利用高通量测序技术对东方鲀杂交优势的初步解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂交优势是指遗传基础不同的亲本杂交产生的后代,其各项性状继承综合了亲本的优势性状甚至产生优于亲本性状的广泛存在的生物学现象。利用杂交优势服务于农业生产已有几千年历史,对杂交优势的科学研究也持续了一个多世纪,但对其产生的原因一直存在争议。冀研一号作为重要经济鱼类红鳍东方鲀和菊黄东方鲀的杂交子一代,表现出生长速度快、存活率高等明显的杂交优势。本研究首先对亲本之一的菊黄东方鲀进行全基因组测序和组装,并进行了基因组水平的结构特征解析、基因预测和功能注释;其次对冀研一号及两个亲本进行了全转录组测序和比对研究,从基因表达模式、差异表达转录本功能注释和新转录剪接体注释三方面对杂交优势的机制进行了转录组水平的初步解析。
     本研究使用菊黄东方鲀基因组DNA构建了三个不同插入片段长度的Mate-Pair文库,文库使用SOLiD4测序,得到测序总长度76.0Gb,平均测序深度超过190。利用辅助拼接策略对基因组进行组装,共得到50,947条scaffolds, scaffold N50为305,741bp。菊黄东方鲀基因组平均GC含量为45.2%,重复序列总长占全基因组的6.87%。结构特征分析表明菊黄东方鲀基因组在GC含量和重复序列等多方面与红鳍东方鲀基因组相似,同样为小而紧密的基因组。通过基因组序列对比发现菊黄东方鲀基因组序列与红鳍东方鲀基因组序列存在明显的共线性关系。
     菊黄东方鲀基因组中共含有1,253个非编码RNA基因。其中包括659个tRNA基因,可编码50种反密码子。而miRNA基因的种类数和拷贝数均多于已知河鲀miRNA基因,表明miRNA的基因扩张在物种分化后仍在进行。菊黄东方鲀基因组中共有30,285个蛋白编码基因,蛋白平均长度为519.9个氨基酸,平均每个基因含7.2个内含子,75%的内含子长度小于543bp。菊黄东方鲀中有11,142个蛋白簇与红鳍东方鲀中蛋白序列相似,有8,819个蛋白簇与斑点绿河鲀中蛋白序列相似。利用全蛋白组序列进行系统进化分析,证明菊黄东方鲀与红鳍东方鲀分化时间较晚,为近缘物种。对菊黄东方鲀进行蛋白质功能注释,鉴定负责黑色、黄色和红色等色素颗粒的合成的相关基因共16个,微管运输相关基因116个,Brinker编码基因42个,基因拷贝数远超过红鳍东方鲀。另外,菊黄东方鲀中脂联素受体编码基因和去甲肾上腺素转运蛋白编码基因也具有较多的拷贝数。
     对冀研一号、红鳍东方鲀、菊黄东方鲀进行全转录组测序,测序总长度为12,189Mb,共覆盖44,305个转录本。冀研一号68.7%的差异转录本表达水平显著高于两亲本,19.8%的差异转录本表达水平与亲本中的一方相接近,4.6%的差异转录本表达水平与两亲本表达水平的平均值相近。表明在冀研一号中,超显性效应、显性效应和累加效应共同存在。另外共鉴定14,148个差异表达转录本,仅存在于冀研一号与两亲本之间的差异表达转录本为2,024个。对该部分转录本进行富集分析和功能注释,多数具有新陈代谢相关功能,表明冀研一号活跃的代谢活性可能与其较快的生长速度等杂交优势表征相关。对潜在的杂交优势相关基因进行KEGG通路富集,共得到80条通路,其中含有三个以上差异表达转录本的通路35条。细胞色素P450介导的外源性化学物代谢通路和碳水化合物、氨基酸、脂类代谢通路所含差异表达转录本多数为上调表达,其活跃的代谢活性可能与冀研一号的高抗逆性和快速生长速度有关。而对新转录剪接体的鉴定,表明冀研一号中存在大量未知的转录可变剪接形式。对新转录剪接体进行功能预测,其功能涵盖信号转导、新陈代谢和物质跨膜运输等多个生物过程,也提示杂交优势并非起源于单一机制,而是由多通路多层次差异的积累而形成。
     本研究对亲本菊黄东方鲀进行基因组草图的搭建和分析,完善了亲本的遗传背景信息,也为进行转录组水平的研究提供了数据支持;对冀研一号及亲本进行转录组对比分析,证明杂交优势为超显性、显性和累加多种效应共存的结果,并由多个基因、多条通路共同参与调控。
Heterosis refers to the improved biological qualities in the hybrid offspringof two distinct species, which has been used to increase yields and vigor inagricultural production for thousands of years. The mechanism study ofheterosis has been processding since1900’s, however there is stillcontroversy. Jiyan-1is the hybrid offspring of Takifugu rubripes and Takifuguflavidus, which exhibits obvious heterosis in the fields of growth performance,flavor and stress tolerance. In the present study, the genome of T. flavidus wassequenced and assembled, and the characteristic features were also analyzed.In addition, the transcriptomes of Jiyan-1and both parental species werecomparatively studied. The potential mechanisms of heterosis were discussedin the fields of gene action modes, function annotation of differentiallyexpressed transcripts and prediction of novel transcript isoforms.
     Firstly, three Mate-Pair libraries with different insert sizes were constructedfrom genomic DNA of T. flavidus, and sequenced using SOLiD4platform. Thecombined sequencing length was76.0Gb, and the average sequencing depthwas more than190-fold. The genome was assembled with assisted-assemblywhich generated50,947scaffolds with N50value of305.7kb. The average GCcontent was45.2%, and the proportion of repetive sequences was6.87%ofthe genome, which indicated the genome of T. flavidus was as compact as thegenome of T. rubripes. Sequence comparison of scaffolds showed obvioussynteny between the genomes of T. flavidus and T. rubripes.
     There were1,253non-coding RNA genes, including649tRNA genes whichwere capable of encoding50anticodons for all species of amino acids. Thenumbers of species and copies of miRNA genes were more than that in the genomes of T. rubripes and T. nigroviridus, indicating the gene expression wasunder more rigorous monitor and the gene expasion had been ongoing afterthe speciation of T. flavidus. There were30,285protein-encoding genes whoseprotein products had an average length of519.9aa. There were average7.2introns per gene, and75%of introns were with length less than543bp. Thelengths of introns in T. flavidus were greater than that of T. rubripes, while nosignificant difference was found for the number of protein-encoding genes andintrons, the sequences of proteins and the length distribution of proteinsbetween T. flavidus and T. rubripes. The phylogenetic analysis of wholeproteomes indicated T. flavidus and T. rubripes were closely allied species.
     There were16genes related to the biosynthesis of pigment granules and116genes evolved in the microtubule-dependent transport system. The copynumbers of these genes were much more that in the T. rubripes, indicating themicrotubule-dependent transport system might play a role in the color patternvariation during the growth. The T. flavidus genome contained42genesencoding Brinker which was an importance suppressor for Dpp signalingpathway. Besides, the more copy numbers of adiponectin receptor gene andnoradrenaline transporter gene suggested the activities of lipid mobilizationand metabolism were up-regulated in T. flavidus. The genomic level analysiscontributed to better understanding of the relationship between the genotypeand phenotype, and also provided valuable data resource for heterosis studyin transcriptomic level.
     Whole transcriptomes of Jiyan-1, T. rubripes and T. flavidus weresequenced by SOLiD4platform. The combined sequencing length was12.2Gb. A total of44,305transcripts were identified, among which there were14,148differentially expressed transcripts (DTs). In Jiyan-1,68.7%DTs wereclassified as “above high parent”,19.8%DTs were classified as “low parent” or“high parent”, and4.6%DTs were classified as “mid parent”. The coexistenceof overdominance, dominance, underdominance and additivity was observedin the gene action modes of Jiyan-1. The functional annotation of enriched DTs indicated the metabolism was more activated in Jiyan-1. In addition, therewere35KEGG pathways affiliated by more than3DTs. Among them, thexenobiotics and drug metabolism pathways mediated by cytochrome P450andthe metabolism pathway of carbohydrate, amino acid and triglyceridepotentially gave rise to the high tolerance of hostile environment and fastgrowth rate. The identified novel transcript isoforms in Jiyan-1were likelyinvolved in a variety of biological processes including signal transduction,metabolism, transmembrane transportation and so on, which also underlinedthat heterosis was not originated from one single mechanism, but by theaccumulation of disparities from multiple pathways.
引文
1.李群,李士斌中国驴,骡发展历史概述.中国农史,1986,4:008.
    2.文勇立,李昌平牦牛的泌乳性能及提高产奶量的途径.四川草原,2003:1-12.
    3.沈正伦,徐明,黄平,廖鹏飞,刘敏云南蚕业起源与良种生产.西南农业学报,2004,17:363-366.
    4. Crow JF90years ago: The beginning of hybrid maize. Genetics,1998,148:923-928.
    5. Duvick D Genetic rates of gain in hybrid maize yields during the past40years. Maydica,1977,22.
    6.孟庆平,吴凤林玉米立体栽培中当代杂交优势利用的初探.玉米科学,1997,5:43-45.
    7.王江民,李雁云南省生产用玉米主要种质分析与杂交优势利用.西南农业学报,2000,13:95-101.
    8.袁隆平杂交水稻的育种战略设想.杂交水稻,1987,1:3.
    9.何觉民,戴君惕,邹应斌,周美兰,张海清, et al.两系杂交小麦研究——I.生态雄性不育小麦的发现,培育及其利用价值.湖南农业科学,1992,5:3.
    10. Briggle L Heterosis in wheat—A review. Crop Science,1963,3:407-412.
    11.丁国祥,赵甘霖杂交高粱栽培技术要点.四川农业科技,2007,3:25.
    12. Schtrtz K,卢庆善中美高粱杂交优势与配合力的研究.辽宁农业科学,1994,4:3-7.
    13.钱大顺,朱烨,张香桂,袁占坤,端木鑫陆地棉F2代杂交优势的研究和利用.江苏农业科学,1990,6:10-11.
    14.汪若海,李秀兰杂交棉的新进展及其深化研究.中国农业科学,2000,33:111-112.
    15.胡文信,王红旗甜菜杂种优势及配合力的研究.中国糖料,1984,4:001.
    16.王金环,徐哲,谢联杂交向日葵高产栽培技术.吉林农业,2008,7:24-25.
    17.赵统敏,余文贵,赵丽萍,杨玛丽抗番茄黄化曲叶病毒病优质高产杂交番茄新品种——苏红9号.江苏农业学报,2009,25:259-259.
    18.黄婷婷耐贮藏番茄新品种艾丽莎.西北园艺:蔬菜,2007:52-52.
    19.张晓彦,黄鑫生蔬菜饲料兼用的萝卜新品种──德日杂交萝卜.中国蔬菜,1991,3:019.
    20.文雁成,栗根义对甘蓝与大白菜种间杂交合成的甘蓝型油菜的研究.中国油料作物学报,1999,21:8-11.
    21.汤钿,马俊义,杨华,陈敏,韩德峻大白菜防病丰产栽培技术.新疆农业科学,1992,4:1-2.
    22.吴红梅,冯振明高质量杂交甜椒种子生产技术.种子世界,1996,8:28.
    23.同延龄三个杂交洋葱品种.西北园艺:蔬菜,2005,4:37-37.
    24.赵甘霖,丁国祥,熊洪,曾庆曦我国高粱--苏丹草杂交种研究进展及应用前景.西南农业学报,2004,16:126-129.
    25.庞琢,潘春香,郑国华,韩凤叶,孙前宽, et al.杂交茄子新品种“呼茄5号”的选育.内蒙古农业大学学报:自然科学版,2007,28:244-246.
    26.范翠蓉日本早熟梨新品种——八里.河北果树,1993,2:001.
    27.张民,迟玉川早熟特大果型品种——青研桃1号.中国农村科技,2000,6:022.
    28.何斯美,夏玲芝春秋兼用蚕品种57A57B2446的育成及其四元杂交种的选配.蚕业科学,1990,16:15-20.
    29.滚双宝,刘孟洲不同三元杂交猪肥育效果及肉质比较.甘肃农业大学学报,2000,35:263-268.
    30.刘刚,刘典同杂交野猪种公猪的科学饲养管理.特种经济动植物,2008,10:7-8.
    31.胡月超,辛英霞,闫振富,张志全,杜占堂棉籽壳菌糠饲喂杜寒杂交羊育肥效果.中国草食动物,2009,3:43-44.
    32.陈家振林肯公羊与细杂羊杂交产肉性能观察.现代畜牧兽医,1987,4:005.
    33.刘朝清,朱忠仁林肯羊与小尾寒羊杂交一代生长发育测定.山东农业科学,1991,4:48-49.
    34.霍如胜,周纪曾,白钧,卢建雄林肯羊与陕北地方绵羊杂交后代产肉性能研究.西北民族大学学报(自然科学版),1992,1:012.
    35.佟雪红,董在杰,缪为民,袁新华,王建新, et al.建鲤与黄河鲤的杂交优势研究及主要生长性状的通径分析.大连水产学院学报,2007,22:159-163.
    36.潘光碧,唐刚胜,杜森英,李祖华,张峰, et al.鲤鲫移核鱼与散鳞镜鲤杂交优势及遗传性状的研究.水产学报,1989,13:230-238.
    37.马仲波,唐钢胜,张峰,杨冬梅鲤鱼三杂交[(荷包红鲤元江鲤)镜鲤]遗传改良与利用的研究.淡水渔业,2005,6:25-27.
    38.陈学年,郭玉娟彭泽鲫与兴国红鲤杂交优势的研究与利用.淡水渔业,2000,30:14-16.
    39.李传武,王冬武,曾国清,高峰国家水产新品种——芙蓉鲤鲫.当代水产,2010,2:61-62.
    40.王丙乾,贾钟贺,徐连伟,牟振波日本金鳟(Oncorhyncus mykiss)和道氏虹鳟及其杂交后代生产性能的比较研究.水产学杂志,2005,18:38-42.
    41. Hoffmann E,雷凡东台湾的骡鸭生产.上海畜牧兽医通讯,1985,5:028.
    42.徐祖荫,邵峰泉西方蜜蜂浆高产杂交优势利用研究:蜜浆高产杂优组合的选配.中国养蜂,2000,51:10-12.
    43.黄峰,常洪,常国斌,王丽洁,薛燕, et al.野生日本鸣鹑与家鹑杂交F1代的生长发育及繁殖习性研究[J].西北农业学报,2006,15:43-47.
    44.杨弘,吴婷婷,夏德全三种奥尼杂交罗非鱼养殖效果比较.科学养鱼,2005:18-18.
    45.刘进平,郑成木,庄南生遗传学教学中遗传学史及科学方法论的教育.生物学通报,2004,39:40-42.
    46. Paterniani MEAGZ Use of Heterosis in Maize Breeding: History, Methods and Perspectives–AReview. Crop Breeding and Applied Biotechnology,2001,1:159-178.
    47. Shull GH The composition of a field of maize. Journal of Heredity,1908,4:296-301.
    48. Shull GH What Is" Heterosis"? Genetics,1948,33:439.
    49. Shull GH, GOWEN J Beginnings of the heterosis concept. Heterosis,1952:14-48.
    50. CB D Degeneration, albinism and inbreeding. Science,1908,28:455.
    51. East EM Inbreeding in corn. Rep Conn Agric Exp Stn,1908,1907:419-428.
    52. Li S, Rédei G Direct evidence for models of heterosis provided by mutants of Arabidopsis blockedin the thiamine pathway. TAG Theoretical and Applied Genetics,1969,39:68-72.
    53. Xiao J, Li J, Yuan L, Tanksley SD Dominance is the major genetic basis of heterosis in rice asrevealed by QTL analysis using molecular markers. Genetics,1995,140:745-754.
    54. Romagnoli S, Maddaloni M, Livini C, Motto M Relationship between gene expression and hybridvigor in primary root tips of young maize (Zea mays L.) plantlets. TAG Theoretical and AppliedGenetics,1990,80:769-775.
    55. Hua J, Xing Y, Wu W, Xu C, Sun X, et al. Single-locus heterotic effects and dominance by dominanceinteractions can adequately explain the genetic basis of heterosis in an elite rice hybrid. PNAS,2003,100:2574-2579.
    56. Crow JF Alternative Hypotheses of Hybrid Vigor. Genetics,1948,33:477-487.
    57. Stuber CW, Lincoln StE, Wolff DW, Helentjaris T, Lander ES Identification of Genetic FactorsContributing to Heterosis in a Hybrid From Two Elite Maize Inbred Lines Using Molecular Markers.Genetics Society of America,1992:823-839.
    58. Cockerham CC, Zeng Z-B Design III with marker loci. Genetics,1996,143:1437-1456.
    59. Lariepe A, Mangin B, Jasson S, Combes V, Dumas F, et al. The Genetic Basis of Heterosis:Multiparental Quantitative Trait Loci Mapping Reveals Contrasted Levels of ApparentOverdominance Among Traits of Agronomical Interest in Maize (Zea mays L.). Genetics,2012,190:795-811.
    60. Syed N, Chen Z Molecular marker genotypes, heterozygosity and genetic interactions explainheterosis in Arabidopsis thaliana. Heredity,2005,94:295-304.
    61. Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, et al. Genome-wide transcript analysis of maizehybrids: allelic additive gene expression and yield heterosis. TAG Theoretical and Applied Genetics,2006,113:831-845.
    62. Stupar RM, Springer NM Cis-transcriptional variation in maize inbred lines B73and Mo17leads toadditive expression patterns in the F1hybrid. Genetics,2006,173:2199-2210.
    63. Birchler JA, Auger DL, Riddle NC In Search of the Molecular Basis of Heterosis. The Plant Cell,2003,15:2236-2239.
    64. Schlitt T, Palin K, Rung J, Dietmann S, Lappe M, et al. From Gene Networks to Gene Function.Genome research,2003,13:2568-2576.
    65. Brazhnik P, de la Fuente A, Mendes P Gene networks: how to put the function in genomics.TRENDS in Biotechnology,2002,20:467-472.
    66. Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, et al. All possible modes of geneaction are observed in a global comparison of gene expression in a maize F1hybrid and its inbredparents. PNAS,2006,103:6805-6810.
    67. Sandra A, Tanja G, Matthias S, Hanna W-W, Thomas A, et al. Towards systems biology of heterosis:a hypothesis about molecular network structure applied for the Arabidopsis metabolome.EURASIP Journal on Bioinformatics and Systems Biology,2008,2009.
    68. Jou WM, Haegeman G, Ysebaert M, Fiers W Nucleotide sequence of the gene coding for thebacteriophage MS2coat protein. Nature,1972,237:82-88.
    69. Sanger F, Coulson AR A rapid method for determining sequences in DNA by primed synthesis withDNA polymerase. Journal of molecular biology,1975,94:441-448.
    70. Maxam AM, Gilbert W A new method for sequencing DNA. Proceedings of the National Academyof Sciences,1977,74:560-564.
    71. Sanger F, Nicklen S, Coulson AR DNA sequencing with chain-terminating inhibitors. Proceedings ofthe National Academy of Sciences,1977,74:5463-5467.
    72. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, et al. Fluorescence detection in automated DNAsequence analysis. Nature,1986,321:674-679.
    73. Glenn TC Field guide to next‐generation DNA sequencers. Molecular Ecology Resources,2011,11:759-769.
    74. Jarvie T Next generation sequencing technologies. Drug Discovery Today: Technologies,2005,2:255-260.
    75. Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, et al. Analysis of one million base pairs ofNeanderthal DNA. Nature,2006,444:330-336.
    76. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. Genome sequencing inmicrofabricated high-density picolitre reactors. Nature,2005,437:376-380.
    77. Voelkerding KV, Dames SA, Durtschi JD Next-generation sequencing: from basic research todiagnostics. Clinical chemistry,2009,55:641-658.
    78. Mardis ER Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet,2008,9:387-402.
    79. Strausberg RL, Levy S, Rogers YH Emerging DNA sequencing technologies for human genomicmedicine. Drug discovery today,2008,13:569-577.
    80. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, et al. Performance comparison ofbenchtop high-throughput sequencing platforms. Nature biotechnology,2012,30:434-439.
    81. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, et al. An integrated semiconductor deviceenabling non-optical genome sequencing. Nature,2011,475:348-352.
    82. Jett JH, Keller RA, Martin JC, Marrone BL, Moyzis RK, et al. High-speed DNA sequencing: anapproach based upon fluorescence detection of single molecules. Journal of biomolecularstructure and dynamics,1989,7:301-309.
    83. Eid J, Fehr A, Gray J, Luong K, Lyle J, et al. Real-time DNA sequencing from single polymerasemolecules. Science,2009,323:133-138.
    84. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, et al. The potential and challenges ofnanopore sequencing. Nature biotechnology,2008,26:1146-1153.
    85. Dong Y, Xie M, Jiang Y, Xiao N, Du X, et al. Sequencing and automated whole-genome opticalmapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology,2012,31:135–
    141.
    86. Zhang Q, Chen W, Sun L, Zhao F, Huang B, et al. The genome of Prunus mume. NatureCommunications,2012,3:1318.
    87. Pagani I, Liolios K, Jansson J, Chen I-MA, Smirnova T, et al. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic acidsresearch,2012,40: D571-D579.
    88. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. The sequence of the human genome.Science Signaling,2001,291:1304.
    89. Wadman M James Watson's genome sequenced at high speed. Nature,2008,452:788.
    90. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, et al. DNA sequencing of a cytogeneticallynormal acute myeloid leukaemia genome. Nature,2008,456:66-72.
    91. Wang J, Wang W, Li R, Li Y, Tian G, et al. The diploid genome sequence of an Asian individual.Nature,2008,456:60-65.
    92. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. Accurate whole humangenome sequencing using reversible terminator chemistry. Nature,2008,456:53-59.
    93. SEQUENCING D A plan to capture human diversity in1000genomes. Science,2007,21:1842.
    94. Weigel D, Mott R The1001genomes project for Arabidopsis thaliana. Genome Biol,2009,10:107.
    95. Marques-Bonet T, Ryder OA, Eichler EE Sequencing primate genomes: what have we learned?Annual review of genomics and human genetics,2009,10:355-386.
    96. Cerdeira LT, Carneiro AR, Ramos RTJ, de Almeida SS, Schneider MPC, et al. Rapid hybrid denovo assembly of a microbial genome using only short reads: Corynebacteriumpseudotuberculosis I19as a case study. Journal of microbiological methods,2011,86:218-223.
    97. Li R, Fan W, Tian G, Zhu H, He L, et al. The sequence and de novo assembly of the giant pandagenome. Nature,2009,463:311-317.
    98. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. The genome of the domesticatedapple (Malus [times] domestica Borkh.). Nature Genetics,2010,42:833-839.
    99. Zhao H, Dahlo M, Isaksson A, Syvanen AC, Pettersson U The transcriptome of the adenovirusinfected cell. Virology,2012,424:115-128.
    100. Yang Z, Bruno DP, Martens CA, Porcella SF, Moss B Simultaneous high-resolution analysis ofvaccinia virus and host cell transcriptomes by deep RNA sequencing. PNAS,2010,107:11513-11518.
    101. Zhang L, Hou D, Chen X, Li D, Zhu L, et al. Exogenous plant MIR168a specifically targetsmammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell research,2011,22:107-126.
    102. Bansal P, Banga S, Banga SS Heterosis as Investigated in Terms of Polyploidy and Genetic DiversityUsing Designed Brassica juncea Amphiploid and Its Progenitor Diploid Species. PLoS ONE,2012,7:e29607.
    103. Di R, Chu MX, Li YL, Zhang L, Fang L, et al. Predictive potential of microsatellite markers onheterosis of fecundity in crossbred sheep. Mol Biol Rep,2012,39:2761-2766.
    104. Qu Z, Li L, Luo J, Wang P, Yu S, et al. QTL mapping of combining ability and heterosis of agronomictraits in rice backcross recombinant inbred lines and hybrid crosses. PLoS one,2012,7: e28463.
    105. Lai J, Li R, Xu X, Jin W, Xu M, et al. Genome-wide patterns of genetic variation among elite maizeinbred lines. Nature genetics,2010,42:1027-1030.
    106. Subbaiyan GK, Waters DL, Katiyar SK, Sadananda AR, Vaddadi S, et al. Genome‐wide DNApolymorphisms in elite indica rice inbreds discovered by whole‐genome sequencing. Plantbiotechnology journal,2012,10:623-634.
    107. Shen H, He H, Li J, Chen W, Wang X, et al. Genome-wide analysis of DNA methylation and geneexpression changes in two Arabidopsis ecotypes and their reciprocal hybrids. The Plant Cell Online,2012,24:875-892.
    108. Thiemann A, Fu J, Schrag TA, Melchinger AE, Frisch M, et al. Correlation between parentaltranscriptome and field data for the characterization of heterosis in Zea mays L. TAG Theoreticaland Applied Genetics,2010,120:401-413.
    109. Hedgecock D, Lin J-Z, DeCola S, Haudenschild CD, Meyer E, et al. Transcriptomic analysis ofgrowth heterosis in larval Pacific oysters (Crassostrea gigas). Proceedings of the National Academyof Sciences,2007,104:2313-2318.
    110. Zhu X, jiang A, Zhang Y, Guo W, Zhang T Relationships between differential gene expression andheterosis in cotton hybrids developed from the foundation parent CRI-12and its pedigree-derivedlines. Plant Science,2010,180:221-227.
    111. Nodine MD, Bartel DP Maternal and paternal genomes contribute equally to the transcriptome ofearly plant embryos. Nature,2012,482:94-97.
    112. Thiemann A, Meyer S, Scholten S Heterosis in plants: Manifestation in early seed developmentand prediction approaches to assist hybrid breeding. Chinese Science Bulletin,2009,54:2363-2375.
    113. Pandey A, Mann M Proteomics to study genes and genomes. Nature,2000,405:837-846.
    114. Fu Z, Jin X, Ding D, Li Y, Fu Z, et al. Proteomic analysis of heterosis during maize seed germination.Proteomics,2011,11:1462-1472.
    115. Wang W, Meng B, Ge X, Song S, Yang Y, et al. Proteomic profiling of rice embryos from a hybridrice cultivar and its parental lines. Proteomics,2008,8:4808-4821.
    116. Korn M, G rtner T, Erban A, Kopka J, Selbig J, et al. Predicting Arabidopsis freezing tolerance andheterosis in freezing tolerance from metabolite composition. Molecular plant,2010,3:224-235.
    117. Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, et al. Genomic and metabolicprediction of complex heterotic traits in hybrid maize. Nature genetics,2012,44:217-220.
    118.陈葵东方鲀属和暗纹东方鲀的学名问题.动物学杂志,2005,40:124-126.
    119.陈岳书“河豚”与“河鲀”辨析.科技术语研究,2006,7:51-51.
    120.梁旭方,李贵生,刘韬,吴华庆,王秋荣养殖河鲀毒素控制技术研究.现代渔业信息,2007,21:19-20.
    121.朱元鼎,许成玉中国鲀形目鱼类的地理分布和区系特征.动物学报,1965,3:008.
    122.赵强,赵清良,殷宁暗纹东方鲀精液冷藏对精子活力,受精率和孵化率的影响.南京农业大学学报,1999,22:57-60.
    123.王赛时论古代江东地区的鱼类资源与食用特色.东方美食:学术版,2004,4:35-47.
    124.赖春涛,刘兴隆,张运安,李丽琼暗纹东方纯养殖技术.海洋与渔业,2012:62-63.
    125.马爱军,陆丽君,陈超,王新安,孟雪松, et al.东方鲀属主要经济鱼种繁育养殖,育种和基因研究现状.海洋科学,2011,35:128-133.
    126. Akopian AN, Sivilotti L, Wood JN A tetrodotoxin-resistant voltage-gated sodium channelexpressed by sensory neurons. Nature,1996,379:257-262.
    127.徐英,库宝善河豚毒素与吗啡联合应用的作用研究.江苏临床医学杂志,2001,5:361-364.
    128.李群,彭衍磊国内外海洋降压药物研究进展. Chemical Intermediate,2006.
    129. Wakely JF, Fuhrman GJ, Fuhrman FA, Fischer HG, Mosher HS The occurrence of tetrodotoxin(tarichatoxin) in amphibia and the distribution of the toxin in the organs of newts (Taricha). Toxicon,1966,3:195-203.
    130. SIMIDU U, KITA-TSUKAMOTO K, YASUMOTO T, YOTSU M Taxonomy of four marine bacterialstrains that produce tetrodotoxin. International journal of systematic bacteriology,1990,40:331-336.
    131. Matsumura K Tetrodotoxin as a pheromone. Nature,1995,378:563-564.
    132. Kendo M Production of tetrodotoxin in puffer fish embryo. Environmen Toxicol Pharmacol,1998,6:217.
    133. Ohyabu N, Nishikawa T, Isobe M First asymmetric total synthesis of tetrodotoxin. Journal of theAmerican Chemical Society,2003,125:8798-8805.
    134. Hinman A, Du Bois J A stereoselective synthesis of (-)-tetrodotoxin. Journal of the AmericanChemical Society,2003,125:11510-11511.
    135. Brenner S, G.Elgar, Sandford R, Macrae A, Venkatesh B, et al. Characterization of the pufferfish(Fugu) genome as a compact model vertebrate genome. Nature,1993,366:265-268.
    136. Aparicio S, Chapman J, Stupka E, Putnam N, Chia J-m, et al. Whole-Genome Shotgun Assemblyand Analysis of the Genome of Fugu rubripes. Science,2002,297:1301-1310.
    137. Jaillon O, Aury J-M, Brunet Fdr, Petit J-L, Stange-Thomann N, et al. Genome duplication in theteleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature,2004,431:946-957.
    138. Venkatesh B, Gilligan P, Brenner S Fugu: a compact vertebrate reference genome. FEBS Letters,2000,476:3-7.
    139. Jabbaria K, Bernardi G Body temperature and evolutionary genomics of vertebrates: a lessonfrom the genomes of Takifugu rubripes and Tetraodon nigroviridis. Gene,2004,333:179-181.
    140. Van de Peer Y Tetraodon genome confirms Takifugu findings: most fish are ancient polyploids.Genome Biology,2004,5:250.
    141. Brunet FG, Crollius HR, Paris M, Aury JM, Gibert P, et al. Gene loss and evolutionary ratesfollowing whole-genome duplication in teleost fishes. Molecular biology and evolution,2006,23:1808-1816.
    142. Guo B, Zou M, Gan X, He S Genome size evolution in pufferfish: an insight from BAC clone-basedDiodon holocanthus genome sequencing. BMC Genomics,2010,11:396.
    143. Neafsey DE, Palumbi SR Genome Size Evolution in Pufferfish:A Comparative Analysis of Diodontidand Tetraodontid Pufferfish Genomes. Genome Research,2003,13:821-830.
    144. Lutfalla G, Crollius H, Stange-thomann N, Jaillon O, Mogensen K, et al. Comparative genomicanalysis reveals independent expansion of a lineage-specific gene family in vertebrates: the class IIcytokine receptors and their ligands in mammals and fish. BMC Genomics,2003,4:29.
    145. Dasilva C, Hadji H, Ozouf-Costaz C, Nicaud S, Jaillon O, et al. Remarkable compartmentalization oftransposable elements and pseudogenes in the heterochromatin of the Tetraodon nigroviridisgenome. Proceedings of the National Academy of Sciences,2002,99:13636-13641.
    146. Grützner F, Crollius HR, Lütjens G, Jaillon O, Weissenbach J, et al. Four-hundred million years ofconserved synteny of human Xp and Xq genes on three Tetraodon chromosomes. Genomeresearch,2002,12:1316-1322.
    147. Poulter R, Butler M A retrotransposon family from the pufferfish (fugu) Fugu rubripes. Gene,1998,215:241-249.
    148. Aparicio S, Morrison A, Gould A, Gilthorpe J, Chaudhuri C, et al. Detecting conserved regulatoryelements with the model genome of the Japanese puffer fish, Fugu rubripes. Proceedings of theNational Academy of Sciences,1995,92:1684-1688.
    149. Kimura C, Takeda N, Suzuki M, Oshimura M, Aizawa S, et al. Cis-acting elements conservedbetween mouse and pufferfish Otx2genes govern the expression in mesencephalic neural crestcells. Development,1997,124:3929-3941.
    150. Venkatesh B, Lu SQ, Dandona N, See SL, Brenner S, et al. Genetic basis of tetrodotoxin resistancein pufferfishes. Current biology,2005,15:2069-2072.
    151.周国平,杜宣,茆建强,朱菲莉河鲀鱼毒素及其去毒应用技术.水产养殖,2004,25:16-17.
    152.郑宗华,高铭标,冯良利,林金官,曾慧铃红鳍东方鲀人工育苗技术探讨.福建水产,1988,3:18-23.
    153.王宝明,安树翔提高红鳍东方鲀越冬成活率初探.河北渔业,1998,102:2-2.
    154.李文敏菊黄东方鲀的苗种培育与养殖.河北渔业,2002,121:17-17.
    155.严银龙,施永海,朱雅珠,张海明,谢永德, et al.菊黄东方鲀人工育苗试验.水产科技情报,2006,32:153-155.
    156. Zhang G, Shi Y, Zhu Y, Liu J, Zang W Effects of salinity on embryos and larvae of tawny pufferTakifugu flavidus. Aquaculture,2010,302:71-75.
    157.纪元中国东方鲀养殖情况调查,经济相关生物学特征比较及毒素含量检测:[博士学位论文].青岛:[中国海洋大学],2011:6-7.
    158.华元渝,李廷友,邹宏海养殖型暗纹东方鲀生长与发育特性.水产学报,2004,28:8-14.
    159. FAN W, LIU H, ZHAO W, ZHANG F Research of morphological characteristics and growthcomparison of Fugu flavidus, Fugu rubripes and the hybridization (Fugu flavidus Fugurubripes) in early growth stages. Journal of Fisheries of China,2011,7:017.
    160.张福崇,万玉美,方笑,赵海涛盐度对杂交东方鲀存活和摄食的影响.河北渔业,2012,12:2-6.
    161.张福崇,赵海涛,万玉美杂交河魨F1代苗种生产与养殖技术研究.河北渔业,2011,10:
    13.
    162.胡亚丽,华元渝杂交东方鲀的胚胎和仔鱼的发育.南京师大学报(自然科学版),1996,1:59-63.
    163.孙铁鸥,焦燕,曾晓起渤海莱州湾红鳍东方鲀(Takifugu rubripes)假睛东方鲀(Takifugupseudommus)天然杂交种一例.青岛海洋大学学报(自然科学版),1999,2:239-242.
    164. Stanke M, Diekhans M, Baertsch R, Haussler D Using native and syntenically mapped cDNAalignments to improve de novo gene finding. Bioinformatics,2008,24:637-644.
    165. Burge C, Karlin S Prediction of complete gene structures in human genomic DNA. Journal ofmolecular biology,1997,268:78-94.
    166. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, et al. Automated eukaryotic gene structureannotation using EVidenceModeler and the Program to Assemble Spliced Alignments. GenomeBiology,2008,9: R7.
    167. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. Versatile and open software forcomparing large genomes. Genome Biology,2004,5: R12.
    168. Howe K, Bateman A, Durbin R QuickTree: building huge Neighbour-Joining trees of proteinsequences. Bioinformatics,2002,18:1546-1547.
    169. Sobreira TJP, Durham AM, Gruber A TRAP: automated classification, quantification andannotation of tandemly repeated sequences. Bioinformatics,2006,22:361-362.
    170. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. BLAST+: architecture andapplications. BMC Bioinformatics,2009,10:421.
    171. Hertel J, De Jong D, Marz M, Rose D, Tafer H, et al. Non-coding RNA annotation of the genome ofTrichoplax adhaerens. Nucleic Acids Research,2009,37:1602-1615.
    172. Homer N, Merriman B, Nelson SF BFAST: an alignment tool for large scale genome resequencing.PLoS One,2009,4: e7767.
    173. Kent WJ BLAT—the BLAST-like alignment tool. Genome research,2002,12:656-664.
    174. Stothard P, Wishart DS Circular genome visualization and exploration using CGView.Bioinformatics,2005,21:537-539.
    175. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J DNAPlotter: circular and linear interactivegenome visualization. Bioinformatics,2009,25:119-120.
    176. M.Lowe T, R.Eddy S tRNAscan-SE: a program for improved detection of transfer RNA genes ingenomic sequence. Nucleic Acids Research,1997,25:955-964.
    177. Zdobnov EM, Apweiler R InterProScan–an integration platform for the signature-recognitionmethods in InterPro. Bioinformatics,2001,17:847-848.
    178. Conesa A, G tz S, García-Gómez JM, Terol J, Talón M, et al. Blast2GO: a universal tool forannotation, visualization and analysis in functional genomics research. Bioinformatics,2005,21:3674-3676.
    179. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. MEGA5: molecular evolutionarygenetics analysis using maximum likelihood, evolutionary distance, and maximum parsimonymethods. Molecular Biology and Evolution,2011,28:2731-2739.
    180. Xu Z, Hao B CVTree update: a newly designed phylogenetic study platform using compositionvectors and whole genomes. Nucleic Acids Research,2009,37: W174-W178.
    181. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, et al. Fast, scalable generation of high-qualityprotein multiple sequence alignments using Clustal Omega. Molecular systems biology,2011,7.
    182. Mar ais G, Kingsford C A fast, lock-free approach for efficient parallel counting of occurrences ofk-mers. Bioinformatics,2011,27:764-770.
    183. Langmead B, Trapnell C, Pop M, Salzberg SL Ultrafast and memory-efficient alignment of shortDNA sequences to the human genome. Genome Biology,2009,10.
    184. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. Transcript assembly andquantification by RNA-Seq reveals unannotated transcripts and isoform switching during celldifferentiation. Nature Biotechnology,2010,28:511-515.
    185. Trapnell C, Pachter L, Salzberg SL TopHat: discovering splice junctions with RNA-Seq.Bioinformatics,2009,25:1105-1111.
    186. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The sequence alignment/map format andSAMtools. Bioinformatics,2009,25:2078-2079.
    187. Quinlan AR, Hall IM BEDTools: a flexible suite of utilities for comparing genomic features.Bioinformatics,2010,26:841-842.
    188. Fu L, Niu B, Zhu Z, Wu S, Li W CD-HIT: accelerated for clustering the next-generation sequencingdata. Bioinformatics,2012,28:3150-3152.
    189. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. MEME SUITE: tools for motif discovery andsearching. Nucleic acids research,2009,37: W202-W208.
    190. de Hoon MJ, Imoto S, Nolan J, Miyano S Open source clustering software. Bioinformatics,2004,20:1453-1454.
    191. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, et al. The Bioperl toolkit: Perl modules forthe life sciences. Genome research,2002,12:1611-1618.
    192. Team RC R: A language and environment for statistical computing. R Foundation StatisticalComputing,2008.
    193. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. Bioconductor: open softwaredevelopment for computational biology and bioinformatics. Genome biology,2004,5: R80.
    194. Flicek P, Amode MR, Barrell D, Beal K, Brent S, et al. Ensembl2012. Nucleic Acids Research,2012,40: D84-D90.
    195. Jurka J, Kapitonov V, Pavlicek A, Klonowski P, Kohany O, et al. Repbase Update, a database ofeukaryotic repetitive elements. Cytogenetic and genome research,2005,110:462-467.196Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, et al Rfam Wikipedia, clans and the “decimal”release. Nucleic Acids Research,2011,39: D141-D145.
    197. Kozomara A, Griffiths-Jones S miRBase: integrating microRNA annotation and deep-sequencingdata. Nucleic Acids Research,2011,39: D152-D157.
    198. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. InterPro: the integrative proteinsignature database. Nucleic Acids Research,2009,37: D211-D215.
    199. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, et al. GenBank. Nucleic AcidsResearch,2000,28:15-18.
    200. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. Gene Ontology: tool for the unificationof biology. Nature Genetics,2000,25:25.
    201. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M KEGG for integration and interpretation oflarge-scale molecular data sets. Nucleic Acids Research,2012,40: D109-D114.
    202. Smedley D, Haider S, Ballester B, Holland R, London D, et al. BioMart–biological queries madeeasy. BMC Genomics,2009,10:22.
    203. Durinck S, Spellman PT, Birney E, Huber W Mapping identifiers for the integration of genomicdatasets with the R/Bioconductor package biomaRt. Nature protocols,2009,4:1184-1191.
    204. Pevsner J Bioinformatics and Functional Genomics.2003,1:563-564.
    205. Sanger F, Air G, Barrell B, Brown N, Coulson A, et al. Nucleotide sequence of bacteriophageφX174DN Nature,1977,265687-695.
    206. Margulies M, Egholm M, E.Altman W, Attiya S, S.Bader J, et al. Genome Sequencing in OpenMicrofabricated High Density Picoliter Reactors. Nature,2005,437:376-380.
    207. Collins F, Lander E, Rogers J, Waterston R, Conso I Finishing the euchromatic sequence of thehuman genome. Nature,2004,431:931-945.
    208. Zerbino DR, Birney E Velvet: algorithms for de novo short read assembly using de Bruijn graphs.Genome research,2008,18:821-829.
    209. Goldberg SM, Johnson J, Busam D, Feldblyum T, Ferriera S, et al. A Sanger/pyrosequencing hybridapproach for the generation of high-quality draft assemblies of marine microbial genomes.Proceedings of the National Academy of Sciences,2006,103:11240-11245.
    210. Chaisson MJ, Brinza D, Pevzner PA De novo fragment assembly with short mate-paired reads:Does the read length matter? Genome Research,2009,19:336-346.
    211. Whiteford N, Haslam N, Weber G, Prügel-Bennett A, Essex JW, et al. An analysis of the feasibilityof short read sequencing. Nucleic acids research,2005,33: e171-e171.
    212. Gnerre S, Lander ES, Lindblad-Toh K, Jaffe DB Assisted assembly: how to improve a de novogenome assembly by using related species. Genome Biol,2009,10: R88.
    213. Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M, et al. Draft Genome of the Pearl OysterPinctada fucata: A Platform for Understanding Bivalve Biology. DNA Research,2012,19:117-130.
    214. Sato S, Hirakawa H, Isobe S, Fukai E, AKIKOWatanabe, et al. Sequence Analysis of the Genome ofan Oil-Bearing Tree,Jatropha curcas L. DNA Research,2010,18:65-76.
    215. Kim J, Larkin DM, Cai Q, Zhang Y, Ge RL, et al. Reference-assisted chromosome assembly.Proceedings of the National Academy of Sciences,2013,100:1785-1790.
    216. Schatz MC, Delcher AL, Salzberg SL Assembly of large genomes using second-generationsequencing. Genome Research,2010,20:1165-1173.
    217. Zhang G, Fang X, Guo X, Li L, Luo R, et al. The oyster genome reveals stress adaptation andcomplexity of shell formation. Nature,2012,490:49-54.
    218. Consortium IHGS Initial sequencing and analysis of the human genome. Nature,2001,409:860-921.
    219. Bernardi G, Bernardi G Compositional constraints and genome evolution. Journal of MolecularEvolution,1986,24:1-11.
    220. Duret L, Mouchiroud D, Gautier C Statistical analysis of vertebrate sequences reveals that longgenes are scarce in GC-rich isochores. Journal of Molecular Evolution,1995,40:308-317.
    221. Sumner A, de la Torre J, Stuppia L The distribution of genes on chromosomes: a cytologicalapproach. Journal of molecular evolution,1993,37:117-122.
    222. A ssani B, Bernardi G CpG islands, genes and isochores in the genomes of vertebrates. Gene,1991,106:185-195.223Nec ulea, Lobry JR new method for assessing the effect of replication on DN basecomposition asymmetry. Molecular biology and evolution,2007,24:2169-2179.
    224. Crollius HR, Jaillon O, Dasilva C, Ozouf-Costaz C, Fizames C, et al. Characterization and RepeatAnalysis of the Compact Genome of the Freshwater Pufferfish Tetraodon nigroviridis. GenomeResearch,2000,10:939-949.
    225. Sugano T, Kajikawa M, Okada N Isolation and characterization of retrotransposition-competentLINEs from zebrafish. Gene,2006,365:74-82.
    226. Volff J-N, K rting C, Sweeney K, Schartl M The non-LTR retrotransposon Rex3from the fishXiphophorus is widespread among teleosts. Molecular biology and evolution,1999,16:1427-1438.
    227. Furano AV, Duvernell DD, Boissinot S L1(LINE-1) retrotransposon diversity differs dramaticallybetween mammals and fish. Trends in Genetics,2004,20:9-14.
    228. Volff J-N, Bouneau L, Ozouf-Costaz C, Fischer aCc Diversity of retrotransposable elements incompact pufferfish genomes. TRENDS in Genetics,2003,19:674-678.
    229. Matera AG, Terns RM, Terns MP Non-coding RNAs: lessons from the small nuclear and smallnucleolar RNAs. Nature reviews Molecular cell biology,2007,8:209-220.
    230. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, et al. Phylogenetic shadowing andcomputational identification of human microRNA genes. Cell,2005,120:21-24.
    231. Yamanoue Y, Miya M, Matsuura K, Miyazawa S, Tsukamoto N, et al. Explosive Speciation ofTakifugu: Another Use of Fugu as a Model System for Evolutionary Biology. Mol Biol Evol,2008,26:623-629.
    232. Kelsh RN Genetics and evolution of pigment patterns in fish. Pigment Cell Research,2004,17:326-336.
    233. Fuzeau-Braesch S Pigments and color changes. Annual Review of Entomology,1972,17:403-424.
    234. Murphy DB, Tilney LG The role of microtubules in the movement of pigment granules in teleostmelanophores. The Journal of Cell Biology,1974,61:757-779.
    235. Schliwa M, Euteneuer U A microtubule-independent component may be involved in granuletransport in pigment cells. Nature,1978,273:556-558.
    236. Braasch I, Schartl M, Volff JN Evolution of pigment synthesis pathways by gene and genomeduplication in fish. BMC Evolutionary Biology,2007,7:74.
    237. Schwank G, Restrepo S, Basler K Growth regulation by Dpp: an essential role for Brinker and anon-essential role for graded signaling levels. Development,2008,135:4003-4013.
    238. Hamaratoglu F, de Lachapelle AM, Pyrowolakis G, Bergmann S, Affolter M Dpp signaling activityrequires Pentagone to scale with tissue size in the growing Drosophila wing imaginal disc. PLoSbiology,2011,9: e1001182.
    239. Kin K, Kakoi S, Wada H A novel role for dpp in the shaping of bivalve shells revealed in aconserved molluscan developmental program. Developmental biology,2009,329:152-166.
    240. Iijima M, Takeuchi T, Sarashina I, Endo K Expression patterns of engrailed and dpp in thegastropod Lymnaea stagnalis. Development genes and evolution,2008,218:237-251.
    241. Campbell G, Tomlinson A Transducing the Dpp Morphogen Gradient in the Wing ofDrosophila: Regulation of Dpp Targets by brinker. Cell,1999,96:553-562.
    242. Tocher DR Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in FisheriesScience,2003,11:107-184.
    243. Kondo H, Morinaga K, Misaki R, Nakaya M, Watabe S Characterization of the pufferfish Takifugurubripes apolipoprotein multigene family. Gene,2005,346:257-266.
    244. Sheridan MA Alterations in lipid metabolism accompanying smoltification and seawateradaptation of salmonid fish. Aquaculture,1989,82:191-203.
    245. Ando S, Hatano M, Zama K A consumption of muscle lipid during spawning migration of chumsalmon Oncorhynchus keta. Bulletin of the Japanese Society of Scientific Fisheries,1985,51:1817-1824.
    246. Jonsson N, Jonsson B, Hansen L Changes in proximate composition and estimates of energeticcosts during upstream migration and spawning in Atlantic salmon Salmo salar. Journal of AnimalEcology,1997,66:425-436.
    247. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, et al. The fat-derived hormone adiponectinreverses insulin resistance associated with both lipoatrophy and obesity. Nature medicine,2001,7:941-946.
    248. Chandran M, Phillips SA, Ciaraldi T, Henry RR Adiponectin: more than just another fat cellhormone? Diabetes care,2003,26:2442-2450.
    249. Vara E, Tamarit-Rodriguez J Does cyclic guanosine monophosphate mediatenoradrenaline-induced inhibition of islet insulin secretion stimulated by glucose and palmitate?Biochemical Journal,1991,278:243.
    250. Wolf YI, Rogozin IB, Grishin NV, Koonin EV Genome trees and the tree of life. TRENDS in Genetics,2002,18:472-478.
    251. Pevsner J Bioinformatics and Functional Genomics.2003,1:355-356.
    252. Qi J, Luo H, Hao B CVTree: a phylogenetic tree reconstruction tool based on whole genomes.Nucleic Acids Research,2004,32: W45-W47.
    253. He G, Luo X, Tian F, Li K, Zhu Z, et al. Haplotype variation in structure and expression of a genecluster associated with a quantitative trait locus for improved yield in rice. Genome research,2006,16:618-626.
    254. Wei G, Tao Y, Liu G, Chen C, Luo R, et al. A transcriptomic analysis of superhybrid rice LYP9and itsparents. PNAS,2009,106:7695-7701.
    255. Vuylsteke M, Van Eeuwijk F, Van Hummelen P, Kuiper M, Zabeau M Genetic analysis of variationin gene expression in Arabidopsis thaliana. Genetics,2005,171:1267-1275.
    256. Trail J, Gregory K, Marples H, Kakonge J Heterosis, additive maternal and additive direct effects ofthe Red Poll and Boran breeds of cattle. Journal of animal science,1982,54:517.
    257. Sun Q, Wu L, Ni Z, Meng F, Wang Z, et al. Differential gene expression patterns in leaves betweenhybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. PlantScience,2004,166:651-657.
    258. Li L, Lu K, Chen Z, Mu T, Hu Z, et al. Dominance, overdominance and epistasis condition theheterosis in two heterotic rice hybrids. Genetics,2008,180:1725-1742.
    259. Zhu JY, Zhao N, Yang B Global Transcriptome Profiling of the Pine Shoot Beetle, Tomicusyunnanensis (Coleoptera: Scolytinae). PLoS One,2012,7: e32291.
    260. Bai X, Mamidala P, Rajarapu SP, Jones SC, Mittapalli O Transcriptomics of the Bed Bug (Cimexlectularius). PLoS One,2011,6.
    261. Meyer RC, Witucka‐Wall H, Becher M, Blacha A, Boudichevskaia A, et al. Heterosismanifestation during early Arabidopsis seedling development is characterized by intermediategene expression and enhanced metabolic activity in the hybrids. The Plant Journal,2012,71:669-683.
    262. Han J, Jiang Y, Li Z, Kravchenko V, Ulevitch R Activation of the transcription factor MEF2C by theMAP kinase p38in inflammation. Nature,1997,386:296-299.
    263. Nuhse TS, Peck SC, Hirt H, Boller T Microbial elicitors induce activation and dual phosphorylationof the Arabidopsis thaliana MAPK6. Science's STKE,2000,275:7521.264Liu X, Serova L, Kvetňansky R, Sabban EL Identifying the stress transcriptome in the adrenalmedulla following acute and repeated immobilization. Annals of the New York Academy ofSciences,2008,1148:1-28.
    265. Li X, Schuler MA, Berenbaum MR Molecular mechanisms of metabolic resistance to synthetic andnatural xenobiotics. Annu Rev Entomol,2007,52:231-253.
    266. Scott JG, Liu N, Wen Z Insect cytochromes P450: diversity, insecticide resistance and tolerance toplant toxins1. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology andEndocrinology,1998,121:147-155.
    267. Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, et al. Contribution of mutations inthe cytochrome P45014α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans.Microbiology,1999,145:2701-2713.
    268. Scott JG Cytochromes P450and insecticide resistance. Insect Biochemistry and Molecular Biology,1999,29:757-777.
    269. Lau WC, Gurbel PA, Watkins PB, Neer CJ, Hopp AS, et al. Contribution of hepatic cytochrome P4503A4metabolic activity to the phenomenon of clopidogrel resistance. Circulation,2004,109:166-171.
    270. Daborn P, Yen J, Bogwitz M, Le Goff G, Feil E, et al. A single P450allele associated with insecticideresistance in Drosophila. Science,2002,297:2253-2256.
    271. McDaniel RG, Sarkissian IV Mitochondrial heterosis in maize. Genetics,1968,59:465-475.
    272. McDaniel RG Relationships of seed weight, seedling vigor and mitochondrial metabolism in barley.Crop Science,1969,9:823-827.
    273. Malau‐Aduli A, Siebert B, Bottema C, Pitchford W Heterosis, sex and breed differences in thefatty acid composition of muscle phospholipids in beef cattle. Journal of Animal Physiology andAnimal Nutrition,2000,83:113-120.
    274. Ebato H, Seyfried T, Yu R Biochemical study of heterosis for brain myelin content in mice. Journalof neurochemistry,1983,40:440-446.
    275. Huang Y, Zhang L, Zhang J, Yuan D, Xu C, et al. Heterosis and polymorphisms of gene expression inan elite rice hybrid as revealed by a microarray analysis of9198unique ESTs. Plant molecularbiology,2006,62:579-591.
    276. Breitbart RE, Andreadis A, Nadal-Ginard B Alternative splicing: a ubiquitous mechanism for thegeneration of multiple protein isoforms from single genes. Annual review of biochemistry,1987,56:467-495.
    277. Kampa D, Cheng J, Kapranov P, Yamanaka M, Brubaker S, et al. Novel RNAs identified from anin-depth analysis of the transcriptome of human chromosomes21and22. Genome Research,2004,14:331-342.
    278. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, et al. Alternative isoform regulation inhuman tissue transcriptomes. Nature,2008,456:470-476.
    279. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, et al. Dynamic repertoire of a eukaryotictranscriptome surveyed at single-nucleotide resolution. Nature,2008,453:1239-1243.
    280. Wang J, Sarkar TR, Zhou M, Sharan S, Ritt DA, et al. CCAAT/enhancer binding protein delta(C/EBPδ, CEBPD)-mediated nuclear import of FANCD2by IPO4augments cellular response to DNAdamage. Proceedings of the National Academy of Sciences,2010,107:16131-16136.
    281. Wiedmann S, Fischer M, Koehler M, Neureuther K, Riegger G, et al. Genetic variants within theLPIN1gene, encoding lipin, are influencing phenotypes of the metabolic syndrome in humans.Diabetes,2008,57:209-217.
    282. Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD Cloning and characterization
    of two extracellular heparin-degrading endosulfatases in mice and humans. Journal of Biological
    Chemistry,2002,277:49175-49185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700