肝癌差异miRNA分子的鉴定及其功能机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     肝细胞癌(HCC,以下简称肝癌)是最常见的恶性肿瘤之一,但其发生发展的分子机制尚未完全清楚。MicroRNA(miRNA)是近年来在生物体内发现的一大类长度约22核苷酸左右的内源性非编码小RNA。它通过转录后抑制或靶mRNA降解参与细胞增殖、分化、凋亡等生物学过程,目前已鉴定出千余个。miRNA呈现组织特异性表达,可以有多个靶基因。研究发现,miRNA与细胞的癌变有着极为密切的关系。最近的研究表明,miRNA在人类恶性肿瘤中发挥促癌或抑癌的作用。对于miRNA表达调控的研究将是针对人类恶性肿瘤预防的一种新策略。
     由于miRNA具有“一对多”的作用方式,可同时调控多个蛋白质编码基因,参与多条与肿瘤发生发展相关的分子通路,所以靶向miRNA的干预能更有效地控制甚至逆转涉及多基因改变的肿瘤恶性表型。然而,miRNA是如何参与肝癌的发生发展?有哪些miRNA参与?它们的作用机制如何?靶向miRNA的干预治疗是否能逆转肝癌细胞的恶性表型?上述问题还远未阐明,miRNA在肝癌发生发展中的作用及作用机制仍需进一步的研究和探索。
     【目的】
     筛选、鉴定肝癌中差异表达的miRNA,研究miRNA分子在肝癌发生发展过程中的作用及其机制,进一步从新的角度理解肝癌的发生,为肝癌的早期预防、早期诊断以及选择合适的靶点进行干预、治疗提供新的理论依据。
     【方法】
     1.根据文献报道的芯片筛选结果,选取了miR-199a-1、miR-125a、miR-125b、miR-373、miR34a五个miRNAs分子,对18例肝癌、癌旁及部分转移灶的冰冻和石蜡包埋组织标本,通过实时荧光定量PCR(qRT-PCR)检测、比较肝癌组织和癌旁组织的表达水平,鉴定差异最明显的miRNA分子。
     2.补足40例肝癌、癌旁及部分转移灶的冰冻和石蜡包埋组织标本,通过qRT-PCR检测肝癌组织及癌旁组织标本中miR-199a-1的表达水平,分析miR-199a-1的表达水平与肝癌临床病理参数的关系。
     3.构建、扩增miR-199a-1的慢病毒表达载体及其阴性对照载体,分别感染miR-199a-1低表达的肝癌细胞系HepG2,建立稳定上调miR-199a-1的肝癌细胞系,用MTT、平板克隆、流式细胞术及裸鼠成瘤等实验,在体外和体内观察miR-199a-1对肝癌细胞生长、增殖的影响。
     4.利用生物信息学软件(PicTar、MiRanda、TargetScan等)预测miR-199a-1可能调控的靶基因;通过荧光素酶报告基因实验、半定量PCR和Western blot对候选靶基因进行验证,明确miR-199a-1对其靶基因FZD7的调控作用及两者在肝癌细胞及临床肝癌组织中的表达相关性;Westernblot检测miR-199a-1稳转细胞系中miR-199a-1上调对FZD7通路的影响。
     【结果】
     1.在选取的五个肝癌差异表达miRNA分子中,miR-199a-1的差异表达最为显著,肝癌组织中的表达水平明显低于癌旁组织,提示miR-199a-1可能是参与肝癌发生发展过程中的关键分子之一。
     2. miR-199a-1的表达水平与肝癌临床病理参数的分析结果表明,其表达降低的程度与肝癌的临床分期、淋巴结转移以及肝癌患者的预后密切相关。
     3. miR-199a-1高表达慢病毒感染肝细胞,建立稳转细胞系。MTT结果显示miR-199a-1上调表达能显著抑制肝癌细胞的增殖能力;平板克隆形成实验显示miR-199a-1上调表达的肝癌细胞集落生长能力显著降低;流式细胞术检测发现阴性对照组和亲本HepG2细胞系增殖指数(PI)分别为60.7和63.9,明显高于对照组miR-199a-1高表达的HepG2细胞系的PI值40.8。实验结果提示miR-199a-1高表达细胞系发生细胞周期G1期阻滞;裸鼠体内成瘤发现稳定高表达miR-199a-1的肝癌细胞系皮下接种BALB/c裸鼠40天后,肿瘤生长缓慢,实验组瘤体显著小于对照组。体内外功能研究表明miR-199a-1可以抑制肝癌的增殖。
     4.生物信息学预测提示,FZD7可能是miR-199a-1的靶基因之一。上调miR-199a-1的肝癌细胞系与其阴性对照细胞系相比,FZD7表达明显降低,与miR-199a-1的表达成负相关性。在肝癌组织标本中,FZD7在肝癌中表达明显高于癌旁组织。Western blot检测经典Wnt信号通路的靶基因β-catenin,Jun, Cyclin D1和Myc均有不同程度的降低。
     【结论】
     1. miR199a-1在肝癌细胞和肝癌组织中表达显著降低,其表达降低的程度与肝癌的临床分期、淋巴结转移以及肝癌患者的预后密切相关。
     2. miR-199a-1可以通过调节细胞周期G1阻滞来抑制体内、外肝癌细胞增殖能力。
     3. miR-199a-1通过负性调控细胞膜受体FZD7表达,影响经典的Wnt通路发挥抑癌作用。
【Background】
     Hepatocellular carcinoma (HCC) is one of the most common humanmalignancies worldwide, while the underlying mechanisms of HCCcarcinogenesis and progression are still unclear. MicroRNAs (miRNAs) are aclass of single-strand evolutionarily conserved small non-coding RNAs with19–22nucleotides in length. The specificity of miRNA targeting is based onWatson–Crick complementarities with the3’ untranslated region (UTR) of theirtarget mRNAs, which can down-regulate the expression of various target genesinvolved in the malignant process of cancer. For one thing, when the miRNAbinding shows perfect complementarities, the RISC induces mRNA degradation.For another, once an imperfect miRNA–mRNA target pairing occurs, translationinto a protein is blocked. Overall, miRNAs serve as expression regulators infundamental cell progression, including growth, proliferation, apoptosis,differentiation and metastasis. An increasing number of evidence shows that the aberrant expression of certain miRNAs in cancers plays significant roles in thetumorigenesis and progression.Because of miRNAs’ property of ‘one for all’, they are able to targetmultiple genes involved in cancer pathways so that cancer phenotypes can bemodified by targeting gene expression. However, targets of miRNAs intumorigenesis, progression and therapeutic intervention of HCC remains unclear.The corresponding mechanisms require more concentration and commitment oftargeting miRNAs in therapeutic strategies for HCC in future studies.
     【Aims】
     To screen and identify the aberrantly expressed miRNAs in HCC comparedwith matched non-cancerous tissues, and to investigate the effects involved inHCC carcinogenesis and progression, for better understanding the mechanisms ofHCC from a fresh perspective and providing a new theoretical basis for earlydiagnosis and intervention of HCC.
     【Methods】
     1. Based on our former experimental data and references, we selected5miRNAs: miR-199a-1, miR-125a、miR-125b、miR-373、miR34a for furtherstudy. The miRNAs levels in18pairs of HCC and corresponding non-tumortissues were detected by quantitative real time-PCR (qRT–PCR), andanalyzed the difference expression of each in HCC and non-tumor tissues.
     2. A complementary of22more paires of HCC and corresponding non-tumortissues was carried out with the same treatment as described above. Theexpression levels of miR-199a-1in these22HCC tissues and correspondingnon-tumor mucosa were detected by qRT–PCR. Correlations between themiR-199a-1expression level and clinicopathologic characteristics of HCCwere also analyzed.
     3. The expression of miR-199a-1was also detected in HCC cell lines HepG2and SMMC-7721, and normal liver cell line Chang liver. MiR-199a-1wasfound to be lowly expressed in HepG2cells, and over-expression ofmiR-199a-1in HepG2cells using a miR-199a-1expression vector(pGenesil-1-miR-1) was used for further study. The effect of miR-199a-1expression on cell growth and proliferation in vitro and tumorigenicity invivo were determined by MTT assay, flow cytometry, flat cloningexperiments and nude mice.
     4. To determine the underlying mechanisms that miR-199a-1contributes to themigration and metastasis of HCC, computative predicting tools includingmiRanda, Pictar, and TargetScan were used for the prediction of potentialregulatory targets of miR-199a-1. FZD7was confirmed to be one of themost inmortant target genes by luciferase, qRT–PCR and western blot assays.The downstream genes of FZD7, including β-catenin, Jun, CyclinD1andMyc were also inverstigated by western blot analysas.
     【Results】
     1. MiR-199a-1was distinctly over-expressed among all the five selectedmiRNAs, indicating that miR-199a-1might serve as a key regulator in HCCcarcinogenesis.
     2. The results of qRT-PCR verified that the miR-199a-1expression level wassignificantly lower in HCC comapred with mathced non-neoplastic tissues.Further analysis showed the levels of miR-199a-1were significantlycorrelated with the patients’ clinical parameters including TNM stage,metastasis and poor prognosis of patients with HCC.
     3. Up-regulated miR-199a-1cell line was successfully established in HepG2cells. MTT assays revealed that miR-199a-1could obviously repress HCCcell proliferation. The flat cloning experimental data indicated that miR-199a-1transfected HCC cells had a significantly decrease in theircolony forming ability. Flow cytometry data demonstrated that theproliferation index (PI) of both negative control group and the miR-199a-1hypoexpressd HepG2parental one were60.7and63.9respectively, whichwere dramatically higher than miR-199a-1hyper-expressed HepG2cells,indicating that over-expression of miR-199a-1could obtain a G1arrest.Furthermore, in vivo experiments revealed that the tumor growth withinHCC BALB/c nude mice had sharply slowed down after40days of tumorcell injection. Above all, these data demonstrated that miR-199a-1couldsuccessfully inhibit HCC growth and proliferation in vivo and vitro.
     4. Bioinformatics predicted that FZD7may be a target for miR-199a-1. Tofurther test the hypothesis, we analyzed the influence of miR-199a-1onFZD7expression in HCC cell line HepG2. The results showed thatover-expression of miR-199a-1could significantly down-regulate expressionof FZD7, and its downstream genes including β-catenin, Jun, CyclinD1andMyc, indicating that miR-199a-1repressed the development of HCC partlythrough inhibiting FZD7passageway.
     【Conclusions】
     1. MiR-199a-1expression is significantly down-regulated in HCC, anddecreased expression of miR-199a-1was significantly correlated with themalignant progression of HCC and poor prognosis.
     2. Up-regulation of MiR-199a-1expression in HCC cells can significantlysuppress HCC growth and proliferation in vitro and in vivo through G1arrest.
     3. MiR-199a-1suppreses HCC progression partly through inhibiting the FZD7pathway.
引文
[1] Shariff MIF, Cox IJ, Gomaa AI, Khan SA, Gedroyc W, Taylor-Robinson SD.Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors,diagnosis and therapeutics. Expert Review of Gastroenterology&Hepatology.2009;3:353-67.
    [2] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics.CA Cancer J Clin.2011;61:69-90.
    [3] Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates ofworldwide burden of cancer in2008: GLOBOCAN2008. Int J Cancer.2010;127:2893-917.
    [4] Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions ofhepatitis B virus and hepatitis C virus infections to cirrhosis and primary livercancer worldwide. J Hepatol.2006;45:529-38.
    [5] Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, Fang YY, et al. Epidemiologyof cholangiocarcinoma: an update focusing on risk factors. Cancer Sci.2010;101:579-85.
    [6] Schottenfeld D, Fraumeni JF. Cancer epidemiology and prevention.3rd ed. Oxford;New York: Oxford University Press;2006.
    [7] Parkin DM. The global health burden of infection-associated cancers in the year2002. Int J Cancer.2006;118:3030-44.
    [8] Ming L, Thorgeirsson SS, Gail MH, Lu P, Harris CC, Wang N, et al. Dominant roleof hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong,China. Hepatology.2002;36:1214-20.
    [9] El-Serag HB. Epidemiology of hepatocellular carcinoma in USA. Hepatol Res.2007;37Suppl2:S88-94.
    [10] Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence,mortality, and survival trends in the United States from1975to2005. J Clin Oncol.2009;27:1485-91.
    [11] Bosetti C, Levi F, Boffetta P, Lucchini F, Negri E, La Vecchia C. Trends in mortalityfrom hepatocellular carcinoma in Europe,1980-2004. Hepatology.2008;48:137-45.
    [12] Chang MH, You SL, Chen CJ, Liu CJ, Lee CM, Lin SM, et al. Decreased incidenceof hepatocellular carcinoma in hepatitis B vaccinees: a20-year follow-up study. JNatl Cancer Inst.2009;101:1348-55.
    [13] Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, et al. Annualreport to the nation on the status of cancer,1975-2007, featuring tumors of the brainand other nervous system. J Natl Cancer Inst.2011;103:714-36.
    [14] Ambros V. The functions of animal microRNAs. Nature.2004;431:350-5.
    [15] Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalianmicroRNA host genes and transcription units. Genome Res.2004;14:1902-10.
    [16] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes aretranscribed by RNA polymerase II. EMBO J.2004;23:4051-60.
    [17] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Droshainitiates microRNA processing. Nature.2003;425:415-9.
    [18] Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical regiongene8and Its D. melanogaster homolog are required for miRNA biogenesis. CurrBiol.2004;14:2162-7.
    [19] Bohnsack MT, Czaplinski K, Gorlich D. Exportin5is a RanGTP-dependentdsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA.2004;10:185-91.
    [20] Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nucleasemediates post-transcriptional gene silencing in Drosophila cells. Nature.2000;404:293-6.
    [21] Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K,et al. TRBP recruits the Dicer complex to Ago2for microRNA processing and genesilencing. Nature.2005;436:740-4.
    [22] Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzymecomplex. Science.2002;297:2056-60.
    [23] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell.2009;136:215-33.
    [24] Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale,strategies and challenges. Nat Rev Drug Discov.2010;9:775-89.
    [25] Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction ofmammalian microRNA targets. Cell.2003;115:787-98.
    [26] Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. CombinatorialmicroRNA target predictions. Nat Genet.2005;37:495-500.
    [27] Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource:targets and expression. Nucleic Acids Res.2008;36:D149-53.
    [28] Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs areconserved targets of microRNAs. Genome Res.2009;19:92-105.
    [29] Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, et al. Discoveryof functional elements in12Drosophila genomes using evolutionary signatures.Nature.2007;450:219-32.
    [30] Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the5'UTR of ribosomalprotein mRNAs and enhances their translation. Mol Cell.2008;30:460-71.
    [31] Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, et al. miR-328functions as an RNA decoy to modulate hnRNP E2regulation of mRNA translationin leukemic blasts. Cell.2010;140:652-65.
    [32] Beitzinger M, Meister G. Preview. MicroRNAs: from decay to decoy. Cell.2010;140:612-4.
    [33] Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, et al.Transcriptional control of gene expression by microRNAs. Cell.2010;140:111-22.
    [34] Gonzalez S, Pisano DG, Serrano M. Mechanistic principles of chromatin remodelingguided by siRNAs and miRNAs. Cell Cycle.2008;7:2601-8.
    [35] Kim DH, Saetrom P, Snove O, Jr., Rossi JJ. MicroRNA-directed transcriptional genesilencing in mammalian cells. Proc Natl Acad Sci U S A.2008;105:16230-5.
    [36] Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequentdeletions and down-regulation of micro-RNA genes miR15and miR16at13q14inchronic lymphocytic leukemia. Proc Natl Acad Sci U S A.2002;99:15524-9.
    [37] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNAexpression profiles classify human cancers. Nature.2005;435:834-8.
    [38] Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, et al. Identification andcharacterization of a novel gene, C13orf25, as a target for13q31-q32amplificationin malignant lymphoma. Cancer Res.2004;64:3087-95.
    [39] Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al.E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest andapoptosis in gastric cancer. Cancer Cell.2008;13:272-86.
    [40] Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. UniquemicroRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell.2006;9:189-98.
    [41] Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C,Meijerink WJ, et al. MiR-17-92cluster is associated with13q gain and c-mycexpression during colorectal adenoma to adenocarcinoma progression. Br J Cancer.2009;101:707-14.
    [42] Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. AMicroRNA signature associated with prognosis and progression in chroniclymphocytic leukemia. N Engl J Med.2005;353:1793-801.
    [43] Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNAgene expression deregulation in human breast cancer. Cancer Res.2005;65:7065-70.
    [44] Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, et al.MicroRNA signatures associated with cytogenetics and prognosis in acute myeloidleukemia. Blood.2008;111:3183-9.
    [45] Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al.MicroRNA expression profiles associated with prognosis and therapeutic outcome incolon adenocarcinoma. JAMA.2008;299:425-36.
    [46] Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al. Extensivemodulation of a set of microRNAs in primary glioblastoma. Biochem Biophys ResCommun.2005;334:1351-8.
    [47] Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, et al.MicroRNA expression patterns to differentiate pancreatic adenocarcinoma fromnormal pancreas and chronic pancreatitis. JAMA.2007;297:1901-8.
    [48] Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, et al. MicroRNAsregulate critical genes associated with multiple myeloma pathogenesis. Proc NatlAcad Sci U S A.2008;105:12885-90.
    [49] Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression ofprecursor microRNA-155/BIC RNA in children with Burkitt lymphoma. GenesChromosomes Cancer.2004;39:167-9.
    [50] Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. BIC andmiR-155are highly expressed in Hodgkin, primary mediastinal and diffuse large Bcell lymphomas. J Pathol.2005;207:243-9.
    [51] Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C,et al. Distinctive microRNA signature of acute myeloid leukemia bearingcytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A.2008;105:3945-50.
    [52] Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al.NF-kappaB-YY1-miR-29regulatory circuitry in skeletal myogenesis andrhabdomyosarcoma. Cancer Cell.2008;14:369-81.
    [53] Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29regulates Mcl-1proteinexpression and apoptosis. Oncogene.2007;26:6133-40.
    [54] Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, et al. Effects of microRNA-29on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology.2010;51:836-45.
    [55] Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, et al. microRNA expression profileand identification of miR-29as a prognostic marker and pathogenetic factor bytargeting CDK6in mantle cell lymphoma. Blood.2010;115:2630-9.
    [56] Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. ThemiR-15a-miR-16-1cluster controls prostate cancer by targeting multiple oncogenicactivities. Nat Med.2008;14:1271-7.
    [57] Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC. miR-15a andmiR-16-1down-regulation in pituitary adenomas. J Cell Physiol.2005;204:280-5.
    [58] Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS isregulated by the let-7microRNA family. Cell.2005;120:635-47.
    [59] Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al.Reduced expression of the let-7microRNAs in human lung cancers in associationwith shortened postoperative survival. Cancer Res.2004;64:3753-6.
    [60] Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7regulates self renewal andtumorigenicity of breast cancer cells. Cell.2007;131:1109-23.
    [61] Akao Y, Nakagawa Y, Naoe T. let-7microRNA functions as a potential growthsuppressor in human colon cancer cells. Biol Pharm Bull.2006;29:903-6.
    [62] Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K, et al. MicroRNAmicroarray identifies Let-7i as a novel biomarker and therapeutic target in humanepithelial ovarian cancer. Cancer Res.2008;68:10307-14.
    [63] Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M. Clinicalsignificance of high mobility group A2in human gastric cancer and its relationshipto let-7microRNA family. Clin Cancer Res.2008;14:2334-40.
    [64] Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. HumanmicroRNA genes are frequently located at fragile sites and genomic regionsinvolved in cancers. Proc Natl Acad Sci U S A.2004;101:2999-3004.
    [65] Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specificactivation of microRNA-127with downregulation of the proto-oncogene BCL6bychromatin-modifying drugs in human cancer cells. Cancer Cell.2006;9:435-43.
    [66] Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F, et al. Geneticunmasking of an epigenetically silenced microRNA in human cancer cells. CancerRes.2007;67:1424-9.
    [67] Hackanson B, Bennett KL, Brena RM, Jiang J, Claus R, Chen SS, et al. Epigeneticmodification of CCAAT/enhancer binding protein alpha expression in acute myeloidleukemia. Cancer Res.2008;68:3142-51.
    [68] Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, et al. Dicer1functions as ahaploinsufficient tumor suppressor. Genes Dev.2009;23:2700-4.
    [69] Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, et al. Dicer,Drosha, and outcomes in patients with ovarian cancer. N Engl J Med.2008;359:2641-50.
    [70] He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNAcomponent of the p53tumour suppressor network. Nature.2007;447:1130-4.
    [71] Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al.Transactivation of miR-34a by p53broadly influences gene expression and promotesapoptosis. Mol Cell.2007;26:745-52.
    [72] Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. WidespreadmicroRNA repression by Myc contributes to tumorigenesis. Nat Genet.2008;40:43-50.
    [73] Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15and miR-16induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A.2005;102:13944-9.
    [74] Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. TheDLEU2/miR-15a/16-1cluster controls B cell proliferation and its deletion leads tochronic lymphocytic leukemia. Cancer Cell.2010;17:28-40.
    [75] Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, et al. MicroRNAlet-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphomacells. Cancer Res.2007;67:9762-70.
    [76] Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, etal. A microRNA DNA methylation signature for human cancer metastasis. Proc NatlAcad Sci U S A.2008;105:13556-61.
    [77] Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21is an antiapoptotic factor inhuman glioblastoma cells. Cancer Res.2005;65:6029-33.
    [78] Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21regulates expression of the PTEN tumor suppressor gene in human hepatocellularcancer. Gastroenterology.2007;133:647-58.
    [79] Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH.Programmed cell death4(PDCD4) is an important functional target of themicroRNA miR-21in breast cancer cells. J Biol Chem.2008;283:1026-33.
    [80] He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. AmicroRNA polycistron as a potential human oncogene. Nature.2005;435:828-33.
    [81] Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, et al.Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92expression in lymphocytes. Nat Immunol.2008;9:405-14.
    [82] Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al.Targeted deletion reveals essential and overlapping functions of the miR-17through92family of miRNA clusters. Cell.2008;132:875-86.
    [83] Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, et al. Genetic dissectionof the miR-17~92cluster of microRNAs in Myc-induced B-cell lymphomas. GenesDev.2009;23:2806-11.
    [84] Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C, et al. miR-19is akey oncogenic component of mir-17-92. Genes Dev.2009;23:2839-49.
    [85] Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, et al. Pre-B cellproliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155transgenic mice. Proc Natl Acad Sci U S A.2006;103:7024-9.
    [86] O'Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, et al.Sustained expression of microRNA-155in hematopoietic stem cells causes amyeloproliferative disorder. J Exp Med.2008;205:585-94.
    [87] O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1isa primary target of miR-155. Proc Natl Acad Sci U S A.2009;106:7113-8.
    [88] Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, et al. Srchomology2domain-containing inositol-5-phosphatase and CCAATenhancer-binding protein beta are targeted by miR-155in B cells ofEmicro-MiR-155transgenic mice. Blood.2009;114:1374-82.
    [89] Liu Q, Oliveira-Dos-Santos AJ, Mariathasan S, Bouchard D, Jones J, Sarao R, et al.The inositol polyphosphate5-phosphatase ship is a crucial negative regulator of Bcell antigen receptor signaling. J Exp Med.1998;188:1333-42.
    [90] Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiatedby microRNA-10b in breast cancer. Nature.2007;449:682-8.
    [91] Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, et al. Therapeuticsilencing of miR-10b inhibits metastasis in a mouse mammary tumor model. NatBiotechnol.2010;28:341-7.
    [92] Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenoushuman microRNAs that suppress breast cancer metastasis. Nature.2008;451:147-52.
    [93] Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, et al.Transcripts targeted by the microRNA-16family cooperatively regulate cell cycleprogression. Mol Cell Biol.2007;27:2240-52.
    [94] Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al.MiR-15a and miR-16-1cluster functions in human leukemia. Proc Natl Acad Sci US A.2008;105:5166-71.
    [95] Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsicmodulator of T cell sensitivity and selection. Cell.2007;129:147-61.
    [96] Boutla A, Delidakis C, Tabler M. Developmental defects by antisense-mediatedinactivation of micro-RNAs2and13in Drosophila and the identification of putativetarget genes. Nucleic Acids Res.2003;31:4973-80.
    [97] Hutvagner G, Simard MJ, Mello CC, Zamore PD. Sequence-specific inhibition ofsmall RNA function. PLoS Biol.2004;2:E98.
    [98] Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition totarget miRNAs implicated in human disease? Gene Ther.2006;13:496-502.
    [99] Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al.Silencing of microRNAs in vivo with 'antagomirs'. Nature.2005;438:685-9.
    [100] Vester B, Wengel J. LNA (locked nucleic acid): high-affinity targeting ofcomplementary RNA and DNA. Biochemistry.2004;43:13233-41.
    [101] Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, et al.Antagonism of microRNA-122in mice by systemically administered LNA-antimiRleads to up-regulation of a large set of predicted target mRNAs in the liver. NucleicAcids Res.2008;36:1153-62.
    [102] Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis Cvirus RNA abundance by a liver-specific MicroRNA. Science.2005;309:1577-81.
    [103] Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, et al. LNA-mediatedmicroRNA silencing in non-human primates. Nature.2008;452:896-9.
    [104] Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, etal. Therapeutic silencing of microRNA-122in primates with chronic hepatitis Cvirus infection. Science.2010;327:198-201.
    [105] Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors ofsmall RNAs in mammalian cells. Nat Methods.2007;4:721-6.
    [106] Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z. Novel approaches for gene-specificinterference via manipulating actions of microRNAs: examination on the pacemakerchannel genes HCN2and HCN4. J Cell Physiol.2007;212:285-92.
    [107] Loya CM, Lu CS, Van Vactor D, Fulga TA. Transgenic microRNA inhibition withspatiotemporal specificity in intact organisms. Nat Methods.2009;6:897-903.
    [108] Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancingof Nodal agonist and antagonist by miR-430. Science.2007;318:271-4.
    [109] Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A.Small-molecule inhibitors of microrna miR-21function. Angew Chem Int Ed Engl.2008;47:7482-4.
    [110] Michelfelder S, Trepel M. Adeno-associated viral vectors and their redirection tocell-type specific receptors. Adv Genet.2009;67:29-60.
    [111] Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. AdvDrug Deliv Rev.2007;59:75-86.
    [112] Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW,et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine livercancer model. Cell.2009;137:1005-17.
    [113] Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, et al.MicroRNA gene expression during retinoic acid-induced differentiation of humanacute promyelocytic leukemia. Oncogene.2007;26:4148-57.
    [114] Galm O, Herman JG, Baylin SB. The fundamental role of epigenetics inhematopoietic malignancies. Blood Rev.2006;20:1-13.
    [115] Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. TheConnectivity Map: using gene-expression signatures to connect small molecules,genes, and disease. Science.2006;313:1929-35.
    [116] Zhao X, Pan F, Holt CM, Lewis AL, Lu JR. Controlled delivery of antisenseoligonucleotides: a brief review of current strategies. Expert Opin Drug Deliv.2009;6:673-86.
    [117] Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. MolCancer Ther.2002;1:347-55.
    [118] Malik R, Roy I. Design and development of antisense drugs. Expert Opinion onDrug Discovery.2008;3:1189-207.
    [119] Chiarantini L, Cerasi A, Fraternale A, Millo E, Benatti U, Sparnacci K, et al.Comparison of novel delivery systems for antisense peptide nucleic acids. J ControlRelease.2005;109:24-36.
    [120] Zuhorn IS, Engberts JB, Hoekstra D. Gene delivery by cationic lipid vectors:overcoming cellular barriers. Eur Biophys J.2007;36:349-62.
    [121] Chirila TV, Rakoczy PE, Garrett KL, Lou X, Constable IJ. The use of syntheticpolymers for delivery of therapeutic antisense oligodeoxynucleotides. Biomaterials.2002;23:321-42.
    [122] Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA.Oligonucleotide-modified gold nanoparticles for intracellular gene regulation.Science.2006;312:1027-30.
    [123] Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, et al. Biologicalfunctions of miR-29b contribute to positive regulation of osteoblast differentiation. JBiol Chem.2009;284:15676-84.
    [124] Xu H, Cheung IY, Guo HF, Cheung NK. MicroRNA miR-29modulates expressionof immunoinhibitory molecule B7-H3: potential implications for immune basedtherapy of human solid tumors. Cancer Res.2009;69:6275-81.
    [125] Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, etal. Sequence-specific potent induction of IFN-alpha by short interfering RNA inplasmacytoid dendritic cells through TLR7. Nat Med.2005;11:263-70.
    [126] Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality inmice due to oversaturation of cellular microRNA/short hairpin RNA pathways.Nature.2006;441:537-41.
    [127] Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29binduces global DNA hypomethylation and tumor suppressor gene reexpression inacute myeloid leukemia by targeting directly DNMT3A and3B and indirectlyDNMT1. Blood.2009;113:6411-8.
    [128] Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29family reverts aberrant methylation in lung cancer by targeting DNAmethyltransferases3A and3B. Proc Natl Acad Sci U S A.2007;104:15805-10.
    [129] Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, et al. Regulation of thegerminal center response by microRNA-155. Science.2007;316:604-8.
    [130] Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al.Requirement of bic/microRNA-155for normal immune function. Science.2007;316:608-11.
    [131] Kotani A, Ha D, Hsieh J, Rao PK, Schotte D, den Boer ML, et al. miR-128b is apotent glucocorticoid sensitizer in MLL-AF4acute lymphocytic leukemia cells andexerts cooperative effects with miR-221. Blood.2009;114:4169-78.
    [132] Cullen BR. Transcription and processing of human microRNA precursors. Mol Cell.2004;16:861-5.
    [133] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.2004;116:281-97.
    [134] Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, et al.Comprehensive analysis of microRNA expression patterns in hepatocellularcarcinoma and non-tumorous tissues. Oncogene.2006;25:2537-45.
    [135] Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, et al. Identification ofmetastasis-related microRNAs in hepatocellular carcinoma. Hepatology.2008;47:897-907.
    [136] Yao J, Liang L, Huang S, Ding J, Tan N, Zhao Y, et al. MicroRNA-30d promotestumor invasion and metastasis by targeting Galphai2in hepatocellular carcinoma.Hepatology.2010;51:846-56.
    [137] Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ, et al.Association of MicroRNA expression in hepatocellular carcinomas with hepatitisinfection, cirrhosis, and patient survival. Clin Cancer Res.2008;14:419-27.
    [138] Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression,survival, and response to interferon in liver cancer. N Engl J Med.2009;361:1437-47.
    [139] Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M, et al. Gain of miR-151onchromosome8q24.3facilitates tumour cell migration and spreading throughdownregulating RhoGDIA. Nat Cell Biol.2010;12:390-9.
    [140] Yang J, Zhou F, Xu T, Deng H, Ge YY, Zhang C, et al. Analysis of sequencevariations in59microRNAs in hepatocellular carcinomas. Mutat Res.2008;638:205-9.
    [141] Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F. microRNA: emergingtherapeutic targets in acute ischemic diseases. Pharmacol Ther.2010;125:92-104.
    [142] Qi P, Dou TH, Geng L, Zhou FG, Gu X, Wang H, et al. Association of a variant inMIR196A2with susceptibility to hepatocellular carcinoma in male Chinese patientswith chronic hepatitis B virus infection. Hum Immunol.2010;71:621-6.
    [143] Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T. Epigenetic regulation ofmicroRNA-370by interleukin-6in malignant human cholangiocytes. Oncogene.2008;27:378-86.
    [144] Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, et al. Methylationmediated silencing of MicroRNA-1gene and its role in hepatocellularcarcinogenesis. Cancer Res.2008;68:5049-58.
    [145] Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, andhepatocarcinogenesis. Cancer Lett.2007;252:157-70.
    [146] Raidl M, Pirker C, Schulte-Hermann R, Aubele M, Kandioler-Eckersberger D, WrbaF, et al. Multiple chromosomal abnormalities in human liver (pre)neoplasia. JHepatol.2004;40:660-8.
    [147] Zondervan PE, Wink J, Alers JC, JN IJ, Schalm SW, de Man RA, et al. Molecularcytogenetic evaluation of virus-associated and non-viral hepatocellular carcinoma:analysis of26carcinomas and12concurrent dysplasias. J Pathol.2000;192:207-15.
    [148] Jin WB, Wu FL, Kong D, Guo AG. HBV-encoded microRNA candidate and itstarget. Comput Biol Chem.2007;31:124-6.
    [149] Zhang X, Liu S, Hu T, He Y, Sun S. Up-regulated microRNA-143transcribed bynuclear factor kappa B enhances hepatocarcinoma metastasis by repressingfibronectin expression. Hepatology.2009;50:490-9.
    [150] Ura S, Honda M, Yamashita T, Ueda T, Takatori H, Nishino R, et al. DifferentialmicroRNA expression between hepatitis B and hepatitis C leading diseaseprogression to hepatocellular carcinoma. Hepatology.2009;49:1098-112.
    [151] Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus repliconRNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci U S A.2003;100:235-40.
    [152] Liu X, Wang T, Wakita T, Yang W. Systematic identification of microRNA andmessenger RNA profiles in hepatitis C virus-infected human hepatoma cells.Virology.2010;398:57-67.
    [153] Braconi C, Valeri N, Gasparini P, Huang N, Taccioli C, Nuovo G, et al. Hepatitis Cvirus proteins modulate microRNA expression and chemosensitivity in malignanthepatocytes. Clin Cancer Res.2010;16:957-66.
    [154] Sidorkiewicz M, Grek M, Jozwiak B, Majda-Stanislawska E, Piekarska A,Bartkowiak J. Expression of microRNA-155precursor in peripheral bloodmononuclear cells from Hepatitis C patients after antiviral treatment. Acta Virol.2010;54:75-8.
    [155] Connolly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, Slagle BL, et al.Elevated expression of the miR-17-92polycistron and miR-21inhepadnavirus-associated hepatocellular carcinoma contributes to the malignantphenotype. Am J Pathol.2008;173:856-64.
    [156] Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, et al. CyclinG1is a target of miR-122a, a microRNA frequently down-regulated in humanhepatocellular carcinoma. Cancer Res.2007;67:6092-9.
    [157] Li S, Fu H, Wang Y, Tie Y, Xing R, Zhu J, et al. MicroRNA-101regulatesexpression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS)oncogene in human hepatocellular carcinoma. Hepatology.2009;49:1194-202.
    [158] Li W, Xie L, He X, Li J, Tu K, Wei L, et al. Diagnostic and prognostic implicationsof microRNAs in human hepatocellular carcinoma. Int J Cancer.2008;123:1616-22.
    [159] Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulatedin hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity.Cancer Res.2009;69:1135-42.
    [160] Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y, et al. Profiling microRNAexpression in hepatocellular carcinoma reveals microRNA-224up-regulation andapoptosis inhibitor-5as a microRNA-224-specific target. J Biol Chem.2008;283:13205-15.
    [161] Varnholt H. The role of microRNAs in primary liver cancer. Ann Hepatol.2008;7:104-13.
    [162] Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, et al.MicroRNA gene expression profile of hepatitis C virus-associated hepatocellularcarcinoma. Hepatology.2008;47:1223-32.
    [163] Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N. microRNA targetpredictions across seven Drosophila species and comparison to mammalian targets.PLoS Comput Biol.2005;1:e13.
    [164] Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of targetstructure on microRNA function. Nat Struct Mol Biol.2007;14:287-94.
    [165] Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility inmicroRNA target recognition. Nat Genet.2007;39:1278-84.
    [166] Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP.MicroRNA targeting specificity in mammals: determinants beyond seed pairing.Mol Cell.2007;27:91-105.
    [167] Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets inDrosophila. Genome Biol.2003;5:R1.
    [168] Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked byadenosines, indicates that thousands of human genes are microRNA targets. Cell.2005;120:15-20.
    [169] Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, et al. A new memberof the frizzled family from Drosophila functions as a Wingless receptor. Nature.1996;382:225-30.
    [170] Ueno K, Hiura M, Suehiro Y, Hazama S, Hirata H, Oka M, et al. Frizzled-7as apotential therapeutic target in colorectal cancer. Neoplasia.2008;10:697-705.
    [171] Vincan E, Darcy PK, Farrelly CA, Faux MC, Brabletz T, Ramsay RG. Frizzled-7dictates three-dimensional organization of colorectal cancer cell carcinoids.Oncogene.2007;26:2340-52.
    [172] Vincan E, Darcy PK, Smyth MJ, Thompson EW, Thomas RJ, Phillips WA, et al.Frizzled-7receptor ectodomain expression in a colon cancer cell line inducesmorphological change and attenuates tumor growth. Differentiation.2005;73:142-53.
    [173] Vincan E, Flanagan DJ, Pouliot N, Brabletz T, Spaderna S. Variable FZD7expression in colorectal cancers indicates regulation by the tumourmicroenvironment. Dev Dyn.2010;239:311-7.
    [174] Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC, et al. FZD7has a critical role incell proliferation in triple negative breast cancer. Oncogene.2011;30:4437-46.
    [175] Wei W, Chua MS, Grepper S, So SK. Soluble Frizzled-7receptor inhibits Wntsignaling and sensitizes hepatocellular carcinoma cells towards doxorubicin. MolCancer.2011;10:16.
    [176] Melchior K, Weiss J, Zaehres H, Kim YM, Lutzko C, Roosta N, et al. The WNTreceptor FZD7contributes to self-renewal signaling of human embryonic stem cells.Biol Chem.2008;389:897-903.
    [177] Kikuchi A, Yamamoto H, Sato A. Selective activation mechanisms of Wnt signalingpathways. Trends Cell Biol.2009;19:119-29.
    [178] Mizuno S, Bogaard HJ, Gomez-Arroyo J, Alhussaini A, Kraskauskas D, Cool CD, etal. MicroRNA-199a-5p is associated with hypoxia inducible factor-1alphaexpression in the lung from COPD patients. Chest.2012.
    [179] Shen Q, Cicinnati VR, Zhang X, Iacob S, Weber F, Sotiropoulos GC, et al. Role ofmicroRNA-199a-5p and discoidin domain receptor1in human hepatocellularcarcinoma invasion. Mol Cancer.2010;9:227.
    [180] Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al.MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity ofhuman hepatocarcinoma cells. Cancer Res.2010;70:5184-93.
    [181] Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomesin human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutictarget for hepatocellular carcinoma. Cancer Cell.2011;19:232-43.
    [182] Sakurai K, Furukawa C, Haraguchi T, Inada K, Shiogama K, Tagawa T, et al.MicroRNAs miR-199a-5p and-3p target the Brm subunit of SWI/SNF to generate adouble-negative feedback loop in a variety of human cancers. Cancer Res.2011;71:1680-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700