转录因子CUTL1在胃癌多药耐药中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     胃癌是是最常见的恶性肿瘤之一,其死亡率在世界范围内位于恶性肿瘤的第二位。随着医学研究的不断进步和发展,胃癌的治疗方法和策略也得到不断完善,但化疗仍然是胃癌治疗的主要手段之一。而多药耐药(multidrug resistance, MDR)的出现,往往使得化疗失败,导致胃癌患者预后较差,5年生存率不足40%。因此,阐明胃癌多药耐药的机制势在必行。国内外学者,已经发现了大量的胃癌多药耐药相关基因和分子。我们实验室也建立了胃癌耐药细胞亚系,并应用抑制消减杂交、差异显示PCR、部分随机siRNA文库和miRNA芯片等策略,成功筛选并鉴定出一系列耐药相关的基因和miRNA。但由于胃癌的耐药机制非常复杂,这些结果尚不能完全阐明胃癌多药耐药的本质。因此,采用新策略继续深入研究胃癌多药耐药机制具有非常重要的意义。
     转录因子是一类重要的基因调控分子,参与多种细胞生物学过程,如:细胞分化、增殖、凋亡、细胞周期进展和肿瘤发生发展等。近年来,转录因子在多药耐药中的作用逐渐得到公认。新近出现的转录因子活性谱芯片(oligonucleotide array-based transcription factor assay, OATFA),为体外研究转录因子DNA结合活性提供了新的思路和策略。我们课题组前期利用此芯片,在胃癌阿霉素耐药细胞SGC7901/ADR和亲本细胞SGC7901中筛选出差异表达的转录因子,其中CUTL1差异最明显,推测CUTL1有可能参与胃癌多药耐药。
     CUTL1,属于转录因子同源结构域家族,其在进化上高度保守。CUTL1的表达水平和活性受到广泛的调节,包括转录起始的改变,蛋白酶解加工,磷酸化和乙酰化等,并且这些调节均通过对细胞周期的调控发挥作用。同时,CUTL1可以通过转录激活或转录抑制的方式,调节基因的表达,从而参与多种细胞生物学功能,如细胞分化、细胞增殖、细胞周期进展、细胞迁移和侵袭等。文献报道,CUTL1可以通过抑制凋亡而促进胰腺癌多药耐药的发生。因此,我们认为深入研究转录因子CUTL1在胃癌多药耐药中的作用和机制,具有非常重要的意义,有可能为临床逆转多药耐药提供新的思路和靶标。
     【目的】
     从多水平多角度研究转录因子CUTL1在胃癌多药耐药中的作用,并初步探讨其可能的分子机制。
     【方法】
     1、利用MTT方法检测脱药培养2周的胃癌阿霉素耐药细胞、给药培养的耐药细胞和亲本细胞对化疗药物的敏感性;2、PCR、Western blot和EMSA实验检测SGC7901/ADR细胞和SGC7901细胞中CUTL1的表达量和DNA结合活性;3、收集新鲜的胃癌活检组织标本,利用EMSA检测胃癌组织标本中CUTL1的结合活性,利用组织培养药物敏感性检测技术判断新鲜胃癌组织标本对化疗药物的敏感性,结合两者,从组织水平分析CUTL1活性与药物敏感性的相关性;4、扩增和鉴定CUTL1正义和反义载体,并分别感染和转染SGC7901/ADR和SGC7901细胞,通过RT-PCR和Westernblot检测感染和转染后细胞中CUTL1的表达量;5、MTT方法检测感染和转染后细胞对常见化疗药物的敏感性;6、通过流式细胞术分析CUTL1对胃癌细胞凋亡的影响;7、建立裸鼠成瘤模型,进一步在体内证实CUTL1对药物敏感性的影响;8、通过报告基因实验、qPCR、Western blot和MTT等方法对CUTL1的靶基因BMP6进行功能验证,以初步探讨CUTL1参与胃癌多药耐药的可能分子机制。
     【结果】
     1、转录因子CUTL1在胃癌耐药细胞中的表达量和活性降低
     我们分别给药培养和脱药培养2周阿霉素耐药胃癌细胞SGC7901/ADR,然后利用MTT方法检测其对化疗药物的敏感性,结果显示,脱药培养2周后,SGC7901/ADR与给药培养的细胞对化疗药物的敏感性无明显差别,而二者均明显低于SGC7901的药物敏感性。
     我们利用RT-PCR、Western blot和EMSA方法检测SGC7901/ADR和SGC7901细胞中CUTL1的表达量和表达活性,结果显示,SGC7901/ADR细胞中CUTL1的表达量和表达活性均明显低于SGC7901细胞,具有统计学意义(p<0.05)。
     2、 CUTL1活性与胃癌组织的多药耐药性呈负相关
     我们利用EMSA实验检测33例新鲜胃癌组织标本中CUTL1的活性,以滞后条带灰度值的平均值为准,其中16例被纳入CUTL1高活性组,17例纳入CUTL1低活性组。HDRA对33例胃癌组织标本对化疗药物的敏感性进行检测,以抑制率大于50%为标准,结果显示,17例标本对化疗药物呈内源性的耐药,而且其中13例的CUTL1活性较低,提示CUTL1高活性组中的抑制率明显高于CUTL1低活性组,p<0.05,具有统计学意义,可见CUTL1活性与胃癌组织的多药耐药性呈负相关。
     3、CUTL1在胃癌细胞多药耐药中的作用
     我们成功扩增了CUTL1正义和反义载体,并分别感染和转染SGC7901/ADR细胞和SGC7901/MKN45细胞,分别命名为:SGC7901/ADR-CUTL1,SGC7901/ADR-VC,SGC7901-shRNA和SGC7901-VC,MKN45-shRNA和MKN45-VC。RT-PCR、Westernblot结果均提示CUTL1在SGC7901/MKN45-shRNA中的表达明显低于SGC7901-VC,MTT结果提示SGC7901-shRNA对多种化疗药物的敏感性明显低于SGC7901-VC.CUTL1在SGC7901/ADR-CUTL1中的表达明显高于SGC7901/ADR-VC,其对药物的敏感性也高于SGC7901/ADR-VC。
     AnnexinV/PI染色法检测细胞受药物诱导调亡的变化,发现上调CUTL1表达能够明显增加SGC7901/ADR细胞对ADR的药物敏感性,降低CUTL1表达能够明显降低SGC7901/MKN45细胞对ADR的药物敏感性。SGC7901/ADR-CUTL1成瘤后,给予化疗药物,肿瘤的抑制率明显高于SGC7901/ADR-VC组,而SGC7901-shRNA组的肿瘤抑制率低于SGC7901-VC。4.CUTL1可能通过BMP6参与胃癌多药耐药
     CUTL1可以抑制BMP6的表达,并且CUTL1可以与BMP6启动子结合并抑制其转录。siRNA阻断BMP6的表达后,可以增强CUTL1呈低表达的胃癌耐药细胞对化疗药物的敏感性,部分逆转胃癌耐药细胞的多药耐药表型。因此,CUTL1可能通过调节BMP6而参与胃癌多药耐药。
     【结论】
     我们率先发现转录因子CUTL1在胃癌耐药细胞中表达量和DNA结合活性明显降低。并且,CUTL1的表达量和结合活性与胃癌组织和细胞对药物的敏感性呈正相关,上调CUTL1的表达可增加胃癌细胞对药物的敏感性,并逆转多药耐药表型,而下调CUTL1可以增加多药耐药性。且CUTL1可能通过调节BMP6而参与胃癌多药耐药。这一研究将为胃癌治疗提供新的思路和靶点。
【Backgroud】
     Gastric cancer is one of the most common malignant cancers, and it is thesecond most common cause of cancer death worldwide. Although the strategiesand methods for the treatment of gastric cancer have been improved graduallyalong with the development of medicine, chemotherapy is still one of the mostimportant methods. Multidrug resistance hampered the clinical efficacy ofchemotherapy. So the outcome of patients with advanced gastric cancer is verypoor, and the survival rate for5years is less than40%. Therefore, it is crucial toclarify the mechamisms of multidrug resistance. A number of genes andmolecules related with MDR have been identified. In our previous studies, wesuccessfully screened and identified through suppression subtractivehybridization, differential display-PCR, partially random siRNA library andmicro RNA array. However, the precise mechaniams of MDR are stillunclarified because of its complex nature. So it is important to go on the studies of MDR through novel strategies.
     Transcription factors (TFs) play important roles in multiple physiological andpathological processes, including cell differentiation, cell proliferation, cellapoptosis, carcinogenesis, and so on. In recent years, the role of transcriptionfactors in MDR has been accepted by researchers. Oligonucleotide Array-basedTranscription Factor Assay (OATFA) is a newly established and quite sensitivetechnology for the detection of TFs DNA binding activity in vitro, which couldallow simultaneously analyze the activity of multiple active TFs and thusfacilitate a high-throughput profiling. In our previous study, we screened andobtained differential expression TFs through OATFA, CUTL1showed dramaticchanges. So we supposed that CUTL1might be an important regulator in MDRin gastric cancer.
     CUTL1, whose proteins are evolutionarily conserved, belongs to thehomeodomain transcrption factor family. The expression and activity of CUTL1are generally regulated, including the alteration of transcription initation,proteolytic processing, phosphorylation and acetylation, and so on. In addtion,the regulation of CUTL1was related with cell cycle progression. However,CUTL1could regulate the exprssion of downstream genes through acting astranscription suppressor or transcription activator. So CUTL1participats inmultiple biological process, such as: cell differentiation, cell proliferation, cellapoptosis, carcinogenesis, and so on. Recently, researched reported that CUTL1might mediated MDR by inhibiting cell apoptosis in pancreatic cancer.Therefore, it is significant that we investigate the role of CUTL1in MDR ingastric cancer, which might provide novel target for reversing the MDR ofgastric cancer.
     【Objectives】
     We evaluated the role of CUTL1in regulating drug resistance in gastriccancer in multi-levels, and we primarily investigated the possible mechamismsof CUTL1in MDR.
     【Methods】
     1. MTT assay was performed to detect the sensitivity of SGC7901/ADR-r cells(cultured withour drug for2weeks), SGC7901/ADR-a cells (cultured with ADR0.6μg/ml) and SGC7901cells.2. RT-PCR, Western blot and EMSA werecarried out to evaluate the expression and DNA binding activity of CUTL1inSGC7901/ADR and SGC7901cells.3. Fresh gastric cancer tissues werecollected. EMSA was performed to detect the activity of CUTL1in gastriccancer tissues, and histoculture drug response assay (HDRA) was carried out toevaluate the sensitivity of gastric cancer tissues to chemotherapeutic agents.Then analyze the correlation between the CUTL1activity and the drugsensitivity.4. CUTL1sense and shRNA vectors were amplified and identified.SGC7901/ADR cell were infected by CUTL1retrovirus vector, and SGC7901and MKN45cells were transfected by CUTL1shRNA vector, respectively.5.MTT was preformed to detect the sensitivity of infected and transfected cells tochemotherapeutic agents.6. Flow cytometry was carried out to evaluate theeffcts of CUTL1on cell apoptosis.7. Nude tumorigenesis model wereconstructed to evaluate in vivo CUTL1effects in relation to chemotherapy.8.Candidate target gene of CUTL1, BMP6was identified by repoter gene assay,Western blot, PCR, and MTT assay.
     【Results】
     1. The experssion and acitivity of CUTL1in SGC7901/ADR cells weredecreased.
     we first characterized the drug resistance phenotype of SGC7901/ADR cells cultured under drug free conditions for two weeks. After two-week drug freeculture, SGC7901/ADR cells still retained resistance to ADR, at the similarlevel observed for those cells that were continually cultured with ADR (p>0.05),but in contrast to its parental SGC7901cells (p<0.05). We then tested the cellsfor drug resistance to these drugs after culturing cells under drug free condition,as we did for ADR. Similar results were found for these drugs.
     RT-PCR and Western blot were carried out to study the expression of CUTL1in relation to drug-resistance in gastric cancer cells. Compared withdrug-sensitive SGC7901cells, the expression of CUTL1in SGC7901/ADR cellsshowed significant reduction (P<0.05). In agreement with PCR and Western blot,results from EMSA assay also indicated that CUTL1activity in SGC7901/ADRwas60%less than that in SGC7901cells (P<0.05). All together, these resultsdemonstrated that reduced CUTL1expression and activity is related to drugresistance.
     2. CUTL1activity was inversely related to multiple drug-resistances incancer tissues
     we interrogated the expression patterns of CUTL1in human gastric cancerlesions for evidence of human relevance, specifically drug sensitivity as criteriafor clinicopathological validation. To this end, we collected fresh tissuesspecimens from33patients with gastric cancer and performed EMSA andHDRA to measure CUTL1activity in relation to drug response. Based on themean value from EMSA,16samples came out with high CUTL1activity and17with low CUTL1activity. Clinicopathological parameters were well balanced inboth. No significant differences between two groups were observed in age,gender, tumor depth, TNM stage, or tumor differentiation. Histoculture drugresponse assay (HDRA) was applied to determine chemosensitivity of these clinical tissues. Chemosensitivity was regarded as positive when the inhibitionratio is50%or higher tested by HDRA. Among these33patients,17samplesshowed intrinsic drug resistance. Moreover,13samples from these groupdemonstrated lower CUTL1activity. Statistical analysis for the relation ofHDRA with EMSA demonstrated that reduced CUTL1activity is associatedwith drug resistance in cancer tissues.
     3. Role of CUTL1related to drug resistance in gastric cancer cells
     The expression of CUTL1in SGC7901/ADR-CUTL1cells was detected byRT-PCR and Western blot respectively. Significant increase of CUTL1expression at mRNA level and protein level was observed inSGC7901/ADR-CUTL1cells compared to SGC7901/ADR-VC cells. Next, weinvestigated the functional activity of CUTL1in relation to drug resistance. Thiswas done using MTT assay by measuring sensitivity of SGC7901/ADR-CUTL1cells or SGC7901/ADR-VC cells to multiple anticancer drugs including ADR,5-Fu, MMC and CDDP. The IC50of SGC7901/ADR-CUTL1cells was muchless than that of SGC7901/ADR-VC cells for chemotherapeutic agents. As aresult of increased sensitivity to chemotherapy drugs, the ratio of apoptoticSGC7901/ADR-CUTL1cells was significantly increased (>3folds) comparedwith that observed in SGC7901/ADR-VC cells. Moreover, the inhibition ratio oftumor size of SGC7901/ADR-CUTL1was higher than the group injected withSGC7901/ADR-VC cells. Overall, the results indicated that overexpressingactive CUTL1reversed the drug resistance, and thus increased the apoptosisinduced by these drugs. More importantly, the reversed drug resistance was notonly limited to ADR, but also to other structurally unrelated drugs, whichsuggested that CUTL1plays an important role in the occurrence of multipledrug resistance.
     To further evaluate the functional importance of CUTL1in the regulation ofdrug resistance, a separate series of experiments was performed wherein shRNAmethodology was used to knock down the expression of CUTL1, and effectsupon drug-resistance were measured. Two CUTL1-specific shRNA vectors,namely CUTL1-shRNA1and CUTL1-shRNA2, were designed and constructedrespectively. Stable cell lines were established from parental SGC7901andMKN45cells and designated as SGC7901(or MKN45)-shRNA1, SGC7901(orMKN45)-shRNA2, SGC7901(or MKN45)-VC (vector control) respectively.RT-PCR and Western blot analysis were performed after CUTL1siRNAtargeting. As CUTL1-shRNA1more effectively downregulated the expressionof CUTL1in SGC7901and MKN45, SGC7901-shRNA1and MKN45-shRNA1cells were used in further cellular assays.
     As anticipated, SGC7901-shRNA1cells showed decreased sensitivity to allabove anticancer drugs as indicated. Accordingly, the proportion of apoptoticcells in SGC7901-shRNA1cells was significantly decreased (>2folds)compared with that in SGC7901-VC cells, as demonstrated by flow cytometry.Similar results were obtained in MKN45-shRNA1cells. Moreover, theinhibition ratio of tumor size in the group injected with SGC7901-shRNA1cellswas significantly higher than that of the group injected with SGC7901-VCcells.Therefore, knock down of CUTL1resulted in a significant multiple drugresistance phenotypes. These findings strengthened our hypothesis that CUTL1is related to multiple drug resistance.
     4. CUTL1might mediate MDR through regulating the expression ofBMP6in gastric cancer
     CUTL1could suppress the experssion of BMP6at mRNA and protein level.And reporter gene assay showed CUTL1could bind with the promoter of BMP6, by which CUTL1would inhibit BMP6transcription. MTT assay revealed thatthe sensitivity of cancer cells with low CUTL1expression was significantlyincreased by konckdown of BMP6by siRNA. So these data demonstrated thatCUTL1might particiapte the MDR through regulating BMP6in gastric caner.However, there are still a lot of studies for us to perform.
     【Conclusion】
     We found the expresion and DNA binding activity of transcription factorCUTL1was significantly in gastric drug resistant cells. And the exprssion andactivity of CUTL1was inversely associated with the resistance both in gastriccancer cells and tissues. Overexprssion of CUTL1might increase the sensitivityof cancer cells to chemotherapeutic agents, and reverse the drug resistantphenotype. However, knockdown of CUTL1could increase the drug resistanceof cell. Moreover, CUTL1might mediate MDR through modulating theexpression of BMP6in gastric cancer.
引文
1. Biagi, J. J., Raphael, M. J., Mackillop, W. J., Kong, W., King, W. D., andBooth, C. M.(2011) Association Between Time to Initiation of AdjuvantChemotherapy and Survival in Colorectal Cancer: A Systematic Reviewand Meta-analysis. JAMA: The Journal of the American MedicalAssociation305,2335-2342
    2. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., and Parkin, D.M.(2010) Estimates of worldwide burden of cancer in2008:GLOBOCAN2008. Int J Cancer
    3. Paoletti, X., Oba, K., Burzykowski, T., Michiels, S., Ohashi, Y., Pignon,J. P., Rougier, P., Sakamoto, J., Sargent, D., Sasako, M., Van Cutsem, E.,and Buyse, M.(2010) Benefit of adjuvant chemotherapy for resectablegastric cancer: a meta-analysis. JAMA303,1729-1737
    4. Jemal, A., Thomas, A., Murray, T., and Thun, M.(2002) Cancer statistics,2002. CA Cancer J Clin52,23-47
    5. Arkenau, H. T.(2009) Gastric cancer in the era of molecularly targetedagents: current drug development strategies. J Cancer Res Clin Oncol135,855-866
    6. Brenner, H., Rothenbacher, D., and Arndt, V.(2009) Epidemiology ofstomach cancer. Methods Mol Biol472,467-477
    7. Anderson, W. F., Camargo, M. C., Fraumeni, J. F., Jr., Correa, P.,Rosenberg, P. S., and Rabkin, C. S.(2010) Age-specific trends inincidence of noncardia gastric cancer in US adults. JAMA303,1723-1728
    8. Woll, E., Devries, A., Eisterer, W., Hejna, M., Keil, F., Stein, H., Zacherl,J., and Greil, R.(2008) Chemotherapy in gastric cancer. Anticancer Res28,1213-1219
    9. Wong, R., and Cunningham, D.(2009) Optimising treatment regimensfor the management of advanced gastric cancer. Ann Oncol20,605-608
    10. Marin, J. J., Romero, M. R., Blazquez, A. G., Herraez, E., Keck, E., andBriz, O.(2009) Importance and limitations of chemotherapy among theavailable treatments for gastrointestinal tumours. Anticancer Agents MedChem9,162-184
    11. Xia, Z., Zhang, L., Chen, Q., Royal, C., Yu, Z., Liu, Z., and Adam, B. L.(2009) Stable reversal of multidrug resistance in colon cancer cells byRNA interference targeting the MDR1gene. Mol Med Report2,579-584
    12. Mitani, Y., Oue, N., Matsumura, S., Yoshida, K., Noguchi, T., Ito, M.,Tanaka, S., Kuniyasu, H., Kamata, N., and Yasui, W.(2007) Reg IV is aserum biomarker for gastric cancer patients and predicts response to5-fluorouracil-based chemotherapy. Oncogene26,4383-4393
    13. Koizumi, W., Okayasu, I., Hyodo, I., Sakamoto, J., and Kojima, H.(2008)Prediction of the effect of capecitabine in gastric cancer byimmunohistochemical staining of thymidine phosphorylase anddihydropyrimidine dehydrogenase. Anticancer Drugs19,819-824
    14. Tabe, Y., Konopleva, M., Contractor, R., Munsell, M., Schober, W. D.,Jin, L., Tsutsumi-Ishii, Y., Nagaoka, I., Igari, J., and Andreeff, M.(2006)Up-regulation of MDR1and induction of doxorubicin resistance byhistone deacetylase inhibitor depsipeptide (FK228) and ATRA in acutepromyelocytic leukemia cells. Blood107,1546-1554
    15. Varadhachary, G., and Ajani, J. A.(2005) Preoperative and adjuvanttherapies for upper gastrointestinal cancers. Expert Rev Anticancer Ther5,719-725
    16. Ajani, J. A.(2006) Chemotherapy for advanced gastric orgastroesophageal cancer: defining the contributions of docetaxel. ExpertOpin Pharmacother7,1627-1631
    17. Wallner, J., Depisch, D., Gsur, A., Gotzl, M., Haider, K., and Pirker, R.(1993) MDR1gene expression and its clinical relevance in primarygastric carcinomas. Cancer71,667-671
    18. Hong, L., Wang, J., Zhao, Y., Han, Z., Zhou, X., Guo, W., Zhang, X., Jin,H., Wu, K., Ding, J., and Fan, D.(2007) DARPP-32mediates multidrugresistance of gastric cancer through regulation of P-gp and ZNRD1.Cancer Invest25,699-705
    19. Han, Z., Hong, L., Han, Y., Wu, K., Han, S., Shen, H., Li, C., Yao, L.,Qiao, T., and Fan, D.(2007) Phospho Akt mediates multidrug resistanceof gastric cancer cells through regulation of P-gp, Bcl-2and Bax. J ExpClin Cancer Res26,261-268
    20. Gurel, S., Yerci, O., Filiz, G., Dolar, E., Yilmazlar, T., Nak, S. G., Gulten,M., Zorluoglu, A., and Memik, F.(1999) High expression of multidrugresistance-1(MDR-1) and its relationship with multiple prognosticfactors in gastric carcinomas in patients in Turkey. J Int Med Res27,79-84
    21. Choi, J. H., Lim, H. Y., Joo, H. J., Kim, H. S., Yi, J. W., Kim, H. C., Cho,Y. K., Kim, M. W., and Lee, K. B.(2002) Expression of multidrugresistance-associated protein1,P-glycoprotein, and thymidylate synthasein gastric cancer patients treated with5-fluorouracil anddoxorubicin-based adjuvant chemotherapy after curative resection. Br JCancer86,1578-1585
    22. Kellner, U., Hutchinson, L., Seidel, A., Lage, H., Danks, M. K., Dietel,M., and Kaufmann, S. H.(1997) Decreased drug accumulation in amitoxantrone-resistant gastric carcinoma cell line in the absence ofP-glycoprotein. Int J Cancer71,817-824
    23. Ross, D. D., Yang, W., Abruzzo, L. V., Dalton, W. S., Schneider, E., Lage,H., Dietel, M., Greenberger, L., Cole, S. P., and Doyle, L. A.(1999)Atypical multidrug resistance: breast cancer resistance protein messengerRNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst91,429-433
    24. Wang, J., Zhang, J., Zhang, L., Zhao, L., Fan, S., Yang, Z., Gao, F., Kong,Y., Xiao, G. G., and Wang, Q.(2011) Expression of P-gp, MRP, LRP,GST-pi and TopoIIalpha and intrinsic resistance in human lung cancercell lines. Oncol Rep26,1081-1089
    25. Shi, H., Lu, D., Shu, Y., Shi, W., Lu, S., and Wang, K.(2008) Expressionof multidrug resistance-related proteins p-glycoprotein,glutathione-s-transferases, topoisomerase-II and lung resistance proteinin primary gastric cardiac adenocarcinoma. Hepatogastroenterology55,1530-1536
    26. Yeh, K. H., Chen, C. L., Shun, C. T., Lin, J. T., Lee, W. J., Lee, P. H.,Chen, Y. C., and Cheng, A. L.(1998) Relatively low expression ofmultidrug resistance-1(MDR-1) and its possible clinical implication ingastric cancers. J Clin Gastroenterol26,274-278
    27. Yamauchi, M., Kumazawa, H., Satta, T., Sugawara, I., Isobe, K., Kodera,Y., Ito, K., Watanabe, T., and Takagi, H.(1992) Prediction ofdoxorubicin resistance in gastrointestinal cancer by P-glycoproteinstaining. Eur J Cancer28A,1422-1427
    28. Zhang, Y., Fujita, N., and Tsuruo, T.(1999) p21Waf1/Cip1acts insynergy with bcl-2to confer multidrug resistance in acamptothecin-selected human lung-cancer cell line. Int J Cancer83,790-797
    29. Chen, M., Huang, S. L., Zhang, X. Q., Zhang, B., Zhu, H., Yang, V. W.,and Zou, X. P.(2012) Reversal effects of pantoprazole on multidrugresistance in human gastric adenocarcinoma cells by down-regulating theV-ATPases/mTOR/HIF-1alpha/P-gp and MRP1signaling pathway invitro and in vivo. J Cell Biochem
    30. Lacueva, J., Perez-Ramos, M., Soto, J. L., Oliver, I., Andrada, E.,Medrano, J., Perez-Vazquez, T., Arroyo, A., Carrato, A., Ferragut, J. A.,and Calpena, R.(2005) Multidrug resistance-associated protein (MRP1)gene is strongly expressed in gastric carcinomas. Analysis byimmunohistochemistry and real-time quantitative RT-PCR.Histopathology46,389-395
    31. Daood, M., Tsai, C., Ahdab-Barmada, M., and Watchko, J. F.(2008)ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2)expression in the developing human CNS. Neuropediatrics39,211-218
    32. Fan, K., Fan, D., Cheng, L. F., and Li, C.(2000) Expression of multidrugresistance-related markers in gastric cancer. Anticancer Res20,4809-4814
    33. Satta, T., Isobe, K., Yamauchi, M., Nakashima, I., and Takagi, H.(1992)Expression of MDR1and glutathione S transferase-pi genes andchemosensitivities in human gastrointestinal cancer. Cancer69,941-946
    34. Lannutti, F., Marrone, A., and Re, N.(2012) Binding of GSH conjugatesto pi-GST: a cross-docking approach. J Mol Graph Model32,9-18
    35. Britten, R. A., Green, J. A., and Warenius, H. M.(1992) Cellularglutathione (GSH) and glutathione S-transferase (GST) activity inhuman ovarian tumor biopsies following exposure to alkylating agents.Int J Radiat Oncol Biol Phys24,527-531
    36. Monden, N., Abe, S., Sutoh, I., Hishikawa, Y., Kinugasa, S., andNagasue, N.(1997) Prognostic significance of the expressions ofmetallothionein, glutathione-S-transferase-pi, and P-glycoprotein incuratively resected gastric cancer. Oncology54,391-399
    37. Kim, W. J., Kakehi, Y., Kinoshita, H., Arao, S., Fukumoto, M., andYoshida, O.(1996) Expression patterns of multidrug-resistance (MDR1),multidrug resistance-associated protein(MRP),glutathione-S-transferase-pi (GST-pi) and DNA topoisomerase II(Topo II) genes in renal cell carcinomas and normal kidney. J Urol156,506-511
    38. Okuyama, T., Maehara, Y., Endo, K., Baba, H., Adachi, Y., Kuwano, M.,and Sugimachi, K.(1994) Expression of glutathione S-transferase-pi andsensitivity of human gastric cancer cells to cisplatin. Cancer74,1230-1236
    39. Filomeni, G., Aquilano, K., Rotilio, G., and Ciriolo, M. R.(2005)Glutathione-related systems and modulation of extracellularsignal-regulated kinases are involved in the resistance of AGSadenocarcinoma gastric cells to diallyl disulfide-induced apoptosis.Cancer Res65,11735-11742
    40. Hoppenkamps, R., Thies, E., Younes, M., and Siegers, C. P.(1984)Glutathione and GSH-dependent enzymes in the human gastric mucosa.Klin Wochenschr62,183-186
    41. Peters, W. H., Wormskamp, N. G., and Thies, E.(1990) Expression ofglutathione S-transferases in normal gastric mucosa and in gastric tumors.Carcinogenesis11,1593-1596
    42. Hida, T., Kuwabara, M., Ariyoshi, Y., Takahashi, T., Sugiura, T., Hosoda,K., Niitsu, Y., and Ueda, R.(1994) Serum glutathione S-transferase-pilevel as a tumor marker for non-small cell lung cancer. Potentialpredictive value in chemotherapeutic response. Cancer73,1377-1382
    43. Niitsu, Y., Takahashi, Y., Saito, T., Hirata, Y., Arisato, N., Maruyama, H.,Kohgo, Y., and Listowsky, I.(1989) Serum glutathione-S-transferase-pias a tumor marker for gastrointestinal malignancies. Cancer63,317-323
    44. Kang, S. H., Bang, Y. J., Im, Y. H., Yang, H. K., Lee, D. A., Lee, H. Y.,Lee, H. S., Kim, N. K., and Kim, S. J.(1999) Transcriptional repressionof the transforming growth factor-beta type I receptor gene by DNAmethylation results in the development of TGF-beta resistance in humangastric cancer. Oncogene18,7280-7286
    45. Bravaccini, S., Rengucci, C., Medri, L., Zoli, W., Silvestrini, R., andAmadori, D.(2012) Detection of HER2and Topo2in breast cancers:comparison between MLPA and FISH approaches. J Clin Pathol65,183-185
    46. Nagai, S., Yamauchi, M., Andoh, T., Nishizawa, M., Satta, T., Kodera, Y.,Kondou, K., Akiyama, S., Ito, K., and Takagi, H.(1995) Establishmentand characterization of human gastric and colonic xenograft linesresistant to CPT-11(a new derivative of camptothecin). J Surg Oncol59,116-124
    47. Son, Y. S., Suh, J. M., Ahn, S. H., Kim, J. C., Yi, J. Y., Hur, K. C., Hong,W. S., Muller, M. T., and Chung, I. K.(1998) Reduced activity oftopoisomerase II in an Adriamycin-resistant humanstomach-adenocarcinoma cell line. Cancer Chemother Pharmacol41,353-360
    48. Zhang, D., and Fan, D.(2010) New insights into the mechanisms ofgastric cancer multidrug resistance and future perspectives. Future Oncol6,527-537
    49. Matsuhashi, N., Saio, M., Matsuo, A., Sugiyama, Y., and Saji, S.(2005)The evaluation of gastric cancer sensitivity to5-FU/CDDP in terms ofinduction of apoptosis: time-and p53expression-dependency ofanti-cancer drugs. Oncol Rep14,609-615
    50. Osaki, M., Tatebe, S., Goto, A., Hayashi, H., Oshimura, M., and Ito, H.(1997)5-Fluorouracil (5-FU) induced apoptosis in gastric cancer celllines: role of the p53gene. Apoptosis2,221-226
    51. Yeh, K. H., Shun, C. T., Chen, C. L., Lin, J. T., Lee, W. J., Lee, P. H.,Chen, Y. C., and Cheng, A. L.(1999) Overexpression of p53is notassociated with drug resistance of gastric cancers to5-fluorouracil-basedsystemic chemotherapy. Hepatogastroenterology46,610-615
    52. Ning, H., Li, T., Zhao, L., Li, J., Liu, J., Liu, Z., and Fan, D.(2006)TRF2promotes multidrug resistance in gastric cancer cells. Cancer BiolTher5,950-956
    53. Hu, H., Zhang, Y., Zou, M., Yang, S., and Liang, X. Q.(2010)Expression of TRF1, TRF2, TIN2, TERT, KU70, and BRCA1proteins isassociated with telomere shortening and may contribute to multistagecarcinogenesis of gastric cancer. J Cancer Res Clin Oncol136,1407-1414
    54. Wang, J. X., Li, Q., and Li, P. F.(2009) Apoptosis repressor with caspaserecruitment domain contributes to chemotherapy resistance by abolishingmitochondrial fission mediated by dynamin-related protein-1. CancerRes69,492-500
    55. Skvortsova, I., Skvortsov, S., Haidenberger, A., Devries, A.,Nevinny-Stickel, M., Saurer, M., Lukas, P., and Seppi, T.(2004) Effectsof paclitaxel and docetaxel on EGFR-expressing human carcinoma cellsunder normoxic versus hypoxic conditions in vitro. J Chemother16,372-380
    56. Liu, L., Ning, X., Sun, L., Zhang, H., Shi, Y., Guo, C., Han, S., Liu, J.,Sun, S., Han, Z., Wu, K., and Fan, D.(2008) Hypoxia-inducible factor-1alpha contributes to hypoxia-induced chemoresistance in gastric cancer.Cancer Sci99,121-128
    57. Liang, J., Bai, F., Luo, G., Wang, J., Liu, J., Ge, F., Pan, Y., Yao, L., Du,R., Li, X., Fan, R., Zhang, H., Guo, X., Wu, K., and Fan, D.(2007)Hypoxia induced overexpression of PrP(C) in gastric cancer cell lines.Cancer Biol Ther6,769-774
    58. Rohwer, N., Welzel, M., Daskalow, K., Pfander, D., Wiedenmann, B.,Detjen, K., and Cramer, T.(2008) Hypoxia-inducible factor1alphamediates anoikis resistance via suppression of alpha5integrin. CancerRes68,10113-10120
    59. Liu, L., Sun, L., Zhang, H., Li, Z., Ning, X., Shi, Y., Guo, C., Han, S.,Wu, K., and Fan, D.(2009) Hypoxia-mediated up-regulation ofMGr1-Ag/37LRP in gastric cancers occurs via hypoxia-inducible-factor1-dependent mechanism and contributes to drug resistance. Int J Cancer124,1707-1715
    60. Michl, P., and Downward, J.(2005) Mechanisms of disease: PI3K/AKTsignaling in gastrointestinal cancers. Z Gastroenterol43,1133-1139
    61. Oki, E., Baba, H., Tokunaga, E., Nakamura, T., Ueda, N., Futatsugi, M.,Mashino, K., Yamamoto, M., Ikebe, M., Kakeji, Y., and Maehara, Y.(2005) Akt phosphorylation associates with LOH of PTEN and leads tochemoresistance for gastric cancer. Int J Cancer117,376-380
    62. Yu, H. G., Ai, Y. W., Yu, L. L., Zhou, X. D., Liu, J., Li, J. H., Xu, X. M.,Liu, S., Chen, J., Liu, F., Qi, Y. L., Deng, Q., Cao, J., Liu, S. Q., Luo, H.S., and Yu, J. P.(2008) Phosphoinositide3-kinase/Akt pathway plays animportant role in chemoresistance of gastric cancer cells againstetoposide and doxorubicin induced cell death. Int J Cancer122,433-443
    63. Zhang, Y., Qu, X., Hu, X., Yang, X., Hou, K., Teng, Y., Zhang, J., Sada,K., and Liu, Y.(2009) Reversal of P-glycoprotein-mediated multi-drugresistance by the E3ubiquitin ligase Cbl-b in human gastricadenocarcinoma cells. J Pathol218,248-255
    64. Blower, P. E., Chung, J. H., Verducci, J. S., Lin, S., Park, J. K., Dai, Z.,Liu, C. G., Schmittgen, T. D., Reinhold, W. C., Croce, C. M., Weinstein,J. N., and Sadee, W.(2008) MicroRNAs modulate the chemosensitivityof tumor cells. Mol Cancer Ther7,1-9
    65. Yang, H., Kong, W., He, L., Zhao, J. J., O'Donnell, J. D., Wang, J.,Wenham, R. M., Coppola, D., Kruk, P. A., Nicosia, S. V., and Cheng, J.Q.(2008) MicroRNA expression profiling in human ovarian cancer:miR-214induces cell survival and cisplatin resistance by targeting PTEN.Cancer Res68,425-433
    66. Zheng, T., Wang, J., Chen, X., and Liu, L.(2010) Role of microRNA inanticancer drug resistance. Int J Cancer126,2-10
    67. Xia, L., Zhang, D., Du, R., Pan, Y., Zhao, L., Sun, S., Hong, L., Liu, J.,and Fan, D.(2008) miR-15b and miR-16modulate multidrug resistanceby targeting BCL2in human gastric cancer cells. Int J Cancer123,372-379
    68. Chen, C. C., Chen, L. T., Tsou, T. C., Pan, W. Y., Kuo, C. C., Liu, J. F.,Yeh, S. C., Tsai, F. Y., Hsieh, H. P., and Chang, J. Y.(2007) Combinedmodalities of resistance in an oxaliplatin-resistant human gastric cancercell line with enhanced sensitivity to5-fluorouracil. Br J Cancer97,334-344
    69. Vogelstein, B., and Kinzler, K. W.(2004) Cancer genes and the pathwaysthey control. Nat Med10,789-799
    70. Lowe, S. W., Cepero, E., and Evan, G.(2004) Intrinsic tumoursuppression. Nature432,307-315
    71. Uramoto, H., Izumi, H., Ise, T., Tada, M., Uchiumi, T., Kuwano, M.,Yasumoto, K., Funa, K., and Kohno, K.(2002) p73Interacts with c-Mycto regulate Y-box-binding protein-1expression. J Biol Chem277,31694-31702
    72. Citro, G., D'Agnano, I., Leonetti, C., Perini, R., Bucci, B., Zon, G.,Calabretta, B., and Zupi, G.(1998) c-myc antisenseoligodeoxynucleotides enhance the efficacy of cisplatin in melanomachemotherapy in vitro and in nude mice. Cancer Res58,283-289
    73. Bentires-Alj, M., Barbu, V., Fillet, M., Chariot, A., Relic, B., Jacobs, N.,Gielen, J., Merville, M. P., and Bours, V.(2003) NF-kappaBtranscription factor induces drug resistance through MDR1expression incancer cells. Oncogene22,90-97
    74. Mabuchi, S., Ohmichi, M., Nishio, Y., Hayasaka, T., Kimura, A., Ohta, T.,Saito, M., Kawagoe, J., Takahashi, K., Yada-Hashimoto, N., Sakata, M.,Motoyama, T., Kurachi, H., Tasaka, K., and Murata, Y.(2004) Inhibitionof NFkappaB increases the efficacy of cisplatin in in vitro and in vivoovarian cancer models. J Biol Chem279,23477-23485
    75. Hayakawa, J., Depatie, C., Ohmichi, M., and Mercola, D.(2003) Theactivation of c-Jun NH2-terminal kinase (JNK) by DNA-damagingagents serves to promote drug resistance via activating transcriptionfactor2(ATF2)-dependent enhanced DNA repair. J Biol Chem278,20582-20592
    76. Tanabe, M., Izumi, H., Ise, T., Higuchi, S., Yamori, T., Yasumoto, K., andKohno, K.(2003) Activating transcription factor4increases the cisplatinresistance of human cancer cell lines. Cancer Res63,8592-8595
    77. Zhu, H., Xia, L., Zhang, Y., Wang, H., Xu, W., Hu, H., Wang, J., Xin, J.,Gang, Y., Sha, S., Xu, B., Fan, D., Nie, Y., and Wu, K.(2012) ActivatingTranscription Factor4Confers a Multidrug Resistance Phenotype toGastric Cancer Cells through Transactivation of SIRT1Expression. PLoSONE7, e31431
    78. Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., and Kohn, K. W.(2004) Apoptosis defects and chemotherapy resistance: molecularinteraction maps and networks. Oncogene23,2934-2949
    79. Pinto, C., Di Fabio, F., Siena, S., Cascinu, S., Rojas Llimpe, F. L.,Ceccarelli, C., Mutri, V., Giannetta, L., Giaquinta, S., Funaioli, C.,Berardi, R., Longobardi, C., Piana, E., and Martoni, A. A.(2007) PhaseII study of cetuximab in combination with FOLFIRI in patients withuntreated advanced gastric or gastroesophageal junction adenocarcinoma(FOLCETUX study). Ann Oncol18,510-517
    80. Han, S. W., Oh, D. Y., Im, S. A., Park, S. R., Lee, K. W., Song, H. S., Lee,N. S., Lee, K. H., Choi, I. S., Lee, M. H., Kim, M. A., Kim, W. H., Bang,Y. J., and Kim, T. Y.(2009) Phase II study and biomarker analysis ofcetuximab combined with modified FOLFOX6in advanced gastriccancer. Br J Cancer100,298-304
    81. Rojo, F., Tabernero, J., Albanell, J., Van Cutsem, E., Ohtsu, A., Doi, T.,Koizumi, W., Shirao, K., Takiuchi, H., Ramon y Cajal, S., and Baselga, J.(2006) Pharmacodynamic studies of gefitinib in tumor biopsy specimensfrom patients with advanced gastric carcinoma. J Clin Oncol24,4309-4316
    82. Gong, S. J., Jin, C. J., Rha, S. Y., and Chung, H. C.(2004) Growthinhibitory effects of trastuzumab and chemotherapeutic drugs in gastriccancer cell lines. Cancer Lett214,215-224
    83. Matsui, Y., Inomata, M., Tojigamori, M., Sonoda, K., Shiraishi, N., andKitano, S.(2005) Suppression of tumor growth in human gastric cancerwith HER2overexpression by an anti-HER2antibody in a murine model.Int J Oncol27,681-685
    84. Kim, J. W., Kim, H. P., Im, S. A., Kang, S., Hur, H. S., Yoon, Y. K., Oh,D. Y., Kim, J. H., Lee, D. S., Kim, T. Y., and Bang, Y. J.(2008) Thegrowth inhibitory effect of lapatinib, a dual inhibitor of EGFR and HER2tyrosine kinase, in gastric cancer cell lines. Cancer Lett272,296-306
    85. Motwani, M., Rizzo, C., Sirotnak, F., She, Y., and Schwartz, G. K.(2003)Flavopiridol enhances the effect of docetaxel in vitro and in vivo inhuman gastric cancer cells. Mol Cancer Ther2,549-555
    86. Fujita, T., Doihara, H., Washio, K., Ino, H., Murakami, M., Naito, M.,and Shimizu, N.(2007) Antitumor effects and drug interactions of theproteasome inhibitor bortezomib (PS341) in gastric cancer cells.Anticancer Drugs18,677-686
    87. Shah, M. A., Ramanathan, R. K., Ilson, D. H., Levnor, A., D'Adamo, D.,O'Reilly, E., Tse, A., Trocola, R., Schwartz, L., Capanu, M., Schwartz, G.K., and Kelsen, D. P.(2006) Multicenter phase II study of irinotecan,cisplatin, and bevacizumab in patients with metastatic gastric orgastroesophageal junction adenocarcinoma. J Clin Oncol24,5201-5206
    88. Gravalos, C., Gomez-Martin, C., Rivera, F., Ales, I., Queralt, B.,Marquez, A., Jimenez, U., Alonso, V., Garcia-Carbonero, R., Sastre, J.,Colomer, R., Cortes-Funes, H., and Jimeno, A.(2011) Phase II study oftrastuzumab and cisplatin as first-line therapy in patients withHER2-positive advanced gastric or gastroesophageal junction cancer.Clin Transl Oncol13,179-184
    89. Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Staehler,M., Negrier, S., Chevreau, C., Desai, A. A., Rolland, F., Demkow, T.,Hutson, T. E., Gore, M., Anderson, S., Hofilena, G., Shan, M., Pena, C.,Lathia, C., and Bukowski, R. M.(2009) Sorafenib for treatment of renalcell carcinoma: Final efficacy and safety results of the phase IIItreatment approaches in renal cancer global evaluation trial. J Clin Oncol27,3312-3318
    90. Nepveu, A.(2001) Role of the multifunctional CDP/Cut/Cuxhomeodomain transcription factor in regulating differentiation, cellgrowth and development. Gene270,1-15
    91. Rong Zeng, W., Soucie, E., Sung Moon, N., Martin-Soudant, N., Berube,G., Leduy, L., and Nepveu, A.(2000) Exon/intron structure andalternative transcripts of the CUTL1gene. Gene241,75-85
    92. Maitra, U., Seo, J., Lozano, M. M., and Dudley, J. P.(2006)Differentiation-Induced Cleavage of Cutl1/CDP Generates a NovelDominant-Negative Isoform That Regulates Mammary Gene Expression.Molecular and Cellular Biology26,7466-7478
    93. Goulet, B., Watson, P., Poirier, M., Leduy, L., Berube, G., Meterissian, S.,Jolicoeur, P., and Nepveu, A.(2002) Characterization of a tissue-specificCDP/Cux isoform, p75, activated in breast tumor cells. Cancer Res62,6625-6633
    94. Goulet, B., Baruch, A., Moon, N. S., Poirier, M., Sansregret, L. L.,Erickson, A., Bogyo, M., and Nepveu, A.(2004) A cathepsin L isoformthat is devoid of a signal peptide localizes to the nucleus in S phase andprocesses the CDP/Cux transcription factor. Mol Cell14,207-219
    95. Goulet, B., Truscott, M., and Nepveu, A.(2006) A novel proteolyticallyprocessed CDP/Cux isoform of90kDa is generated by cathepsin L. BiolChem387,1285-1293
    96. Truscott, M., Denault, J. B., Goulet, B., Leduy, L., Salvesen, G. S., andNepveu, A.(2007) Carboxyl-terminal Proteolytic Processing of CUX1by a Caspase Enables Transcriptional Activation in Proliferating Cells.Journal of Biological Chemistry282,30216-30226
    97. van Wijnen, A. J., Wright, K. L., Lian, J. B., Stein, J. L., and Stein, G. S.(1989) Human H4histone gene transcription requires theproliferation-specific nuclear factor HiNF-D. Auxiliary roles for HiNF-C(Sp1-like) and HiNF-A (high mobility group-like). J Biol Chem264,15034-15042
    98. van Wijnen, A. J., van Gurp, M. F., de Ridder, M. C., Tufarelli, C., Last,T. J., Birnbaum, M., Vaughan, P. S., Giordano, A., Krek, W., Neufeld, E.J., Stein, J. L., and Stein, G. S.(1996) CDP/cut is the DNA-bindingsubunit of histone gene transcription factor HiNF-D: a mechanism forgene regulation at the G1/S phase cell cycle transition point independentof transcription factor E2F. Proc Natl Acad Sci U S A93,11516-11521
    99. Last, T. J., van Wijnen, A. J., de Ridder, M. C., Stein, G. S., and Stein, J.L.(1999) The homeodomain transcription factor CDP/cut interacts withthe cell cycle regulatory element of histone H4genes packaged intonucleosomes. Mol Biol Rep26,185-194
    100. Holthuis, J., Owen, T. A., van Wijnen, A. J., Wright, K. L.,Ramsey-Ewing, A., Kennedy, M. B., Carter, R., Cosenza, S. C., Soprano,K. J., Lian, J. B., and et al.(1990) Tumor cells exhibit deregulation ofthe cell cycle histone gene promoter factor HiNF-D. Science247,1454-1457
    101. Coqueret, O., Berube, G., and Nepveu, A.(1998) The mammalian Cuthomeodomain protein functions as a cell-cycle-dependent transcriptionalrepressor which downmodulates p21WAF1/CIP1/SDI1in S phase.EMBO J17,4680-4694
    102. Moon, N. S., Premdas, P., Truscott, M., Leduy, L., Berube, G., andNepveu, A.(2001) S phase-specific proteolytic cleavage is required toactivate stable DNA binding by the CDP/Cut homeodomain protein. MolCell Biol21,6332-6345
    103. Goulet, B., Sansregret, L., Leduy, L., Bogyo, M., Weber, E., Chauhan, S.S., and Nepveu, A.(2007) Increased expression and activity of nuclearcathepsin L in cancer cells suggests a novel mechanism of celltransformation. Mol Cancer Res5,899-907
    104. Moon, N. S., Berube, G., and Nepveu, A.(2000) CCAAT displacementactivity involves CUT repeats1and2, not the CUT homeodomain. JBiol Chem275,31325-31334
    105. Truscott, M.(2004) The N-terminal Region of the CCAAT DisplacementProtein (CDP)/Cux Transcription Factor Functions as an AutoinhibitoryDomain that Modulates DNA Binding. Journal of Biological Chemistry279,49787-49794
    106. Lievens, P. M., Donady, J. J., Tufarelli, C., and Neufeld, E. J.(1995)Repressor activity of CCAAT displacement protein in HL-60myeloidleukemia cells. J Biol Chem270,12745-12750
    107. Sansregret, L., Goulet, B., Harada, R., Wilson, B., Leduy, L., Bertoglio,J., and Nepveu, A.(2006) The p110Isoform of the CDP/CuxTranscription Factor Accelerates Entry into S Phase. Molecular andCellular Biology26,2441-2455
    108. Michl, P., Ramjaun, A. R., Pardo, O. E., Warne, P. H., Wagner, M.,Poulsom, R., D’Arrigo, C., Ryder, K., Menke, A., Gress, T., andDownward, J.(2005) CUTL1is a target of TGFβ signaling that enhancescancer cell motility and invasiveness. Cancer Cell7,521-532
    109. Truscott, M., Raynal, L., Premdas, P., Goulet, B., Leduy, L., Berube, G.,and Nepveu, A.(2003) CDP/Cux Stimulates Transcription from the DNAPolymerase Gene Promoter. Molecular and Cellular Biology23,3013-3028
    110. De Vos, J., Thykjaer, T., Tarte, K., Ensslen, M., Raynaud, P., Requirand,G., Pellet, F., Pantesco, V., Reme, T., Jourdan, M., Rossi, J. F., Orntoft, T.,and Klein, B.(2002) Comparison of gene expression profiling betweenmalignant and normal plasma cells with oligonucleotide arrays.Oncogene21,6848-6857
    111. Sansregret, L., and Nepveu, A.(2008) The multiple roles of CUX1:Insights from mouse models and cell-based assays. Gene412,84-94
    112. Coqueret, O., Martin, N., Berube, G., Rabbat, M., Litchfield, D. W., andNepveu, A.(1998) DNA binding by cut homeodomain proteins isdown-modulated by casein kinase II. J Biol Chem273,2561-2566
    113. Michl, P.(2006) CUTL1Is Phosphorylated by Protein Kinase A,Modulating Its Effects on Cell Proliferation and Motility. Journal ofBiological Chemistry281,15138-15144
    114. Santaguida, M., Ding, Q., Berube, G., Truscott, M., Whyte, P., andNepveu, A.(2001) Phosphorylation of the CCAAT displacement protein(CDP)/Cux transcription factor by cyclin A-Cdk1modulates its DNAbinding activity in G(2). J Biol Chem276,45780-45790
    115. Li, S., Aufiero, B., Schiltz, R. L., and Walsh, M. J.(2000) Regulation ofthe homeodomain CCAAT displacement/cut protein function by histoneacetyltransferases p300/CREB-binding protein (CBP)-associated factorand CBP. Proc Natl Acad Sci U S A97,7166-7171
    116. Santaguida, M., and Nepveu, A.(2005) Differential regulation ofCDP/Cux p110by cyclin A/Cdk2and cyclin A/Cdk1. J Biol Chem280,32712-32721
    117. Jing, H.(2004) A Novel Signaling Pathway Mediates the Inhibition ofCCL3/4Expression by Prostaglandin E2. Journal of BiologicalChemistry279,55176-55186
    118. Ueda, Y., Su, Y., and Richmond, A.(2007) CCAAT displacement proteinregulates nuclear factor-kappa beta-mediated chemokine transcription inmelanoma cells. Melanoma Research17,91-103
    119. Zhu, Q., and Dudley, J. P.(2002) CDP binding to multiple sites in themouse mammary tumor virus long terminal repeat suppresses basal andglucocorticoid-induced transcription. J Virol76,2168-2179
    120. Xie, R. L., Gupta, S., Miele, A., Shiffman, D., Stein, J. L., Stein, G. S.,and van Wijnen, A. J.(2003) The tumor suppressor interferon regulatoryfactor1interferes with SP1activation to repress the human CDK2promoter. J Biol Chem278,26589-26596
    121. Wu, F., and Lee, A. S.(2002) CDP and AP-2mediated repressionmechanism of the replication-dependent hamster histone H3.2promoter.J Cell Biochem84,699-707
    122. Zhu, Q., Gregg, K., Lozano, M., Liu, J., and Dudley, J. P.(2000) CDP isa repressor of mouse mammary tumor virus expression in the mammarygland. J Virol74,6348-6357
    123. Wang, Z., Goldstein, A., Zong, R. T., Lin, D., Neufeld, E. J.,Scheuermann, R. H., and Tucker, P. W.(1999) Cux/CDP homeoprotein isa component of NF-muNR and represses the immunoglobulin heavychain intronic enhancer by antagonizing the bright transcription activator.Mol Cell Biol19,284-295
    124. van Gurp, M. F., Pratap, J., Luong, M., Javed, A., Hoffmann, H.,Giordano, A., Stein, J. L., Neufeld, E. J., Lian, J. B., Stein, G. S., and vanWijnen, A. J.(1999) The CCAAT displacement protein/cuthomeodomain protein represses osteocalcin gene transcription and formscomplexes with the retinoblastoma protein-related protein p107andcyclin A. Cancer Res59,5980-5988
    125. Valarche, I., Tissier-Seta, J. P., Hirsch, M. R., Martinez, S., Goridis, C.,and Brunet, J. F.(1993) The mouse homeodomain protein Phox2regulates Ncam promoter activity in concert with Cux/CDP and is aputative determinant of neurotransmitter phenotype. Development119,881-896
    126. Stunkel, W., Huang, Z., Tan, S. H., O'Connor, M. J., and Bernard, H. U.(2000) Nuclear matrix attachment regions of human papillomavirus type16repress or activate the E6promoter, depending on the physical state ofthe viral DNA. J Virol74,2489-2501
    127. Snyder, S. R., Wang, J., Waring, J. F., and Ginder, G. D.(2001)Identification of CCAAT displacement protein (CDP/cut) as alocus-specific repressor of major histocompatibility complex geneexpression in human tumor cells. J Biol Chem276,5323-5330
    128. Pattison, S., Skalnik, D. G., and Roman, A.(1997) CCAAT displacementprotein, a regulator of differentiation-specific gene expression, binds anegative regulatory element within the5' end of the humanpapillomavirus type6long control region. J Virol71,2013-2022
    129. Liu, J., Barnett, A., Neufeld, E. J., and Dudley, J. P.(1999)Homeoproteins CDP and SATB1interact: potential for tissue-specificregulation. Mol Cell Biol19,4918-4926
    130. Lawson, N. D., Khanna-Gupta, A., and Berliner, N.(1998) Isolation andcharacterization of the cDNA for mouse neutrophil collagenase:demonstration of shared negative regulatory pathways for neutrophilsecondary granule protein gene expression. Blood91,2517-2524
    131. Nirodi, C., Hart, J., Dhawan, P., Moon, N. S., Nepveu, A., and Richmond,A.(2001) The role of CDP in the negative regulation of CXCL1geneexpression. J Biol Chem276,26122-26131
    132. Ledford, A. W., Brantley, J. G., Kemeny, G., Foreman, T. L., Quaggin, S.E., Igarashi, P., Oberhaus, S. M., Rodova, M., Calvet, J. P., and VandenHeuvel, G. B.(2002) Deregulated expression of the homeobox geneCux-1in transgenic mice results in downregulation of p27(kip1)expression during nephrogenesis, glomerular abnormalities, andmultiorgan hyperplasia. Dev Biol245,157-171
    133. Khanna-Gupta, A., Zibello, T., Sun, H., Lekstrom-Himes, J., and Berliner,N.(2001) C/EBP epsilon mediates myeloid differentiation and isregulated by the CCAAT displacement protein (CDP/cut). Proc NatlAcad Sci U S A98,8000-8005
    134. Hassan, M. Q., Tare, R. S., Lee, S. H., Mandeville, M., Morasso, M. I.,Javed, A., van Wijnen, A. J., Stein, J. L., Stein, G. S., and Lian, J. B.(2006) BMP2commitment to the osteogenic lineage involves activationof Runx2by DLX3and a homeodomain transcriptional network. J BiolChem281,40515-40526
    135. Ellis, T., Gambardella, L., Horcher, M., Tschanz, S., Capol, J., Bertram,P., Jochum, W., Barrandon, Y., and Busslinger, M.(2001) Thetranscriptional repressor CDP (Cutl1) is essential for epithelial celldifferentiation of the lung and the hair follicle. Genes Dev15,2307-2319
    136. Catt, D., Hawkins, S., Roman, A., Luo, W., and Skalnik, D. G.(1999)Overexpression of CCAAT displacement protein represses thepromiscuously active proximal gp91(phox) promoter. Blood94,3151-3160
    137. Boudreau, F., Rings, E. H., Swain, G. P., Sinclair, A. M., Suh, E. R.,Silberg, D. G., Scheuermann, R. H., and Traber, P. G.(2002) A novelcolonic repressor element regulates intestinal gene expression byinteracting with Cux/CDP. Mol Cell Biol22,5467-5478
    138. Banan, M., Rojas, I. C., Lee, W. H., King, H. L., Harriss, J. V.,Kobayashi, R., Webb, C. F., and Gottlieb, P. D.(1997) Interaction of thenuclear matrix-associated region (MAR)-binding proteins, SATB1andCDP/Cux, with a MAR element (L2a) in an upstream regulatory regionof the mouse CD8a gene. J Biol Chem272,18440-18452
    139. Ai, W., Toussaint, E., and Roman, A.(1999) CCAAT displacementprotein binds to and negatively regulates human papillomavirus type6E6, E7, and E1promoters. J Virol73,4220-4229
    140. Chattopadhyay, S., Whitehurst, C. E., and Chen, J.(1998) A nuclearmatrix attachment region upstream of the T cell receptor beta geneenhancer binds Cux/CDP and SATB1and modulates enhancer-dependentreporter gene expression but not endogenous gene expression. J BiolChem273,29838-29846
    141. Kaul-Ghanekar, R.(2004) SMAR1and Cux/CDP modulate chromatinand act as negative regulators of the TCR enhancer (E). Nucleic AcidsResearch32,4862-4875
    142. Goebel, P., Montalbano, A., Ayers, N., Kompfner, E., Dickinson, L.,Webb, C. F., and Feeney, A. J.(2002) High frequency of matrixattachment regions and cut-like protein x/CCAAT-displacement proteinand B cell regulator of IgH transcription binding sites flanking Ig Vregion genes. J Immunol169,2477-2487
    143. Nishio, H., and Walsh, M. J.(2004) CCAAT displacement protein/cuthomolog recruits G9a histone lysine methyltransferase to represstranscription. Proc Natl Acad Sci U S A101,11257-11262
    144. Khanna-Gupta, A., Zibello, T., Sun, H., Gaines, P., and Berliner, N.(2003) Chromatin immunoprecipitation (ChIP) studies indicate a role forCCAAT enhancer binding proteins alpha and epsilon (C/EBP alpha andC/EBP epsilon) and CDP/cut in myeloid maturation-induced lactoferringene expression. Blood101,3460-3468
    145. Huang, C. J., Chang, J. G., Wu, S. C., and Choo, K. B.(2005) Negativetranscriptional modulation and silencing of the bi-exonic Rnf35gene inthe preimplantation embryo. Binding of the CCAAT-displacementprotein/Cux to the untranslated exon1sequence. J Biol Chem280,30681-30688
    146. Harada, R., Vadnais, C., Sansregret, L., Leduy, L., Berube, G., Robert, F.,and Nepveu, A.(2008) Genome-wide location analysis and expressionstudies reveal a role for p110CUX1in the activation of DNA replicationgenes. Nucleic Acids Res36,189-202
    147. Ripka, S., Konig, A., Buchholz, M., Wagner, M., Sipos, B., Kloppel, G.,Downward, J., Gress, T., and Michl, P.(2007) WNT5A--target ofCUTL1and potent modulator of tumor cell migration and invasion inpancreatic cancer. Carcinogenesis28,1178-1187
    148. Ripka, S., Konig, A., Buchholz, M., Wagner, M., Sipos, B., Kloppel, G.,Downward, J., Gress, T., and Michl, P.(2007) WNT5A--target ofCUTL1and potent modulator of tumor cell migration and invasion inpancreatic cancer. Carcinogenesis28,1178-1187
    149. Aleksic, T., Bechtel, M., Krndija, D., von Wichert, G., Knobel, B., Giehl,K., Gress, T. M., and Michl, P.(2007) CUTL1promotes tumor cellmigration by decreasing proteasome-mediated Src degradation.Oncogene26,5939-5949
    150. Kim, E. C., Lau, J. S., Rawlings, S., and Lee, A. S.(1997) Positive andnegative regulation of the human thymidine kinase promoter mediatedby CCAAT binding transcription factors NF-Y/CBF, dbpA, and CDP/cut.Cell Growth Differ8,1329-1338
    151. Luo, W., and Skalnik, D. G.(1996) CCAAT displacement proteincompetes with multiple transcriptional activators for binding to four sitesin the proximal gp91phox promoter. J Biol Chem271,18203-18210
    152. Mailly, F., Berube, G., Harada, R., Mao, P. L., Phillips, S., and Nepveu, A.(1996) The human cut homeodomain protein can repress gene expressionby two distinct mechanisms: active repression and competition forbinding site occupancy. Mol Cell Biol16,5346-5357
    153. Li, S., Moy, L., Pittman, N., Shue, G., Aufiero, B., Neufeld, E. J.,LeLeiko, N. S., and Walsh, M. J.(1999) Transcriptional repression of thecystic fibrosis transmembrane conductance regulator gene, mediated byCCAAT displacement protein/cut homolog, is associated with histonedeacetylation. J Biol Chem274,7803-7815
    154. Wright, K. L., Dell'Orco, R. T., van Wijnen, A. J., Stein, J. L., and Stein,G. S.(1992) Multiple mechanisms regulate the proliferation-specifichistone gene transcription factor HiNF-D in normal human diploidfibroblasts. Biochemistry31,2812-2818
    155. van Wijnen, A. J., Cooper, C., Odgren, P., Aziz, F., De Luca, A.,Shakoori, R. A., Giordano, A., Quesenberry, P. J., Lian, J. B., Stein, G. S.,and Stein, J. L.(1997) Cell cycle-dependent modifications in activities ofpRb-related tumor suppressors and proliferation-specific CDP/cuthomeodomain factors in murine hematopoietic progenitor cells. J CellBiochem66,512-523
    156. Jan, Y. N., and Jan, L. Y.(1994) Genetic control of cell fate specificationin Drosophila peripheral nervous system. Annu Rev Genet28,373-393
    157. Chan, Y. M., and Jan, Y. N.(1999) Conservation of neurogenic genes andmechanisms. Curr Opin Neurobiol9,582-588
    158. Blochlinger, K., Bodmer, R., Jan, L. Y., and Jan, Y. N.(1990) Patterns ofexpression of cut, a protein required for external sensory organdevelopment in wild-type and cut mutant Drosophila embryos. GenesDev4,1322-1331
    159. Jarman, A. P., and Ahmed, I.(1998) The specificity of proneural genes indetermining Drosophila sense organ identity. Mech Dev76,117-125
    160. Merritt, D. J., Hawken, A., and Whitington, P. M.(1993) The role of thecut gene in the specification of central projections by sensory axons inDrosophila. Neuron10,741-752
    161. Bodmer, R., Barbel, S., Sheperd, S., Jack, J. W., Jan, L. Y., and Jan, Y. N.(1987) Transformation of sensory organs by mutations of the cut locus ofD. melanogaster. Cell51,293-307
    162. Blochlinger, K., Jan, L. Y., and Jan, Y. N.(1991) Transformation ofsensory organ identity by ectopic expression of Cut in Drosophila. GenesDev5,1124-1135
    163. Vervoort, M., Zink, D., Pujol, N., Victoir, K., Dumont, N., Ghysen, A.,and Dambly-Chaudiere, C.(1995) Genetic determinants of sense organidentity in Drosophila: regulatory interactions between cut and poxn.Development121,3111-3120
    164. Peifer, M., Sweeton, D., Casey, M., and Wieschaus, E.(1994) winglesssignal and Zeste-white3kinase trigger opposing changes in theintracellular distribution of Armadillo. Development120,369-380
    165. Micchelli, C. A., Rulifson, E. J., and Blair, S. S.(1997) The function andregulation of cut expression on the wing margin of Drosophila: Notch,Wingless and a dominant negative role for Delta and Serrate.Development124,1485-1495
    166. Neumann, C. J., and Cohen, S. M.(1996) A hierarchy of cross-regulationinvolving Notch, wingless, vestigial and cut organizes the dorsal/ventralaxis of the Drosophila wing. Development122,3477-3485
    167. de Celis, J. F., and Bray, S.(1997) Feed-back mechanisms affectingNotch activation at the dorsoventral boundary in the Drosophila wing.Development124,3241-3251
    168. de Celis, J. F., de Celis, J., Ligoxygakis, P., Preiss, A., Delidakis, C., andBray, S.(1996) Functional relationships between Notch, Su(H) and thebHLH genes of the E(spl) complex: the E(spl) genes mediate only asubset of Notch activities during imaginal development. Development122,2719-2728
    169. Jack, J., and DeLotto, Y.(1992) Effect of wing scalloping mutations oncut expression and sense organ differentiation in the Drosophila wingmargin. Genetics131,353-363
    170. Thomas, U., Jonsson, F., Speicher, S. A., and Knust, E.(1995)Phenotypic and molecular characterization of SerD, a dominant allele ofthe Drosophila gene Serrate. Genetics139,203-213
    171. Doherty, D., Feger, G., Younger-Shepherd, S., Jan, L. Y., and Jan, Y. N.(1996) Delta is a ventral to dorsal signal complementary to Serrate,another Notch ligand, in Drosophila wing formation. Genes Dev10,421-434
    172. Liu, S., and Jack, J.(1992) Regulatory interactions and role in cell typespecification of the Malpighian tubules by the cut, Kruppel, and caudalgenes of Drosophila. Dev Biol150,133-143
    173. Liu, S., McLeod, E., and Jack, J.(1991) Four distinct regulatory regionsof the cut locus and their effect on cell type specification in Drosophila.Genetics127,151-159
    174. Brantley, J. G., Sharma, M., Alcalay, N. I., and Heuvel, G. B.(2003)Cux-1transgenic mice develop glomerulosclerosis and interstitialfibrosis. Kidney Int63,1240-1248
    175. Ophascharoensuk, V., Fero, M. L., Hughes, J., Roberts, J. M., andShankland, S. J.(1998) The cyclin-dependent kinase inhibitor p27Kip1safeguards against inflammatory injury. Nat Med4,575-580
    176. Shankland, S. J., Pippin, J., Flanagan, M., Coats, S. R., Nangaku, M.,Gordon, K. L., Roberts, J. M., Couser, W. G., and Johnson, R. J.(1997)Mesangial cell proliferation mediated by PDGF and bFGF is determinedby levels of the cyclin kinase inhibitor p27Kip1. Kidney Int51,1088-1099
    177. Reeves, W., Caulfield, J. P., and Farquhar, M. G.(1978) Differentiationof epithelial foot processes and filtration slits: sequential appearance ofoccluding junctions, epithelial polyanion, and slit membranes indeveloping glomeruli. Lab Invest39,90-100
    178. Bouchard, M.(2004) Transcriptional control of kidney development.Differentiation72,295-306
    179. Dressler, G. R.(2006) The cellular basis of kidney development. AnnuRev Cell Dev Biol22,509-529
    180. Boyle, S., and de Caestecker, M.(2006) Role of transcriptional networksin coordinating early events during kidney development. Am J PhysiolRenal Physiol291, F1-8
    181. Pym, E. C., Southall, T. D., Mee, C. J., Brand, A. H., and Baines, R. A.(2006) The homeobox transcription factor Even-skipped regulatesacquisition of electrical properties in Drosophila neurons. Neural Dev1,3
    182. Scherer, S. W., Neufeld, E. J., Lievens, P. M., Orkin, S. H., Kim, J., andTsui, L. C.(1993) Regional localization of the CCAAT displacementprotein gene (CUTL1) to7q22by analysis of somatic cell hybrids.Genomics15,695-696
    183. Lemieux, N., Zhang, X. X., Dufort, D., and Nepveu, A.(1994)Assignment of the human homologue of the Drosophila Cut homeoboxgene (CUTL1) to band7q22by fluorescence in situ hybridization.Genomics24,191-193
    184. Ozisik, Y. Y., Meloni, A. M., Surti, U., and Sandberg, A. A.(1993)Deletion7q22in uterine leiomyoma. A cytogenetic review. CancerGenet Cytogenet71,1-6
    185. Fenaux, P., Preudhomme, C., Lai, J. L., Morel, P., Beuscart, R., andBauters, F.(1989) Cytogenetics and their prognostic value in de novoacute myeloid leukaemia: a report on283cases. Br J Haematol73,61-67
    186. Swansbury, G. J., Lawler, S. D., Alimena, G., Arthur, D., Berger, R., Vanden Berghe, H., Bloomfield, C. D., de la Chappelle, A., Dewald, G.,Garson, O. M., and et al.(1994) Long-term survival in acutemyelogenous leukemia: a second follow-up of the Fourth InternationalWorkshop on Chromosomes in Leukemia. Cancer Genet Cytogenet73,1-7
    187. Yunis, J. J., Lobell, M., Arnesen, M. A., Oken, M. M., Mayer, M. G.,Rydell, R. E., and Brunning, R. D.(1988) Refined chromosome studyhelps define prognostic subgroups in most patients with primarymyelodysplastic syndrome and acute myelogenous leukaemia. Br JHaematol68,189-194
    188. Heim, S.(1992) Cytogenetic findings in primary and secondary MDS.Leuk Res16,43-46
    189. Zeng, W. R., Scherer, S. W., Koutsilieris, M., Huizenga, J. J., Filteau, F.,Tsui, L. C., and Nepveu, A.(1997) Loss of heterozygosity and reducedexpression of the CUTL1gene in uterine leiomyomas. Oncogene14,2355-2365
    190. Zeng, W. R., Watson, P., Lin, J., Jothy, S., Lidereau, R., Park, M., andNepveu, A.(1999) Refined mapping of the region of loss ofheterozygosity on the long arm of chromosome7in human breast cancerdefines the location of a second tumor suppressor gene at7q22in theregion of the CUTL1gene. Oncogene18,2015-2021
    191. Webster, M. A., Martin-Soudant, N., Nepveu, A., Cardiff, R. D., andMuller, W. J.(1998) The induction of uterine leiomyomas and mammarytumors in transgenic mice expressing polyomavirus (PyV) large T (LT)antigen is associated with the ability of PyV LT antigen to form specificcomplexes with retinoblastoma and CUTL1family members. Oncogene16,1963-1972
    192. Michl, P., Ramjaun, A. R., Pardo, O. E., Warne, P. H., Wagner, M.,Poulsom, R., D'Arrigo, C., Ryder, K., Menke, A., Gress, T., andDownward, J.(2005) CUTL1is a target of TGF(beta) signaling thatenhances cancer cell motility and invasiveness. Cancer Cell7,521-532
    193. Cadieux, C., Fournier, S., Peterson, A. C., Bedard, C., Bedell, B. J., andNepveu, A.(2006) Transgenic mice expressing the p75CCAAT-displacement protein/Cut homeobox isoform develop amyeloproliferative disease-like myeloid leukemia. Cancer Res66,9492-9501
    194. Vanden Heuvel, G. B., Brantley, J. G., Alcalay, N. I., Sharma, M.,Kemeny, G., Warolin, J., Ledford, A. W., and Pinson, D. M.(2005)Hepatomegaly in transgenic mice expressing the homeobox gene Cux-1.Mol Carcinog43,18-30
    195. Seton-Rogers, S. E., Lu, Y., Hines, L. M., Koundinya, M., LaBaer, J.,Muthuswamy, S. K., and Brugge, J. S.(2004) Cooperation of the ErbB2receptor and transforming growth factor beta in induction of migrationand invasion in mammary epithelial cells. Proc Natl Acad Sci U S A101,1257-1262
    196. Grunert, S., Jechlinger, M., and Beug, H.(2003) Diverse cellular andmolecular mechanisms contribute to epithelial plasticity and metastasis.Nat Rev Mol Cell Biol4,657-665
    197. Ripka, S., Neesse, A., Riedel, J., Bug, E., Aigner, A., Poulsom, R., Fulda,S., Neoptolemos, J., Greenhalf, W., Barth, P., Gress, T. M., and Michl, P.(2010) CUX1: target of Akt signalling and mediator of resistance toapoptosis in pancreatic cancer. Gut59,1101-1110
    198. Malek, N. P.(2010) CUX1mediates tumour cell survival: implicationsfor future therapies? Gut59,1014-1015
    199. Nishida, T.(2009) Treatment of gastric cancer in Asia: the missing link.Lancet Oncol10,1027-1028
    200. Sammons, J., Ahmed, N., El-Sheemy, M., and Hassan, H. T.(2004) Therole of BMP-6, IL-6, and BMP-4in mesenchymal stem cell-dependentbone development: effects on osteoblastic differentiation induced byparathyroid hormone and vitamin D(3). Stem Cells Dev13,273-280
    201. Tamada, H., Kitazawa, R., Gohji, K., Kamidono, S., Maeda, S., andKitazawa, S.(1998) Molecular cloning and analysis of the5'-flankingregion of the human bone morphogenetic protein-6(BMP-6). BiochimBiophys Acta1395,247-251
    202. Dichmann, D. S., Miller, C. P., Jensen, J., Scott Heller, R., and Serup, P.(2003) Expression and misexpression of members of the FGF andTGFbeta families of growth factors in the developing mouse pancreas.Dev Dyn226,663-674

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700