberrations of microlenses, OPTIK, 1999,110(5): 239~243.
    [26] J.Stone, Optical fiber fabry-perot interferometer with finesse of 300, Electronics Letters, 1985,21: 504-505.
    [27] J.Sirkis, In-line Fiber Etalon (ILFE) Fiber-Optic Strain Sensors, Journal of Lightwave Technology, 1995,13(7): 1256~1263.
    [28] R.Mcbride, A passive phase recover technique for Sagnac interferometers based on controlled loop birefringence, Journal of modern optics, 1992,39(6): 1309~1320.
    [29] Krakenes Kjell, Blotekjaer Kjell, Comparison of fiber-optic Sagnac and Mach-Zehnder interferometers with respect to thermal processes in the fiber, Journal of Lightwave Technology, 1995,13(4): 682~686.
    [30] 王惠文,娄英明,江先进,光纤加速度传感器研究进展,光学技术,1997,5: 15~20.
    [31] J.Marty, A.Malki, C.Renouf, et al., Fibre-optic accelerometer using silicon micromachining techniques, Sensors and Actuators A 1995,47(1-3): 470~473.
    [32] R.Dib, Y.Alayli, P.Wagstaff, A broadband amplitude fibre optic vibrometer with nanometric accuracy, 2004,35(2): 211-219.
    [33] A.B.Tveten, A.Dandridge, C.M. Davis, et al., fiber optic accelerometer, Electron. Lett, 1980,16: 854~856.
    [34] D.L.Gardner,D.A.Brown, S.L.Garrett, Fiber-Optic Push-Pull Sensor System, The Second National Technology Transfer Conference and Expositiont, 1991,2: 4l5~422.
    [35] A.D.Kersey, T.A.Berkoff, W.W.Morey, High-resolution fiber-grating based strain sensor with interferometric wavelength-shift detection, Electron. Lett., 1992,28(3) : 236-238.
    [36] T.A.Berkoff, A.D.Kersey, Experimental demonstration of a fiber Bragg grating accelerometer, IEEE Photonics Technology Letters, 1996,8(12): 1677~1679.
    [37] Torben Storgarrd-Larsen, Siebe Bouwstra, Otto Leistiko, Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide, 1996, 52(1-3): 25~32.
    [38] K.E.Petersen, Silicon as a mechanical material, Pro. IEEE, 1982, 70(5): 420~457.
    [39] Hiroyuki Fujita, Microactuators and micromachines, Pro. IEEE, I998,86(8): 1721~1732.
    [40] R.P.Feynman, There's plenty of room at the bottom [data storage], Microelectromechanical Systems, 1992, 1(3):60~66.
    [41] J.Bryzek, Impact of MEMS technology on society, Sensors and Actuators, 1996, A56(1-2): 1~9.
    [42] K.E.Petersen, Silicon as a mechanical material, Pro. IEEE, 1982, 70(5): 420~457.
    [43] Long-Sheng Fan, Yu-Chong Tai, R.S.Muller, IC-processed electrostatic micro-motors, Electron Devices Meeting, Technical Digest, International, 1988,11: 666~669.
    [44] 杨轶,张宁欣,张林涛等,MEMS 的研究与应用,中国集成电路,2003,53: 22~25.
    [45] 硅微机械惯性传感器技术及其应用,俞瑛,集成电路通讯,2005,23(1): 1~4.
    [46] N. F. de Rooij, Recent advances in technology and applications of Microsystems, Industrial Electronics, Control and Instrumentation, 1994. IECON '94., 1994,3: 1488 - 1489.
    [47] R.A.Lawes, Fabrication technology for microengineering, Engineering Science and Education Journal, 1994, 3(6): 263~269.
    [48] W.Menz, W.Bacher, M.Harmening, The LIGA technique-A novel concept for microstructures and the combination with Si-technologies by injection molding, Micro Electro Mechanical Systems, MEMS '91, Proceedings, 1991: 69~73.
    [49] 张威,张大成,万阳元,MEMS 概况及其发展趋势[J].微纳电子技术,2002,(1): 22~28.
    [50] 石庚辰,微机电系统技术,国防工业出版社,2002.
    [51] 付博,赵月月,微光机电系统(MOEMS)研究综述,传感器世界,2004,10: 11~17.
    [52] 王亚珍,朱文坚,微机电系统(MEMS)技术及发展趋势,机械设计与研究,2004,20(1): 10~12.
    [53] 陈非凡,殷玲,李云龙,微光机电系统(MOMEMS)的研究现状及展望,微细加工技术,2002,3: 1~7.
    [54] W.Merlijn, MEMS reliability from a failure mechanisms perspective, Microelectronics Reliability, 2003,43: 1049~1060.
    [55] 郝一龙,张立宪,李婷等,硅基 mems 技术,机械强度,2001,23(4):523~526.
    [56] M.Garrigues, J.L.Leclercq, P.Viktorovitch, Ⅲ-Ⅴ Semiconductor based MOEMS devices for optical telecommunications, Microelectronic Engineering, 2002,61-62: 933~945.
    [57] Günther Wernicke, Larbi Bouamama, Oliver Kruschke, et al., Some investigations in holographic microscopic interferometry with respect to the estimation of stress and strain in micro-opto-electromechanicalsystems (MOEMS), Optics and Lasers in Engineering, 2001, 36(5): 475~485.
    [58] Gilbert Reyne, Electromagneti actuation for MOEMS, examples, advantages and drawbacks of MAGMAS, Journal of Magnetism and Magnetic Materials, 2002,242-245(2): 1119~1125.
    [59] H. Fujita, Microactuators and micromachines, Proceedings of the IEEE, 1998,86(8): 1721~1732.
    [60] J. H. Comtois, M. A. Michalicek, N. Clark, MOEMS for adaptive optics, 1998 IEEE/LEOS Summer Topical Meetings, 1998: 11/95~11/96.
    [61] Wu MC, D.Hah, P.R.Patterson, Microelectromachanical scanning devices for optical networking applications, Solid-State Circuits Conference, ISSCC. 2002 IEEE International, 2002,1(3-7): 358~359.
    [62] Wu MC, Novel applications of MOEMS display and imaging, RELIABILITY, PACKAGING, TESTING, AND CHARACTERIZATION OF MEMS/MOEMS IV, 2005,5716: XI-XX.
    [63] 尤政,龚克,陆建华,微小卫星技术的发展思路,科技导报,2001,3: 43~47.
    [64] 李以贵,远藤哲生,羽根一博,基于微机电系统技术的投影型微光学编码器,光学学报,2003, 23(8): 1005~1007.
    [48] W.Menz, W.Bacher, M.Harmening, The LIGA technique-A novel concept for microstructures and the combination with Si-technologies by injection molding, Micro Electro Mechanical Systems, MEMS '91, Proceedings, 1991: 69~73.
    [49] 张威,张大成,万阳元,MEMS 概况及其发展趋势[J].微纳电子技术,2002,(1): 22~28.
    [50] 石庚辰,微机电系统技术,国防工业出版社,2002.
    [51] 付博,赵月月,微光机电系统(MOEMS)研究综述,传感器世界,2004,10: 11~17.
    [52] 王亚珍,朱文坚,微机电系统(MEMS)技术及发展趋势,机械设计与研究,2004,20(1): 10~12.
    [53] 陈非凡,殷玲,李云龙,微光机电系统(MOMEMS)的研究现状及展望,微细加工技术,2002,3: 1~7.
    [54] W.Merlijn, MEMS reliability from a failure mechanisms perspective, Microelectronics Reliability, 2003,43: 1049~1060.
    [55] 郝一龙,张立宪,李婷等,硅基 mems 技术,机械强度,2001,23(4):523~526.
    [56] M.Garrigues, J.L.Leclercq, P.Viktorovitch, Ⅲ-Ⅴ Semiconductor based MOEMS devices for optical telecommunications, Microelectronic Engineering, 2002,61-62: 933~945.
    [57] Günther Wernicke, Larbi Bouamama, Oliver Kruschke, et al., Some investigations in holographic microscopic interferometry with respect to the estimation of stress and strain in micro-opto-electromechanicalsystems (MOEMS), Optics and Lasers in Engineering, 2001, 36(5): 475~485.
    [58] Gilbert Reyne, Electromagneti actuation for MOEMS, examples, advantages and drawbacks of MAGMAS, Journal of Magnetism and Magnetic Materials, 2002,242-245(2): 1119~1125.
    [59] H. Fujita, Microactuators and micromachines, Proceedings of the IEEE, 1998,86(8): 1721~1732.
    [60] J. H. Comtois, M. A. Michalicek, N. Clark, MOEMS for adaptive optics, 1998 IEEE/LEOS Summer Topical Meetings, 1998: 11/95~11/96.
    [61] Wu MC, D.Hah, P.R.Patterson, Microelectromachanical scanning devices for optical networking applications, Solid-State Circuits Conference, ISSCC. 2002 IEEE International, 2002,1(3-7): 358~359.
    [62] Wu MC, Novel applications of MOEMS display and imaging, RELIABILITY, PACKAGING, TESTING, AND CHARACTERIZATION OF MEMS/MOEMS IV, 2005,5716: XI-XX.
    [63] 尤政,龚克,陆建华,微小卫星技术的发展思路,科技导报,2001,3: 43~47.
    [64] 李以贵,远藤哲生,羽根一博,基于微机电系统技术的投影型微光学编码器,光学学报,2003, 23(8): 1005~1007.
    [81] J.F.Clere, P.Mottier, A new European competence center: core competencies, additional technologies and industrial objectives, Photonics West’98, San Hose (US), 1998.
    [82] E.Ollier, P.Philippe, C.Chabrol, et al., Micro-opto-mechanicak vibration sensor integrated on silicon, Lightwave Technology, 1999,17(1): 26~29.
    [83] 李淑清,陶知非,未来地震检波器理论分析,物探设备,2003,13(3): 152~156.
    [84] Uwe Meyer-Bases, 刘凌,胡永生译,数字信号的 FPGA 实现,清华大学出版社,2003.
    [85] J.Living, B.M.Al-Hashimi, M.Moniri, High performance distributed arithmetic FPGA decimators for video-frequency applications,Electronics, Circuits and Systems, IEEE International Conference, 1998,3(7-10): 487~ 490.
    [86] Jing Ma; Xinming Huang, Design of a lattice decoder for MIMO systems in FPGA, Signal Processing Systems, SIPS 2004: 24~ 29.
    [87] P.Bhagawat, M.Uppal, G.Choi, FPGA based implementation of decoder for array low-density parity-check codes, Acoustics, Speech, and Signal Processing, IEEE Proceedings (ICASSP '05), 2005,5(18-23): v/29~ v/32.
    [88] S.Singh, P.Bellec, Virtual hardware for graphics applications using FPGAs, FPGAs for Custom Computing Machines, IEEE Proceedings, 1994,10-13: 49~58.
    [89] P.Graham, B.Nelson, Frequency-domain sonar processing in FPGAs and DSPs, FPGAs for Custom Computing Machines, IEEE Proceedings, 1998,15-17: 306~307.
    [90] E.Elsehely, M.I.Sobhy, Real time radar target detection under jamming conditions using wavelet transform on FPGA device, Circuits and Systems, IEEE Proceedings, 2000,4(28-31): 545~548.
    [91] 孙海涛,吴嗣亮,某雷达系统中伪码对齐的滑动控制方法及 FPGA 实现,微计算机信息,2005,21(5): 13~14.
    [92] 刘韬,楼兴华,FPGA 数字电子系统设计与开发实例导航,人民邮电出版社,2005.
    [93] 求是科技,VHDL 应用开发技术与工程实践,人民邮电出版社,2005.
    [1] C.H. Chen, G.L. Ding, D.L. Zhang, et al., Michelson fiber-optic accelerometer, Rev.Sci.Instrum., 1998,69(9):3123~3126.
    [2] C.H. Chen, D.L. Zhang, G.L. Ding, et al., Broadband Michelson fiber-optic accelerometer, Appl Opt., 1999,38(4):628~630.
    [3] 傅深泳,丁桂兰,陈才和等,干涉型全光纤加速度地震检波器,光电工程,2003, 30(6): 39~42.
    [4] 冯萍,陈才和,丁桂兰等,混合型集成光学加速度计集成光学芯片,光子学报,2000, 29(12): 431~433.
    [5] 吴波,陈才和,丁桂兰等,迈克尔逊干涉型加速度地震检波器集成芯片,光电子·激光, 2003,14(8):791~794.
    [6] 恩德,陈才和,李岷等,混合集成光学加速度计的信号处理和总体灵敏度,光子学报,2004,33(12):1428~1431. [7 ] Bo Wu, CaiHe Chen, GuiLan Ding, et al., Hybrid-integrated Michelson fiber optic accelerometer, Optical Engineering, 2004,43(2):313~318.
    [8] 雷肇棣,光纤通信基础,电子科技大学出版社,1997.
    [9] 靳伟,廖延彪,张志鹏等,导波光学传感器:原理与技术,科学出版社,1998.
    [10] 李家泽,朱宝亮,魏光辉,晶体光学,北京理工大学出版社,1989.
    [11] 张国顺,光纤传感技术,水利电力出版社,1988.
    [12] C.D.Butter, G.B.Hocker, fiber optics strain gauge, Appl.Opt., 1978,18: 2867~2869.
    [13] J.M.Gere, S.P.Timoshenko, Mechanics of materials, Chapman and Hall, London, 3rd SI edn., 1991.
    [14] 董景新,微惯性仪表-微机械加速度计,清华大学出版社,2003.
    [15] R.P.van Kampen, R.F.Wolffenbuttel, Modeling the mechanical behavior of bulk-micromachined silicon accelerometers, Sensor and Actuators, 1998, 64(2): 137~150.
    [16] 吴波,硅微光机械加速度地震检波器理论与实验研究:[博士学位论文],天津;天津大学,2005.
    [17] 席占稳, 赖百坛, 髙 g 值悬臂式硅微加速度传感器的结构设计, 东南大学学报(自然科学版), 2000, 30(6): 39~43.
    [18] 袁希光, 传感器技术手册, 国防工业出版社, 1989.
    [19] Knox R. M., Toulios P. P., Integrated circuit for the millimeter through optical frequency range, proceedings of MRI symposium on submillimeter waves, Brooklyn, Polytechnic Press,1970: 497~516.
    [20] 西原浩【日】, 集成光路, 科学出版社, 2004.
    [21] E.A.J.Macartili, S.E.Miller, Improve relations describing directional control in electromagnetic wave guidance, Bell Sult.Tech.J., 1969, 48(9): 2161~2188.
    [22] J.E.Johnson and C.L.Tang, Precise Determination of Turning Mirror Loss Using GaAs/AlGaAs Lasers with Up to Ten 900 Intracavity Turning Mirrors, IEEE Photonics Technology Letter, 1992,4(1): 24~26.
    [1] 西原浩,春明正光,栖原敏明【日】,梁瑞林译,集成光路,科学出版社,2004.
    [2] 武以立,邓盛刚,王永德,声表面波远离及其在电子技术中的应用,国防工业出版社,1983.
    [3] D.A.Pinnow, Guide lined for the selection of acoustooptic materials, IEEE J. Auantum Electron., 1970,QE-6(4): 223.
    [4] A.J.Slobodnik, Jr., Surface acoustic waves and SAW materials, Proc. IEEE, 1976,64(5): 581.
    [5] Ken-ya Hashimoto【日】,王景山,刘天飞,孙玮译,声表面波器件模拟与仿真,国防工业出版社,2002.
    [6] S.L.King, J.G.E.Gardeniers, I.W. Boyd, Pulsed-laser deposited ZnO for device application, Appl Sur Sci, 1996, 96-98: 811~818.
    [7] V.Srikant, D.R.Clarke, On the optical band gap of zinc oxide, Journal of Applied Physics, 1998,83(10): 5447~5451.
    [8] S.Desgreniers, Phys. Review B, 1998,58:102~106.
    [9] B.J.Jin, S.H.Baesh, S.Y.Lee, et a1., Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition, Mater Sci Eng B, 2000,71(1-3): 301~305.
    [10] Chu Shengyuan, Chen Teyi, Water Watter, The investigation of preferred orientation growth of ZnO films on the PbTiO3-based ceramics and its application for SAW devices, Journal of Crystal Growth, 2003,257(3-4): 280~285.
    [11] F.D.Paraguary, W.L.Estrada, D.R.N.Acosta, Morphological differences in ZnO films deposited by the pyrosol technique: effect of HCl, Thin Solid Films,1999,350: 192~196.
    [12] S.Y.Myong, S.J.Balk, C.H.Lee, et a1., Extremely transparent and conductive ZnO:A1 thin films prepared by photoassited metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3 (6H2O) as new doping material, J. Appl. Phys., 1997,36: L1078~L1081.
    [13] Y.Ling, C.R.Gorla, S.Ling, et a1., Ultravio1et detectors based on epitaxial ZnO films grown by MPCVD, J Elec Mater, 2000,29(1): 69~74.
    [14] S.F.Chichibu, T.Yoshida, T.Onuma, et a1., Helicon-wave-excited-plasma sputtering epitaxy of ZnO on sapphire(0001) substrates[J], J. Appl. Phys., 2002, 91(2): 874~877.
    [15] D.Bagnall, Y.Chen, Z.Zhu, et a1., Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett., 1997,70: 2230~2232.
    [16] K.Jwata, P.Fons, A.Yamada, et al., Nitrogen-induced defects in ZnO: N grawn on sapphire substrate by gas source MBE, J. Cryst. Grouth, 2000,209: 526~531.
    [17] S.V.Prasad, S.D.Walck, J.S.Zabinski, Microstructural evolution in lubricious ZnO films grown by pulsed laser deposition, Thin solid films, 2000,360: 107~117.
    [18] X.W.Sun, H.S.Kwok, Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition, J. Appl. Phys., 1999,86: 408~411.
    [19] A.Hachigo, H.Nakahata, K.Higaki, et a1., Heteroepitaxial growth of ZnO films on diamond (111) plane by magnetron sputtering, Appl. Phys. Lett., 1994,65: 2556~2558.
    [20] J.Hinze, K.EIImer, In situ measurement of mechanical stress in polycrystalline zinc oxide thin films prepared by magnetron sputtering. J. Appl. Phys., 2000,88: 2443~2450.
    [21] A.亚里夫,P.叶,晶体中的光波-激光的传播与控制,北京:机械工业出版社,1991,3: 279~280.
    [22] 蓝信炬,激光技术,科学技术出版社,2000.
    [23] E. Bonnotte, Christophe Gorecki, Hiroshi Toshiyoshi, et al., Guided-wave acoustooptic interaction with phase modulation in a ZnO thin-film transducer on an Si-based integrated Mach-Zehnder interferometer. Journal of lightwave technology, 1999,1(17): 35-42.
    [24] 徐阶平,声光器件的原理、设计和应用,科学出版社,1982 年
    [25] 日本电子材料工业会,声表面波器件及其应用,科学出版社,1984.
    [1] 冈布林(英)著, 张志鹏译, 光纤传感器原理, 中国计量出版社, 北京, 1991.
    [2] 王惠文,光纤传感技术与应用,国防工业出版社,2001.
    [3] A.Dandrigde, A.B.Tveten, T.G.Giallorenzi, Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier, IEEE Journal of Quantum Electrons, 1982, QE-18(10): 1647~1651.
    [4] A.Dandrigde, A.B.Tveten, A.D.Kersey, et al., Multiplexing of interferometric sensors using phase-generated-carrier techniques, Journal of Lightwave Technol, 1987, LT-5: 947~952.
    [5] Osami Sasaki, Hirokazu Okazaki, Sinusoidal phase modulating interferometry for surface profile measurement, Applied Optics, 1986, 25(18): 3137~3140.
    [6] Osami Sasaki, Hiroyuki Sasazaki, Takamasa Suzuki, Two-wavelength sinusoikal phase/modulating laser-diode interferometer insensitive to external disturbances, Applied Optics, 1991, 30(28): 4040~4045.
    [7] Takamasa Suzuki, Takao Okada, Osami Sasaki, et al., Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber, Optical Engineers, 1997, 36(9): 2496~2502.
    [8] 宋松,王向朝,王学峰等,半导体激光微小振动实时反馈式干涉测量仪,中国激光,A29(5): 402~405.
    [9] 王秉钧,现代通信系统原理,天津大学出版社,1991.
    [10] 褚振勇,翁木云,FPGA 设计与应用,西安电子科技大学出版社,西安,2003.
    [11] ALTERA Data book,2001.
    [12] 陈宇,基于 FPGA 的光纤水听器 PGC 解调算法实现研究:[博士学位论文],北京;中国科学院,2004.
    [13] Sanjit K. Mitra,孙洪,余翔宇等译,数字信号处理——基于计算机的方法,电子工业出版社,2005.
    [14] 何瑾,唐红,孟毅男,切比雪夫等波纹逼近滤波器在可燃气体浓度信号仿真中的应用,工业控制计算机,2005,28(6): 64~65.
    [15] Uwe Meyer-Bases, 刘凌,胡永生译,数字信号的 FPGA 实现,清华大学出版社,2003.
    [16] J.F.Kaiser, Nonrecursive digital filter design using the I0-sinh window function, In proc. 1974 IEEE International Symposium on Circuits and Systems, San Francisco CA, April 1974:20~23.
    [17] A.Croisier, D.Esteban, M.Levilion, et al., Digital filter for PCM encoded signals, US Patent No. 3777130.
    [18] A.Peled, B.Liu, A new realization of digital filters, IEEE Transactions on Acoustics, Speech and Signal Processing, 1974,22(6): 456~462.
    [19] K.Yiu, Oil sign-bit assignment for a vector multiplier, Proceedings of the IEEE, 1976,64: 372~373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700