欧亚种葡萄转录因子、SSR数据库的构建及miRNA的计算识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欧亚种葡萄(Vitis vinifera L.)既可生食,又可制干、酿酒、制汁,具有很高的营养价值和经济价值。欧亚种葡萄是迄今为止基因组被完整测序的第一种水果作物和第四种开花植物。葡萄全基因组测序工作的完成,使得人们对这古老植物的认识有了新的起点和视角。研究者可以根据公布的基因组序列,利用分子生物学和生物信息学的方法和手段,对葡萄的生物学现象作前所未有的分析和了解。本研究利用葡萄全基因组序列,运用生物信息学的方法和手段,在基因组的水平上提取葡萄的转录因子、SSR和miRNA,利用计算机网络和数据库技术构建了葡萄转录因子数据库、葡萄SSR数据库。
     为了尽可能多地收集欧亚种葡萄转录因子,本研究利用转录因子DNA结合域的隐马尔科夫模型(HMM)在整个基因组中搜索匹配的转录因子。HMM的搜索结果中包含了所有具有相应结构域的转录因子,用Perl语言编写程序—Class.p1,将这些转录因子分类到不同的家族中。最后,为了对葡萄转录因子进行有效的储存、查找,本研究利用相关的生物信息学软件和数据库对这些转录因子进行注释,然后运用Perl、 PHP、MySQL等技术开发了葡萄转录因子数据库。本研究鉴定了1625个葡萄转录因子,属于67个家族。提取这些转录因子的相关信息,构建了葡萄转录因子数据库(DGTF)。该数据库对预测到的转录因子进行详细注释,对每个转录因子基因家族作了简单介绍,每个转录因子条目均有基本信息、基因结构、功能域注释和数据库交叉链接。此外,预测了每个转录因子在其它物种中可能的直系同源基因(Orthologues)。数据库具有统一的界面,用户可方便地进行浏览、检索、BLAST搜索和数据下载。网址为:http://www.yaolab.sh.cn/dgtf/。
     为了从基因组中快速搜索出SSR,本研究利用Perl语言开发了用于探寻基因组SSR的程序—SSRFinder。利用SSRFinder,从欧亚种葡萄基因组序列中检索到114520个SSR。在各类SSR中,不同碱基组成的重复单元频率间存在较大的差异,其中富含AT重复单元的SSR频率最高,而富含GC重复单元的SSR频率最低。SSR在基因组上主要分布在基因间隔区,其次是基因的非翻译区,在编码区的分布密度最小。三核苷酸和六核苷酸SSR在翻译区的分布频度明显高于其他类型的SSR。利用这些SSR序列共设计出80065(69.9%)对SSR引物。.另外,本研究开发了一个基于Web界面的SSR数据库(DGSSR),收录和注释全基因组与EST的SSR,并提供了查询界面。DGSSR的网址为http://www.yaolab.sh.cn/ssr/。
     本研究利用生物信息学方法,根据已知植物miRNA的特征,设计miRNA预测程序(?)-MirFinder,从欧亚种葡萄全基因组中预测miRNA。MirFinder利用miRNA在植物中的保守性和miRNA前体的特征设计算法。本研究利用MirFinder搜索整个葡萄基因组,共识别出146条miRNA,然后利用葡萄中已知的miRNA对其进行同源检索,发现其中98条与已知的miRNA完全相同,另外48个为新发现的miRNA。这些新发现的miRNA基因属于21个家族。其中,8个家族为葡萄中新发现的(?)miRNA家族,共有20个miRNA成员。根据植物miRNA和其靶基因问存在较高的序列互补性,对新发现的miRNA家族预测其靶基因,结果表明其中6个miRNA家族存在靶基因。
Vitis vinifera L. is one of the most important horticultural crops in the world, being used for the production of wine and juice, and as fresh and dried fruit。The completion of the Vitis vinifera L. genome sequence provides an opportunity for people to learn about grape in new review. Here we used bioinformatics approach to search transcription factors (TFs), SSRs, and miRNAs at grape genome levels, and constructed grape transcription factors and SSR database by compute and web technology.
     We collected HMMs of domains that occur in TFs. Then these HMMs were used to search against the whole genome of Vitis vinifera L.. All significant hits were kept. Then, the rule was implemented in a Perl script-Class.pl to classify proteins into different families. Annotations of grape putative TFs are obtained by bioinformaics tools and public databases. Data for all TFs are stored in several tables of a MySQL relational database on a server. The web interface is based on PHP and Perl scripts. Using the pipeline we developed,1625putative TFs in grape were identified and classified into67families. The database of grape transcription factors (DGTF) comprehensively collected and annotated grape TFs. The DGTF contains1625putative grape TFs in67families. The DGTF provides detailed annotations for individual members of each TF family, including sequence feature, domain architecture, expression information, and orthologs in other plants. Cross-links to other public databases make its annotations more extensive. The web site of DGTF is http://www.yaolab.sh.cn/dgtf/.
     We developed a Perl script-SSRFinder to detect SSRs in grape genome sequence. A total of114,520SSRs were isolated from342.63Mb of publicly available Vitis vinifera L. genome DNA sequence. Among them, SSRs with poly(AT)n repeats represented the most abundant type, whereas (G+C)-rich motifs were the rarest type. We also assessed the distribution of SSRs on genome fragment. The results showed that the SSRs distributed mainly in intergenic region and were moderately abundant in UTRs. In coding region, the distribution of all repeat types was less frequent except tri-and hexa-nucleotide repeats. To make use of these SSRs, we developed a database on internet web. The database of grape SSRs (DGSSR) is a database comprehensively collecting and annotating grape SSRs. The DGSSR contains all the SSRs with their related information detected in the study. It provides flexible query interface and detailed annotations for individual SSR. It also contains SSRs detected from Vitis vinifera L. ESTs dataset. The DGSSR is available at http://www.yaolab.sh.cn/ssr/.
     Here we developed a program-MirFinder for prediction of grape miRNAs. The characteristic features of known plant miRNAs were used as criteria to search for new miRNAs. After searching the Vitis vinifera L. genome by MirFinder, we identified146miRNAs, of which98miRNAs were the same as known miRNAs and48are new identified miRNAs. The48miRNAs were classified into21families, of which8families are newly identified in grape. A total of15potential targets were identified for6of the8new miRNA families based on the fact that miRNAs exhibit perfect or nearly perfect complementarity with their target sequences.
引文
[1]初明,魏兰兰,胡志强.白黎芦醇的化学防癌作用及其分子机制的研究进展[J].中国新药与临床杂志,2005,3(3):235-239
    [2]贺普超,王跃进,马谷芬,等.葡萄学[M].北京:中国农业出版社,1999:1-4
    [3]胡松年.基因表达序列标签(EST)数据分析手册[M].浙江:浙江大学出版社,2005:28-36
    [4]李洁.植物转录因子与基因调控[J].生物学通报,2004,39(3):9-11
    [5]Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expresfion[J]. Plant Cell,1997,9(10):1859-1868
    [6]Adam-Blondon A F, Roux C, Claux D, et al. Mapping 245 SSR markers on the Vitis vinifera genome:a tool for grape genetics[J]. Theor. Appl. Genet.,2004,109:1017-1027
    [7]Aida M, Ishida T, Fukaki H, et al. Gene involved in organ separation in arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. Plant Cell,1997,9:841-857
    [8]Aishwarya V, Sharma P C. UgMicroSatdb:database for mining microsatellites from unigenes. Nucleic Acids Res.2008(36), D53-D56
    [9]Akagi H, Yokozeki Y, Inagaki A, et al Microsatellite DNA markers for rice chromosomes[J]. Theor. Appl. Genet.,1996,93:1071-1077
    [10]Alex B, Lachlan C, Richard D, et al. The Pfam protein families database[J]. Nucleic Acids Res., 2004,32:D138-D141
    [11]Altschul S, Madden T. Schaffer A, et al.. Gapped blast and psi-blast:a new generation of protein database search programs[J]. Nucleic Acids Res.,1997,25:3389-3402
    [12]Altuvia Y, Landgraf P, Lithwick G, et al. Clustering and conservation patterns of human microRNAs[J]. Nucleic Acids Res.,2005,33:2697-2706
    [13]Alvarez-Buylla E R, Pelaz S, Liljegren S L, et al. An ancestral MADS-box gene duplication occurred prior to the divergence of plants and animals[J]. Proc. Natl. Acad. Sci. USA,2000, 97:5328-5333
    [14]Ambros V, Horvitz H R. Heterochronic mutants of the nematode Caenorhabditise elegans[J]. Science,1984,226:409-416
    [15]Archak S, Meduri E, Sravana K P. et al. InSatDb:a microsatellite database of fully sequenced insect genomes. Nucleic Acids Res.,2007,35, D36-D39
    [16]Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell,2003,15:2730-2741
    [17]Aukerman M J, Schmidt R J, Burr B, et al. An arginine to lysine substitution in the bZIP domain of an opaquc-2 mutant in maize abolishes specific DNA binding[J]. Genes Dev.,1991,5(2):310-320
    [18]Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic Acids Res.,2000,28(1):45-48
    [19]Balciunas D, Ronne H. Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem. Sci.,2000,25:274-276
    [20]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell,2004, 116:281-297
    [21]Benson D A, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nucleic Acids Res.,2008, 36:D25-D30
    [22]Bilofsky H S, Burks C, Fickett J W, et al. The GenBank genetic sequence databank[J]. Nucleic Acids Res.,1986,14:1-4
    [23]Blenda A, Scheffler J, Scheffler B, et al. CMD:a cotton microsatellite database resource for Gossypium genomics. BMC Genomics,2006,7:132
    [24]Bobb A J, Eiben H G, Bustos M M. Pvalf, an embryo-specific acidic transcriptional activator enchances gene expression from phaseolin and phytohemagglutinin promoters[J]. Plant J.,1996, 8:331-343
    [25]Boffelli D, McAuliffe J, Ovcharenko D, et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome[J]. Science,2003,299:1391-1394
    [26]Bogusiki M S, Lowe T M, Tolstoshev C M. dbEST-databse for "expressed sequence tags." Nat. Genet.,1993,4:332-333
    [27]Bollman K M, Aukerman M J, Park M Y, et al. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis[J]. Development,2003,130:1493-1504
    [28]Bonnet E, Wuyts J, Rouze P, et al. Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes[J]. Proc. Natl. Acad. Sci. U.S.A.,2004,101:11511-11516
    [29]Boulikas T. Putative nuclear localization signals (nls) in protein transcription factors[J]. Cell Biochen.,1994,55:32-58
    [30]Bryan G J, Collins A J, Stephenson P, et al. Isolation and characterization of microsatellites from hexaploid bread wheat. Theor. Appl. Genet.,1997,94:557-563
    [31]Burns J, Gardner P T, O'Neil J, et al. Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J. Agric. Food Chem.2000,48:220-230
    [32]Biirglin T R. The PBC domain contains a MEINOX domain:coevolution of Hox and TALE homeobox genes[J]. Dev. Genes Evol.,1998,208:113-116
    [33]Cardle L, Ramsay L, Milbounme D, et al. computational and experimental characterization of physically clustered simple sequence repeats in plants[J]. Genetics,2000,156(2):847-854
    [34]Chakraborty R, Kimmel M, Stivers D N, et al. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci [J]. Proc. Natl. Acad. Sci. USA,1997,94:1041-1046
    [35]Chalfie M, Horvitz H R, Sulston J E. Mutations that lead to reiterations in the cell lineages of C.elegans[J]. Cell,1981,24:59-69
    [36]Chen X A. MicroRNA as a translational repressor of apetala 2 in arabidopsis flower development[J]. Science,2004,303:2022-2025
    [37]Chern M S, Bobb A J, Bustos M M. The regulator of mat2 (rom2) protein binds to early maturation promoters and re-presses pvalf-activated transcription[J]. Plant Cell,1996,1996:305-321
    [38]Cho Y G, Ishii T, Temnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice Oryza sativa L.[J]. Theor. Appl. Genet,2000,100:713-722
    [39]Coodman N. Biological data become computer literate:New advances in bioinformatics[J]. Curr. Opin. Biotecbnol.,2002,13:68-71
    [40]Dezulian T, Remmert M, Palatnik J F, et al. Identification of plant microRNA homologs[J]. Bioinformatics,2006,22:359-360
    [41]Di G, Gaspero G, Cipriani A F, et al. Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates [J]. Theor. Appl. Genet,2007,114:1249-1263
    [42]Doligez A, Adam-Blondon A F, Cipriani G, et al. An integrated SSR map of grapevine based on five mapping populations[J].Theor. Appl. Genet,2006,113:369-382
    [43]Eddy S. HMMER user's guide:biological sequence analysis using profile hidden Markov models. 1998, http://hmmer.wustl.edu/
    [44]Fleischmann R D, Adams M D, White O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd[J]. Science,1995,269:496-512
    [45]Grad Y, Aach J, Hayes G D, et al. Computational and experimental identification of C. elegans microRNAs[J]. Mol. Cell,2003,11:1253-1263
    [46]Grassi F, Labra M, Imazio S, et al. Evidence of a secondary grapevine domestication centre detected by SSR analysis[J]. Theor. Appl. Genet,2003,107:1315-1320
    [47]Griffiths-Jones S. The microRNA registry[J]. Nucleic Acids Res.,2004,32:109-111.
    [48]Griffiths-Jones S, Grocock R J, van Dongen S, et al. MirBase:microRNA sequences, targets and gene nomenclature[J]. Nucleic Acids Res.,2006,34:140-144
    [49]Guenter S, Wendy B, Alexandra B van den, et al. The EMBL nucleotide sequence database[J]. Nucleic Acids Res.,2002,30(1):21-26
    [50]Guo A, He K, Liu D, et al. DATF:a database of arabidopsis transcription factors[J]. Bioinformatics, 2005,21:2568-2569
    [51]Guo A, He K, Liu D, et al. DRTF:a database of rice transcription factors[J]. Bioinformatics,2006, 22:1286-1287
    [52]Hake S. MicroRNAs:a role in plant development[J]. Curr.Biol.,2003,13:851-852
    [53]Hamada H, Petrino M G, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes[J]. Proc. Natl. Acad. Sci. USA,1982, 79:6465-6469.
    [54]Hofacker I L, Fontana W, Stadler P F, et al. Fast folding and comparison of RNA secondary structures. Monatshefte f. Chem.[J],1994,125:167-188
    [55]Huang H, Hu Z Z, Suzek B E, et al. The PIR integrated protein databases and data retrieval system[J]. Data Science,2004,3:163-174
    [56]Huang H, Tudor M, Su T, Zhang Y, et al. DNA binding properties of two arabidopsis MADS domain proteins:binding consensus and dimer formation[J]. Plant Cell,1996,8(1):81-94
    [57]Immink R G, Ferrafio S, Busscher-Lange J, et al. Analysis of the petunia MADS-box transcription factor family[J]. Mol. Genet Genomics,2003,268(5):598-606
    [58]Jaillon O, Aury J M, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature,2007,449:463-468
    [59]John B, Enright A J,Aravin A, et al. Human microRNA targets[J]. PLoS Biology,2004,2:363
    [60]Jones-Rhoades M W, Bartel B D. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Mol. Cell,2004,14:787-799
    [61]Kantety R V, La Rota M, Matthews D E. Data mining fro simple sequence repeates in expressed sequence tags from barley, maize, rice, sorghum and wheat[J]. Plant Mol.Biol.,2002,48:501-510
    [62]Katagiri F, Seipel K, Chua N H. Identification of a novel dimer stabilization region in a plant bZBP transcription activator[J]. Mol. Cell Biol. Mol.,1992,12(11):4809-4816
    [63]Ketting R F, Fischer S E, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans[J]. Genes Dev.,2001,15:2654-2659
    [64]Kidner CA, Martienssen R A. The developmental role of microRNA in plants[J]. Current Opinion in Plant Biology,2005,8:38-44
    [65]Kortschak R D, Tucker P W, Saint R. ARID proteins come in from the desert.Trends Biochem Sci,2000,25:294-299
    [66]Kosugi S, Ohashi Y. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J]. Plant Cell,1997,9(9):1607-1619
    [67]Kriz A L, Wallace M S, Paiva R. Globulin gene expression in embryos of maize viviparous mutants[J]. Plant Physiol.,1990,92:5538-5542
    [68]Kuhlmann M, Horvay K, Strathmann A, et al. The α-helical dl domain of the tobacco bZIP transcription factor bzi-1 interacts with the ankyrin-repeat protein ankl and is important for bzi-1 function, both in auxin signaling and pathogen response[J]. J.Biol.Chem.,2003, 278(10):8786-8794
    [69]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science,2001,294:853-858
    [70]Lai E C, Tomancak P, Williams R W, et al. Computational identification of Drosophila microRNA genes[J]. Genome Biol.,2003,4:R42
    [71]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarily to lin-14[J]. Cell,1993,75:843-854
    [72]Lee Y, Ahn C, Han J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing[J]. Nature, 2003,425:415-419
    [73]Lim L P, Lau N C, Weinstein E G, et al. The microRNAs of Caenorhabditis elegans[J]. Genes Dev.,2003,17:991-1008
    [74]Llave C, Kasschau K D, Rector M A, et al. Endogenous and silencing-associated small RNAs in plants[J]. Plant Cell,2002,14:1605-1619
    [75]Marys V, Fricke E, Geffers R, et al. TRANSFAC:transcriptional regulation, from patterns to profiles[J]. Nucleic Acids Res.,2003,31:374-378
    [76]McCouch S R,Teytelman L, Xu Y. Development and mapping of 2240 new SSR markers for rice (Oryzasativa L.,) (supplement)[J]. DNA Res.,2002,9(6):257-279
    [77]Metzgar D, Bytof J, Wills C. Selection against frameshift mutations limits microsatellite expansion in coding DNA[J]. Genome Research,2000,10:72-80
    [78]Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nat. Genet.,2002,30:194-200
    [79]Moss E G., Lee R C, Ambros V. The cold shock domain protein lin-28 controls developmental timing in C.elegans and is regulated by the lin-4 RNA[J]. Cell,1997,88:637-646
    [80]Nakamura Y, Leppert M, O'Connell P, et al. Variable number of tandem repeat (VNTR) markers for human gene mapping[J]. Science,1987,235:1616-1622
    [81]Nam J W, Shin K R, Han J J, et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure[J]. Nucleic Acids Res.,2005,33:3570-3581
    [82]Ni M, Dehesh K, Tepperman J M, et al. Gt-2:in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity[J]. Plant Cell,1996,8(6):1041-1059
    [83]NIH. NIH working definition of bioinformatics and computational biology.2000, http://grants.nih.gov/grants/bistic/CompuBioDef.pdf
    [84]Palaniswamy S K, James S, Sun H, et al. AGRIS and ATREGNET:a platform to link cis-regulatory elements and transcription factors into regulatory networks[J]. Plant Physiology,2006, 140(3):818-829
    [85]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.)[J]. Mol. Gen. Genet,2005, 252:597-607
    [86]Papp I, Mette M F, Aufsatz W, et al. Evidence for nuclear processing of plant microRNA and short interfering RNA precursors [J]. Plant Physiol.,2003,132:1382-1390
    [87]Park W, Li J, Song R, et al. Carpel factory, a dicer homolog, and heni, a novel protein, actin microRNA metabolism in Arabidopsis thaliana[J]. Curr. Biol.,2002,12:1484-1495
    [88]Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide let-7 heterochronic regulatory RNA[J]. Nature,2000, 408:86-89
    [89]Qi Y, Denli A, Hannon G. Biochemical specialization within arabidopsis RNA silencing pathways[J]. Mol.Cell,2005,19:421-428
    [90]Rattei T, Tischler P, Arnold R, et al. SIMAP-structuring the network of protein similarities.[J]. Nucleic Acids Res,2008,36:289-292
    [91]Reinhart B J, Slack F J, Basson M, et al. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature,2000,403:901-906
    [92]Riano-Pachon D M, Ruzicic S, Dreyer I, et al. PlnTFDB:an integrative plant transcription factor database[J]. BMC Bioinformatics,2007,8:1-10
    [93]Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290:2105-2110
    [94]Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development[J]. Biol. Chem., 1997,378:1079-1101
    [95]Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors[J]. Biol.Chem.,1998,379:633-646
    [96]Rodriguez A, Griffiths-Jones S, Ashurst J L, et al. Identification of mammalian microRNA host genes and transcription units[J]. Genome Res,2004,14:1902-1910
    [97]Rounsley S D, Ditta G S, Yanofsky M F. Diverse roles for MADS box genes in arabidopsis development[J]. Plant Cell,1995,7(8):1259-1269
    [98]Rubin G M, Yandell M D, Wortman J R, et al. Comparative genomics of the eukaryotes[J]. Science, 2000,287:2204-2215
    [99]Sainz M B, Grotewold E, Chandler V L. Evidence for direct activation of an anthocyanin promoter by the maize c1 protein and comparison of dna binding by related MYB domain proteins[J]. Plant Cell,1997,9(4):611-625
    [100]Sauer T, Shelest E, Wingender E. Evaluating phylogenetic footprinting for human-rodent comparisons [J]. Bioinformatics,2006,22:430-^37.
    [101]Schorderet D, Gartier S. Analysis of CpG suppression in methylated and non-methylated species[J]. Proc. Natl. Acad. Sci. USA,1992,89:957-961
    [102]Seitz H, Royo H, Bortolin M L, et al. A large imprinted microRNA gene cluster at the mouse dlkl-gtl2 domain[J]. Genome Res.,2004,14:1741-1748
    [103]Shi Y, Wang Y F, Jayaraman L, et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TFG-[3 signaling[J]. Cell,1998,94:585-594
    [104]Smith T F, Waterman M S. Identification of common molecular subsequences. Journal of Molecular Biology,1981,147:195-197
    [105]Snoussi H, Harbi Ben Slimane M, et al. Genetic relationship among cultivated and wild grapevine accessions from Tunisia[J]. Genome,2004,47:1211-1219
    [106]Sreenu V B, Alevoor Vi, Nagaraju J, et al.MICdb:database of prokaryotic microsatellites. Nucleic Acids Res.,2003(31),106-108
    [107]Struss D, Plieske J. The use of microsatellite markers for detection of genetic diversity in barley populations[J]. Theor. Appl. Genet.,1998,97:308-315
    [108]Sussman J L, Lin D, Jiang J, et al., Protein Data Bank (PDB):Database of three-dimensional structural information of biological macromolecules[J]. Acta Cryst,1998, D54:1078-1084
    [109]Tang G, Reinhart B J, Bartel D P, et al. A biochemical framework for RNA silencing in plantsfJ]. Genes Dev.,2003,17:49-63
    [110]Takatsuji H. Zinc-finger transcription factors in plant[J]. Cell Mol. Life Sci.,1998,54(6):582-596
    [111]Tanzer A, Amemiya C T, Kim C B, et al. Evolution of microRNAs located within hox gene clusters[J]. J. Exp. Zool. B-Mol. Dev. Evol.,2005,304:75-85
    [112]Tateno Y, Imanishi T, Miyazaki S, et al. DNA Data Bank of Japan (DDBJ) for genome scale research in life science[J]. Nucleic Acids Res.,2002,1:27-30
    [113]Tautz D, Renz M. Simple sequence repeats are ubiquitous repetitive components of eukaryotic genomes[J]. Nucleic Acids Res.,1984,12:4127-4138
    [114]Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice Oryza sativa L.:frequency, length variation, transposon associations, and genetic marker potential[J]. Genome Res.,2001,11:1441-1152
    [115]Theissen G, Becker A, Rosa A D, et al. A short history of MADS-box genes in plants[J]. Plant Mol Biol.,2000,42:115-149
    [116]Thompson J D, Higgins D G, Gibson T J. Clustal w:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res.,1994,22:4673-4680
    [117]Ureta-Vidal A, Ettwiller L, Birney E. Comparative genomics:genome-wide analysis in metazoan eukaryotesfJ]. Nat. Rev. Genet.,2003,4:251-226
    [118]Velasco R, Zharkikh A, Troggio M, et al. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE,2007,2(12):e1326
    [119]Wang X W, Zhang J, Gu J, et al. MicroRNA identification based on sequence and structure alignment[J]. Bioinformatics,2005,21:3610-3614
    [120]Weber J L. Informativeness of human (dC-dA)n (dG-dT)n polymorphisms. Genomics,1990, 7:524-530
    [121]Weber M J. New human and mouse microRNA genes found by homology search[J]. FEBS J.,2005, 272:59-73
    [122]Wightman B, Ha I, Ruvkun G. Postranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell,1993,75:855-862
    [123]Xiao H, Siddiqua M, Braybrook S, et al. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid[J].2006,29(7):1410-1421
    [124]Yekta S, Shih I H, Bartel D P. MicroRNA-directed cleavage of hoxb8 mRNA[J]. Science,2004, 304:594-596
    [125]Zhang B H, Pan X P, Cannon C H, et al. Conservation and divergence of plant microRNA genes[J]. Plant J.,2006,46:243-259
    [126]Zhang B H, Pan X P, Cobb G P, et al. Plant microRNA:a small regulatory molecule with big impact[J]. Developmental Biology,2006,289:3-16
    [127]Zhang B H, Pan X P, Cox S B, et al. Evidence that miRNAs are different from other RNAs[J]. Cell. Mol. Life'Sci.,2006,63:246-254
    [128]Zhang B H, Pan X P, Wang Q L, et al. Identification and characterization of new plant microRNAs using EST analysis[J]. Cell Res,2005,15:336-360
    [129]Zhang J Z. Overexpression analysis of plant transcription factors, curr. opin[J]. Plant Biol.,2003, 6(5):430-440
    [130]Zhu Q H, Guo A Y, Gao G, et al. DPTF:a database of poplar transcription factors[J]. Bioinformatics,2007,23:1307-1308
    [131]Zuker M. Mfold web server for nucleic acid folding and hybridization prediction[J].Nucleic Acids Res.,2003,31:3406-3415

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700