CFRP孔隙率超声无损检测研究与系统实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以工程“内外升降副翼面板孔隙率无损测试技术研究”为依托,围绕碳纤维复合材料(CFRP)孔隙率定量测试,探讨了复合材料孔隙率超声无损测试技术及有关问题,进行了碳纤维复合材料孔隙率便携式超声智能检测系统的研制,给出了其系统实现。
     第一章,绪论。简单介绍了超声学、超声无损检测以及超声信号处理技术,并从课题研究的社会背景和项目背景出发,指出了课题研究的意义及碳纤维增强复合材料孔隙率无损检测的重要性与存在的问题,引入了课题的主要研究内容。
     第二章,碳纤维复合材料孔隙率超声测试技术研究。首先,介绍了复合材料的基本知识及其缺陷类型,探讨了复合材料孔隙率定量检测的重要性和必要性,指出:①孔隙缺陷是复合材料重要缺陷类型之一,完全没有孔隙的纤维增强复合材料是不存在的;②孔隙形状大小、含量多少对复合材料的物理、机械性能存在着重要的影响;③先进复合材料在高技术领域的应用,必要对复合材料孔隙率进行定量检测。其次,对复合材料孔隙率的传统测试方法和超声检测的有关理论研究进行了回顾和分析,指出:①破坏性孔隙率测试方法工序繁琐,成本较高,且不能满足现场实时检测的需要;②复合材料孔隙率超声测试方法是一种非常有效和实用的方法,可以满足现场实时检测的需要;③孔隙率测试理论的完善和发展有必要考虑孔隙自身的形态和分布特征与孔隙含量之间的关系。再次,利用显微照相分析系统,对复合材料孔隙形状和统计分布特征进行了观察和统计分析,结果表明:①孔隙含量与孔隙形态之间存在着关系,当孔隙率较小时,孔隙多呈圆星,且多发生在富树脂区域,当孔隙率较大时,孔隙呈椭圆形或延纤维方向的拉长形,当孔隙率更大时,孔隙多呈发生在层间的较大的扁平形;②孔隙的长度、面积尺寸在观察平面内近似服从对数正态分布,孔隙的宽度尺寸(即垂直于层间界面方向尺寸)变化不大。最后,对复合材料孔隙率超声测试进行了理论研究和实测分析:①基于脉冲反射方式建立了含孔隙形态分布特征的复合材料孔隙率超声相对衰减测试模型,并基于理论模型和实测数据建立了孔隙率相对衰减测试公式,对其精度进行了分析,指出超声信号时域幅值相对衰减测试公式可以用于复合材料实际孔隙率测试,并将其二次公式和三次公式进行了比较分析,结果显示二次公式可以代替三次公式,精度差别较小,而计算更为简单方便;②基于频谱技术和实测数据,对复合材料孔隙率测试进行了频域辅助分析,发现超声信号频率偏移与复合材料孔隙率近似存在着线性关系,可用超声信号相对频率偏移进行
The research is supported by the Project "Porosity Nondestructive Evaluation of airfoil Panels". The main objective is to find a methodology for carbon fibre reinforced plastics (CFRP) porosity testing and set up a novel portable ultrasonic measuring system.
    Chapter one is introduction. The ultrasonic testing and the ultrasonic signal processing are briefly introduced. Combined with the Project, the research necessities are discussed. The main contents of the dissertation are also given.
    Chapter two is the research of CFRP porosity evaluation by ultrasonic method. Firstly the background and the basic knowledge of the composites are introduced briefly. It is demonstrated that: 1) Voids defect is a kind of important defect in composites and there is no composites without voids; 2) The morphology and content of voids have an important influence on the mechanical property of CFRP; 3) It is necessary to have a porosity evaluation for CFRP when being used in high-tech fields. Secondly the traditional methods of porosity test and the theory and empirical equations of ultrasonic porosity test are discussed in this chapter. It shows that: 1) The destroyed ways of porosity measuring methods are superfluous and complicated, and also have a high cost; 2) The porosity of nondestructive evaluation (NDE) of ultrasonic is an effective and practical porosity measuring method, and it can also meet the real-time testing conditions; 3) It is necessary to consider the voids' morphology and its statistic features for further research of porosity evaluation theories. Thirdly a morphological study of voids and a statistical study of the morphological features in carbon fiber reinforced plastics are implemented using microscopy and image analyzing system. The result shows: 1) The voids morphological features are correlated with the CFRP porosity. They tend to be small and spherical when the porosity is low and often occur in the resin abundant regions. With the porosity increasing, the voids become elliptical or elongated along the carbon fibers, and even become much larger and flattened between layers; 2) The fraction of voids is nearly a logarithmic normal distribution with the voids' size measured in the layer plane. Lastly the research of porosity evaluation theory of ultrasonic and the experimental analysis are carried out. 1) Based on the pulse-echo mode, an ultrasonic attenuation model of CFRP porosity testing is established in
引文
【1】 杜功焕,朱哲民,龚秀芬.声学基础.上海:上海科学技术出版社,1981
    【2】 美国无损检测学会编,《美国无损检测手册》译审委员会译.美国无损检测手册(超声卷) 上册.广州:世界图书出版公司,1996
    【3】 邵永波,于大安,何彦志.超声检测技术的应用与进展.基础自动化,1996(4): 55-59
    【4】 王淑莲.超声检测技术的发展与应用.机电一体化,1999,(5):53-54
    【5】 冯若主编.超声手册.南京:南京大学出版社,1999
    【6】 周晓军.突变信号相平面特征小波分析及其检测声学中应用[博士学位论文].杭州:浙江大学,1993
    【7】 林书玉.超声换能器的原理及设计.北京:科学出版社,2004
    【8】 郑中兴.材料无损检测与安全评估.北京:中国标准出版社,2004
    【9】 张俊哲.无损检测技术及其应用.北京:科学出版社,1993
    【10】 简晓明.超声检测中信号处理技术研究[博士学位论文].北京:中国科学院声学研究所,1999
    【11】 Charles M. Elias. An ultrasonic pseudorandom signal-correlation system. IEEE Trans. on Sonics and Ultrasonics, Vol. SU-27, 1980
    【12】 Nihat M. Bilgutay, Veron L. Newhouse. Evaluation of random signal correlation system for ultrasonic flaw detection. IEEE Trans. on Sonics and Ultrasonics.
    【13】 Ahmed Yamani, Maamar Bettayeb, Lahouari Ghouti. High-order spectra-based deconvolution of ultrasonic NDT signals for defect identification. Ultrasonics, 1997, 35: 525-531
    【14】 M.A.G. Izquierdo, J. J. Anaya, O. Martinez, A. Ibanez. Multi-pattern adaptive inverse filter for real-time deconvolution of ultrasonic signals in scattering media. Sensors and Actuators, 1999, 76:26-31
    【15】 R. Drai, F. Sellidj, M. Khelil, A. Benchaala. Elaboration of some signal processing algorithms in ultrasonic techniques application to materials NDT. Ultrasonics, 2000, 382: 503-507
    【16】 Redouane Drai, Mohamed Khelil, Amar Benchaala. Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDT&E International, 2002, 35: 567-572
    【17】 Wen-Xian Yang, J. Barry Hull, M.D. Seymour. A contribution to the applicability of complex wavelet analysis of ultrasonic signals. NDT&E International, 2004, 37: 497-504
    【18】 邹祖讳[美]主编 吴人洁 等译.复合材料的结构与性能.科学出版社,1999
    【19】 陈祥宝.复合材料结构损伤修理.北京:化学工业出版社,2001
    【20】 成都飞机工业集团有限责任公司.型号工程内外升降副翼面板孔隙率无损测试技术研究(合同编号:司科(03)—006).科技项目技术合同书,2003
    【21】 LAMINATES-GLASS-CARBON DETERMINATION OF FIBRE CONTENT, RESIN CONTENTAND POROSITY RATIO. 法国宇航局资料, 900 FOLIO 198 7015
    【22】 碳纤维增强塑料孔隙含量检测方法(显微镜法).中华人民共和国国家标准GB3365-82
    【23】 H. Jeong. Effects of voids on the mechanical strength and ultrasonic attenuation of laminated composites. Journal of Composite Materials, 1997, 31 (3): 276-292
    【24】 周晓军,游红武,程耀东.含孔隙碳纤维复合材料的超声衰减模型.复合材料学报,1997,14(3):99—106
    【25】 D.赫尔[英] 著,张双寅,郑维平,蔡良武译.复合材料导论.北京:中国建筑工业出版社,1989
    【26】 LIU Jizhong, LEI Liangyu, ZHOU Xiaojun. Nonlinear RF model based ultrasonic signal parameters estimation with PSO algorithm. Progress in Intelligence Computation and Application, ISICA'2005, Edited by KangLishan, CaiZhihua, Yan Xuesong. Wuhan: China University of Geosciences Press, 2005. 568-573
    【27】 王荣国,武卫莉,谷万里.复合材料概论.哈尔滨:哈尔滨工业大学出版社,1999
    【28】 邹祖讳[美]主编,吴人杰 等译.复合材料的结构和性能.北京:科学出版社,1999
    【29】 游红武.碳纤维复合材料孔隙率超声检测和角度调整步进电机驱动电源研制[硕士学位论文].杭州:浙江大学,1993
    【30】 J.德尔蒙特[美]著,李仍元,过梅丽,吕锡慈译.碳纤维和石墨纤维复合材料技术.北京:科学出版社,1987
    【31】 贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1995
    【32】 陈积懋,余南廷.胶接结构与复合材料的无损检测.北京:国防工业出版社,1987
    【33】 N.C. W Judd, W. W. Wright. Voids and their effects on the mechanical properties of compsites. SAMPE Journal, Jan/Feb, 1978:10-14
    【34】 A. Ciliberto, G. Cavaccini, O. Salvetti, et al. Porosity detection in composite aeronautical structures. Infrared Physics & Technology, 2002, 43:139-143
    【35】 Paolo Del Puglia, Mohammed A. Sheikh, David R. Hayhurstb. Classification and quantification of initial porosity in a CMC laminar. Composites: Part A (applied science and manufacturing), 2004, 35: 223-230
    【36】 Ewins, P. D., Childs, R.. The determination of content by volume of fibre resin and voids in carbon fibre reinforced plastics. RAE, TR 72082(1972)
    【37】 EARL J. Kohn, G. Sand, C. Clark. Glass-Filament-Wound composites and correlation of interlaminar shear strength with void content. I&EC Product research and development, 1968, 7(3): 179-183
    【38】 E. J. Kohn, A.G. Sands, R.C. Clark. EC Product R&D. 1968, 7: 179
    【39】 J.C. Joiner. Report AQD/NM, 000296, July, 1973
    【40】 A. P. Mouritz. Ultrasonic and interlaminar properties of highly porous composites. Joumal of Composite Materials, 2000, 34(3): 218-239
    【41】 D.E.W. Stone, B. Clarke. Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics. Non-destructive testing, 1975, 33(3): 137-145
    【42】 周晓军,莫锦秋,游红武.碳纤维复合材料分布孔隙率的超声衰减检测方法.复合材料学报,1997,14(3):107-114
    【43】 北京技术交流站.超声波探伤原理及其应用.北京:机械工业出版社,1982
    【44】 Hale J. M, J. N. Ashton. Ultrasonic attenuation in voided fibre-reinforced plastics. NDT International, 1988, 21(5): 321-326
    【45】 D.K. Hsu, S. M. Nair. Evaluation of porosity in graphite-epoxy composite by frequency dependence of ultrasonic attenuation. In Review of progress in quantitative nondestructive evaluation, 6B, 1986:1185-1193
    【46】 H. Jeong, D. K. Hsu. Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites. Ultrasonics, 1995, 33(3): 195-203
    【47】 David K. Hsu, Kevin M. Uhl. A morphological study of porosity defects in graphite-epoxy composites, Review of Progress in Quantitative NDE, 6B, 1988: 1175-1184
    【48】 王茂章,贺福.碳纤维的制造、性质及其应用.北京:科学出版社,1984
    【49】 Composite Materials Series Vol.2, Fibre Reinforcements for Composite Material, Editor A. D. Bunsell, Elsevier, 1988, 703
    【50】 Michelle Leali Costa, Sergio Frascino M. de Almeida, Mirabel Cerqueira Rezende. The influence of porosity on the interlaminar shear strength of carbon epoxy and carbon bismaleimide fabric laminates. Composites Science and Technology, 2001, 61: 2101-2108
    【51】 P.-O. Hagstrand, F. Bonjour, J.-A.E. Manson. The influence of void content on the structural fiexural performance of unidirectional glass fibre reinforced polypropylene composites. Composites: Part A (applied science and manufacturing), 2005,36:705-714
    【52】 T. Stevens. Material Engeering, 107(8), 1990, 35
    【53】 E. Casal, M. Granda, J. Bermejo, J. Bonhomme, R. Menendez. Influence of porosity on the apparent interlaminar shear strength of pitch-based unidirectional C-C composites. Carbon, 2001, 39:73-82
    【54】 L.P. Khoroshun, E.N. Shikula. Influence of porosity on the non-linear deformation of granular materials. International Journal of Non-Linear Mechanics, 2003, 38: 1443-1449
    【55】 曾汉民.碳纤维及其复合材料显微图像.广州:中山大学出版社,1991
    【56】 吉田均.制品研究报告.98(1984),17
    【57】 E.M. Lenoe. Effects of voids on mechanical properties of graphite fibre composites. AVCO Corp, Systems Division, Lowell, MA, Prepared for U.S. Air Systems Command, Rpt. AD727236 (Dec. 1970)
    【58】 宋焕成,赵时熙.聚合物基复合材料.北京:国防工业出版社,1986
    【59】 超声波探伤编写组.超声波探伤.北京:电力工业出版社,1980
    【60】 中国机械工程学会无损检测分会.超声波检测.北京:机械工业出版社,第2版,2000
    【61】 中国机械工程学会无损检测学会.无损检测Ⅱ级培训教材:超声波探伤.北京:机械工业出版社,1989
    【62】 李家伟,陈积懋.无损检测手册.北京:机械工业出版社,2002
    【63】 [日]无损检测学会编,李衍译.超声波探伤 A.南京:江苏科学技术出版社,1980
    【64】 魏月贞 主编.复合材料.北京:机械工业出版社,1987.8
    【65】 Ying C. E., Truell R.. Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J of Applied Physics, 1956, 27(9): 1086-1097
    【66】 E.J. Minaya, P. Veronesib, V. Cannillob, C. Leonellib, A.R. Boccaccinia. Control of pore size by metallic fibres in glass matrix composite foams produced by microwave heating. Journal of the European Ceramic Society 2004, 24: 3203-3208
    【67】 张志涌 等编著.精通MATLAB 6.5版.北京:北京航空航天大学出版社,2003
    【68】 蒋志峰,刘继忠,周晓军.超声检测系统数字频谱特性分析及应用.机床与液压,2005,(1):122-124
    【69】 A. F.Brown. Materials testing by ultrasonic spectroscopy. ULTRASONICS, September 1973
    【70】 L. Alder, K. V. Cook, W. A. Simption. Ultrasonic frequency analysis. Research Techniques in NDT, edited by R. S. Shape, Academic Press, 1977
    【71】 V.L. Newhouse, et al. Flaw-to-Grain echo enhancement, Proceedings in Ultrasonic Int. Symposium, 1979. 152-156
    【72】 J. Sanile, K. D. Donohue. Frequency diversity ultrasonic flaw detection using order statistics filters. Proceedings of the IEEE ultrasonics Symposium, 1998
    【73】 J. Sanile, Tao Wang, Xiaomei Jin. Performance evaluation of frequency diverse Baysian ultrasonic flaw detection. J. Acoust. Soc. Am., 1992
    【74】 C. H. Chen, Tzu-Hung. Time-frequency analysis in ultrasonic NDT, 14th World Conference on NDT, India, 1996
    【75】 P.C. Pedersen, A. Grebe. Application of time delay spectrometry for rough surface characterization. Ultrasonics, 2001, 39: 101-108
    【76】 Redouane Drai, Mohamed Khelil, Amar Benchaala. Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDT&E International, 2002, 35: 567-572
    【77】 L. Vergara, J. Gosalbez, J.V. Fuente, R. Miralles, I. Bosch. Measurement of cement porosity by centroid frequency profiles of ultrasonic grain noise. Signal Processing, 2004, 84:2315-2324
    【78】 David K. Hsu, Hyunjo Jeong. Ultrasonic velocity change and dispersion due to porosity in composite laminates. In Review of progress in quantitative nondestructive evaluation 8B, 1988
    【79】 Ramazan Demirli. Model based estimation of ultrasonic echoes: analysis, algorithms, and applications[Doctor Thesis]. Chicago, Illinois: Illinois Institute of Technology, 2001
    【80】 Girault J. M., Ossant F. Ouahabi A. et al. Time varying autoregressive spectral estimation for ultrasonic attenuation in tissue characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 3, May 1998
    【81】 Saniie J., Nagle D. T.. Pattern recognition in the ultrasonic imaging of reverberant multilayered structures. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1989, 36 (1): 80-92
    【82】 潘正军,康立山,陈毓屏.演化计算.北京:清华大学出版社,2000
    【83】 Jeme N K. Towards a network theory of the immune system. Annual Immunology, 125C: 1974. 373-389
    【84】 Farmer J D., Packard N H., Perelson A S.. The immune system, adaptation, and machine learning. Physica 22D, 1986. 187-204
    【85】 Perelson A S. Immune network theory. Immunological review, 1986(10): 5-6
    【86】 Bersini H, Varela F J. Hints for adaptive problem solving gleaned from immune networks. In Proc the First Workshop on Parallel Problem Solving from Nature, 1990. 343-354
    【87】 Varela F J, Stewart J. Dynamics of a Class Immune Network. Global Stability of Idiotype Interactions. J. Theoretic Biology, 1990, (144): 93-101
    【88】 John E. Hunt, Denise E. Cooke. Learning using an artificial immune system. Journal of Network and Computer'Applications: Special Issue on Intelligent Systerns Design and Application, 1996, 19:189-212
    【89】 Dasgupta D., Attoh-Okine N.. Immunity-based systems: a survey. In proc 1997 IEEE Int Confon Systems, Man and Cybernetics, Orlando, FL, USA, 1997(1): 869-874
    【90】 Hofmeyr S A., Forrest S.. Immunity by design: an artificial immune system. Proc of GECCO'99, 1999: 1289-1296
    【91】 Charles M. Elias. An ultrasonic pseudorandom signal-correlation system. IEEE Trans. on Sonics and Ultrasonics, Vol.SU-27, 1980
    【92】 Nihat M. Bilgutay, Vernon L. Newhouse. Evaluation of random signal correlation system for ultrasonic flaw detection. IEEE Trans. on Sonics and Ultrasonics.
    【93】 LIU Ji-zhong, WANG Bo. AIS hypermutation algorithm based pattern recognition and its application in ultrasonic defects detection. Proceedings of the 5th International Conference on Control and Automation, Budapest, Hungary, 2005
    【94】 孙即祥.现代模式识别.长沙:国防科技大学出版社,2002.1-2
    【95】 James H. Williams, Jr. and Samson S. Lee. Pattern recognition characterizations of micromechanical and morphological materials states via analytical quantitative ultrasonics in Materials Analysis by Ultrasonics Metals, Ceramics, Composites. Edited by Alex Vary. Published in the United States of America by Noyes Data Corporation, 1987
    【96】 胡绍海.胶结结构超声无损检测中现代信号处理方法应用研究[博士学位论文].北 京:北方交通大学,1992
    【97】 S. M. Nugen, K. E. Christensen, L. S. Koo. FLEX-an expert system for flaw classification and sizing. Review of Progress in QNDE, V7a, 1988:445
    【98】 R M. Shankar, U. Bencharity, N. M. Bilgutary, J. Sanile. Grain noise suppression in NDE through bandpass filtering. Material Evaluation, 1988
    【99】 R M. Shankar, P. Karpur, V. L. Newhouse, J. L. Rose. Split-spectrum processing: analysis of polarity thresholding algorithm for improvement of signal-to noise ratio and detectability in ultrasonic signals. IEEE Trans. UFFC, 1989
    【100】 D. G. Childers. The cepstrum: A guide to processing. Proceedings IEEE, 1977, 65: 1428
    【101】 杨福生.小波分析的工程分析与应用.北京:科学出版社,1999
    【102】 S. Mallat. A multiresolution signal decomposition: the wavelet representation. IEEE Trans on Pattern Analysis and Machine Intelligence. V11, 1989
    【103】 I. Daubechies. The wavelet transform, time-frequency, localitation and signal analysis. IEEE Trans on Information and Theory. V36, 1990
    【104】 S. E. Moubarik, et al. Wavelet and NDE. In Rev. Progress QNDE, 1992, 12:727-734
    【105】 A. Abbate. Signal detection and noise suppression using a wavelet transform signal processor, application to ultrasonic flaw detection. IEEE Transactions. UFFC, 1997, 44 (1): 14-26
    【106】 V. S. Moholkar, M. Huitema, S. Rekveld, M. M. C. G. Warmoeskerken. Characterization of an ultrasonic system using wavelet transforms. Chemical Engineering Science, 2002, 57: 617-629
    【107】 Fairouz Bettayeb, Sofiane Haciane, Salim Aoudia. Improving the time resolution and signal noise ratio of ultrasonic testing of welds by the wavelet packet. NDT & E International, 2005, 38: 478-484
    【108】 Ahmed Yamani, Maamar Bettayeb, Lahouari Ghouti. High-order spectra-based deconvolution of ultrasonic NDT signals for defect identification. Ultrasonics, 1997, 35: 525-531
    【109】 M.A.G. Izquierdo, J. J. Anaya, O. Martinez, A. Ibanez. Multi-pattern adaptive inverse filter for real-time deconvolution of ultrasonic signals in scattering media. Sensors and Actuators, 1999, 76:26-31
    【110】 Young H. Kim, Sung-Jin Song, Jun Young Kim. A new technique for the identification of ultrasonic flaw signals using deconvolution. Ultrasonics, 2004, 41: 799-804
    【111】 莫宏伟.人工免疫系统及其应用.哈尔滨:哈尔滨工业大学出版社,2003
    【112】 杨延彬.免疫学及检验.北京:人民卫生出版社,1999.1-65.
    【113】 Janeway Jr C A. The immune system evolved to disriminate infectious nonself from noninfectious self. Imm Today, 1992, 13(1): 1-6
    【114】 Jerne N K. The immune system. Scientific America, 1973, 229(1): 52-60
    【115】 陈慰峰.医学免疫学.北京:人民卫生出版社,2001
    [116] Burnet F M. The clonal selection theory of acquired immunity. Cambridge University, Press, 1959
    [117] Jerne N K. Towards anetwork theory of the immune system. Ann8al Immunology, 125C: 1974. 373-389
    
    [118] 蔡自兴 ,龚涛 ,免疫算法研究的的进展。控制与决策, 2004, 19 (8): 841-846
    [119] Ishida Y. Fully distributed diagnosis by PDP learning algorithm: Towards Immune Network PDP Model. Proc. Of LJCNN 90, San Diego, 1990
    [120] Bersini H, Varela F J. Hints for adaptive problem solving gleaned from immune networks. In Proc the First Workshop on Parallel Problem Solving from Nature, 1990. 343-354
    [121] Dasgupta D, Forrest S. An anomaly detection algorithm inspired by the immune system. Artificial Immune System and Their Applications. Berlin: Springer-Verlag, 1998. 262-277
    [122] Cooke D E, Hunt J E. Recognizing promoter-sequences using an artificial immune system. Proc Intelligent Systems in Molecular Biology(ISMB'95) . Cambridge: AAAI Press, 1995. 89-97
    [123] L. N. De Castro, F. J. Von Zuben. Artificial immune systems. Part I. Basic Theory and Applications, Technical Report No. RT DCA 01/99, FEEC/UNICAMP, Brazil, 1999.
    [124] Dasgupta D, Forrest S. Artificial immune systems in industrial applications. In Proc. Of the IPMM'99, 1999
    [125] Timmis J., Neal M, Hunt J. An artificial immune system for data analysis. Biosystems, 2000,55(1/3): 143-150
    [126] Hofmeyr S A. An interpretative introduction to the immune system. In Design Principles for the Immune System and Other Distributed Autonomous Systems. (Eds. ) Cohen I, SegelLA. Oxford University Press, 2000
    [127] Bell G I, Perelson A S. An historical introduction to theoretical immunology. In Theoretical Immunology. (Eds. )Bell G I, Perelson AS, Pimbley G H Jr. Marcel Dekker. Inc., 1978. 3-41
    [128] Berek C, Ziegner M. The maturation of the immune response. Imm. Today, 1993, 14(8): 400-402
    [129] Takahashi K., Yamada T. Application of an immune feedback mechanism to control systems. JSME International Journal, Series C, 1998,41(2): 184-191
    [130] D. Dasgupta, Z. Ji, F. Gonzalez. Artificial immune system (AIS) research in the last five years. CEC 03, The 2003 Congress on Evolutionary Computation. 9-12 Dec 2003, Vol.1: 480-485
    [131] Varela FJ, Coutinho A, Dupire E, Vaz N N. Cognitive Networks: Immune, Neural and Otherwise. In Theoretical Immunology, Part Two, (Ed.) Perelson AS, 1988. 359-375
    [132] Varela F J, Coutinho A. Second generation immune networks. Imm. Today, 1991, 12(5): 159-166
    [133] 梁鸿生,郝勇娜,王凯等.免疫算法.昆明理工大学学报,2003,28(5):72-76
    [134] Mannie M D. Immunological self/nonself discrimination. Immunologic Research, 1999,19(1): 65-87
    [135] Forrest S, Hofmeyr S A. Immunology as processing. Design Principles for Immune Systems & Other Distributed Autonomous Systems. Segal L A. and Cohen I R. eds. Oxford Univ. Press, 2000
    [136] Ishiguro A, Kondo T, Watanabe Y, Uchikawa Y. Dynamic behaviour arbitration of autonomous mobile robots using immune networks. In Proc. of ICEC'95, Vol. 2, 1995. 722-727
    [137] Hofmeyr S, Forrest S. Architecture for an artificial immune system. Evolutionary Computation, 19997(1): 1289-1296
    [138] Carol M C, Prodeus A P. Linkages of innate and adaptive immunity. Current Opinion in Imm., 1998, (10): 36-40
    [139] Ishiguro A, Ichikawa S, Uchikawa Y. A gait acquisition of 6-1egged walking robot using immune networks. In Proc. oflROS'94 Vol. 2, 1994. 1034-1041
    [140] Tang Z, Yamaguchi T, Tashima K, et al. Multiple-valued immune network model and its simulations. In : Proc 27th Int Symposium on Multiple-valued Logic. Autigonish, Canada, 1997. 233-238
    [141] Rumehart D, Hinton G, McCelland J. A general framework for parallel distributed processing. Parallel Distributed Processing. (1), 1st, edn, MIT Press, London, 1986.45
    [142] Vertosick F T, Kelly R H. The immune system as a neural network: A multi-epitope approach. J. Theor. Biol., 1991 (150): 225-237
    [143] Vertosick F T, Kelly R H. Immune network theory: A role for parallel distributed processing?. Immunology, 1989 (66): 1-7
    [144] Timmis J., Neal M, Hunt J. Data analysis with artificial immune systems and cluster analysis and kohonen networks some comparisons. Proceding of the IEEE International Conference on Systems and Man and Cybernetics (SMC). IEEE , Tykyo, Japan, 1999. 922-927
    [145] Timmis J., Neal M. A resource limited artificial immune system for data analysis. Knowledge-Based-Systems. 2001, (14): 121-130
    [146] 葛红.免疫算法综述.华南师范大学学报(自然科学版),2002,(3):120-126
    [147] 梁鸿生,郝勇娜,王凯 等.免疫算法.昆明理工大学学报,2003,28(5):72-76.
    [148] Dasgupta D. Artificial Immune Sysems and Their Allications. Berlin Heidelberg Springer-Verlang 1999
    [149] Chun Jang-Sung, Kim Min-Kyu, Jang Hyun—Kyo. Shape optimisation of electromagnetic devices using immune algorithm. IEEE Trans. On Magnetics, 1997, 33(2): 1876-1879
    [150] Chun .Jang-Sung, Jang Hyun-Kyo, Hahn Song-Yop. A study on comparision of opimization performances between immune algorithm and other heuristic algorithms. IEEE Trans. On Magnetics, 1998, 34 (5): 2972-2975
    [151] 王磊.免疫进化计算理论及应用[博士学位论文].西安:西安理工大学,2001
    [152] 王磊,潘进,焦李成.免疫算法.电子学报,2000,28(7):74-78
    [153] 王磊,潘进,焦李成.免疫规划.计算机学报,2000,23(8):806-812
    [154] 刘克胜,曹先彬,郑浩然,等.基于免疫算法的TSP问题求解.计算机工程,2000,23(8):806-812
    [155] Hong Zheng, Jingxin Zhang, Saeid Nahavandi. Learning to detect objects by artificial immune approaches. Future Generation Computer Systems, 2004, 20:1197-1208
    [156] D. Dasgupta, Y. Cao, C. Yang. An immunogenetic approach to spectra recognition. In: Proceedings of Genetic and Evolutionary Computation Conference, 1999. 149-155
    [157] 罗印升,李人厚,张雷等.人工免疫算法在函数优化中的应用.西安交通大学学报,2003,7(8):840-843.
    [158] T. B. Kepler, A. S. Perelson. Somatic hypermutation in B cells: an optimal control treatment. Journal of Theoretical Biology, 1993, 164, 37-64.
    [159] J. J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. ManCybernet. 1986, 16(1): 122-128
    [160] 刘继忠,周晓军,熊勇.基于粒子群优化算法的超声信号参数估计.2005中国控制与决策学术年会论文集(上),哈尔滨,中国,2005.571-574
    [161] 朱根兴,刘继忠,周晓军等.相关技术在超声信号渡越时间参数估计中的应用.机床与液压,2005,(4):140-141
    [162] 李勇,徐震.基于MATLAB 6.X MATLAB辅助现代工程数字信号处理.西安:西安电子科技大学出版社,2002:105-114
    [163] 何振亚.数字信号处理的理论与应用(上).北京:人民邮电出版社,1983:89-95
    [164] P.A.林恩(英)著:刘庆普,沈允春译;倪汉昌校.信号分析与处理导论.北京:宇航出版社,1990:153-162
    [165] Grennberg A., Sandell M.. Estimation of subsample time delay differences in narrowband ultrasonic echoes using the Hilbert Transform Correaltion.IEEE Transations on Ultrasonics, Ferroelectrics and Frequency Control, Vol.41, No.5, September 1994
    [166] Nandi A. K.. On the subsample time delay estimation of narrowband ultrasonic echoes. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol.42, No.6, November 1995
    [167] Ferrera K. W., Algazi R., Liu J.. The effect of frequency dependent scattering and attenuation on estimation of blood velocity using ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol.39, No.6, November 1992
    [168] Wear A. K., Wagner R. F., Garra B. S.. High resolution ultrasonic backscatter coefficient estimation based on autoregressive spectral estimation using Burg's algorithm. IEEE Transactions on Medical Imaging, Vol. 13, No. 3, September 1994
    [169] Wear A. K., Wagner R. F., Garra B. S.. A comparison of autoregressive spectral estimation algorithms and order determination methods in ultrasonic tissue characterization. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 42, No. 4, July 1995
    [170] Kay S.M.. Fundamentals of statistical signal processing.Prentice Hall, 1993
    [171] 《数学手册》编写组.数学手册.北京:高等教育出版社,1979
    [172] Kennedy J, Eberhart R C. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, 1995. Perth, WA Australia, 1995. 1942-1948
    [173] Kennedy J. The particle swarm: social adaptation of knowledge. Proceedings of IEEE International Conference on Evolutionary Computation, Indianapolis, 1997. Indianapolis, USA, 1997. 303-308
    [174] 曾建潮,介婧,崔志华.微粒群算法.北京:科学出版社,2004
    [175] Clerc, M. and Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
    [176] Trelea, I.C.. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 2003, 85(6): 317-325
    [177] Ozcan, E. and Mohan, C.K. Particle swarm optimization: surfing the waves. Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Picataway, NJ, 1999. 1939-1944
    [178] Ozcan, E. and Mohan, C.K. Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems Through Artificial Neural Networks, 1998, 8: 253-258
    [179] 王凌.智能优化算法及其应用.北京.清华大学出版社,施普林格出版社,2001
    [180] Shi Y, Eberhart R C. Parameter selection in particle swarm optimization. In: Evolutionary Programming Ⅶ: Proc. EP98. NewYork: Springer-Verlag, 1998. 591-600
    [181] Shi Y, Eberhart R C. A modified particle swarm optimizer. In: Proceedings of the IEEE international Conference on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1998, 69-73
    [182] Kennedy, J. Thinking is social: Experiments with the adaptive culture model.Journal of Conflict Resolution, 1998, 42 (1): 56-76
    [183] Carlisle, A. and Dozier, G. An off-the-shelf PSO. Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, IN, 2001, 1-6.
    [184] 陈继芳.航空锻件超声自动检测系统若干关键问题研究[硕士学位论文].杭州:浙江大学,2004
    [185] USB驱动程序开发讨论区.USB光学鼠标简介.驱动开发之家,http://www.driverdevelopment.com
    [186] Chris Cant著;孙义等译.Windows WDM设备驱动程序开发指南.北京:机械工业出版社,2000
    [187] 宫闽军.碳纤维复合材料孔隙率超声检测系统关键技术及可视化研究[硕士学位论文].杭州:浙江大学,2005
    [188] 陈海波,王申康.新编程序设计方法学.杭州:浙江大学出版社,2004
    [189] (美)David M.Collopy著,罗铁庚译.Introduction to C Programming:A Modular Approach(Second Edition)(C语言教程:模块化程序设计(第二版)).北京:清华大学出版社,2004
    [190] 郑经学.面向在线检测的汽车驱动桥状态监测和故障诊断技术研究及系统开发[硕士学位论文].杭州:浙江大学,2004
    [191] Evelyn Stiller,Cathie Leblanc著,贲可荣,张秀山等译.基于项目的软件工程——面向对象研究方法.北京:机械工业出版社,2002
    [192] B·Bruegge,A·H·Dutoit著,吴丹,唐忆,申震杰译.面向对象的软件工程——构建复杂且多变的系统.北京:清华大学出版社,2002
    [193] 陈涵生,徐智晨,沈怡.面向对象技术开发及应用.上海:上海科技文献出版社,1995
    [194] 陈建军,于志强.数据可视化技术及其应用.红外线激光工程,2001,30(5):340-343
    [195] 蔡青,高光焘主编.CAD/CAM系统的可视化、集成化、智能化、网络化.西安:西北工业大学出版社,1996
    [196] 张谦,蔡虹.3D数据场的可视化技术,计算机工程.1998,24(5):43-66
    [197] 香勇.相控阵超声检测成像相关技术的研究[博士学位论文].北京:清华大学,2004
    [198] 张旭辉,马宏伟.超声无损检测技术的现状和发展趋势.机械制造,2002,40(7):24-26
    [199] 陈戈林,任文革,郭艳林.声学显微镜及在无损检测中的应用,航空精密制造技术,1995,31(1):7-10
    [200] 刘涛.曲面构件超声检测机器人技术及可视化[硕士学位论文].杭州:浙江大学,2003
    [201] 石教英,蔡文立.科学计算可视化算法与系统,北京:科学出版社,1996
    [202] 周晓军,徐志农.超声波C扫描图像的缺陷模式识别.模式识别与人工智能,1998,11(2):222-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700