慢性鼻窦炎和鼻息肉中miRNAs的差异性表达及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分慢性鼻窦炎和鼻息肉中miRNAs的差异性表达研究
     背景:慢性鼻窦炎(chronic rhinosinusitis,CRS)和鼻息肉(nasal polyps,NP)是鼻腔鼻窦的慢性炎症性疾病,它的发病机制尚未完全阐明。MicroRNA(miRNA)已被证明广泛参与免疫反应。我们对慢性鼻窦炎伴和鼻息肉及正常人群的miRNA(miR)进行差异性表达的研究,筛选出部分miRNA,验证表达的差异性。
     方法:采用miRNA芯片(miRNA array)方法对慢性鼻窦炎,鼻息肉和正常鼻粘膜miRNA的表达谱进行了检测分析。根据文献报道,筛选出miR-125b和miR-26a,用实时定量(real-time)逆转录聚合酶链反应(reverse transcription polymerase chainreaction,RT-PCR)和原位杂交进一步验证芯片结果。
     结果:慢性鼻窦炎组中,有4种miRNAs表达上调,23种miRNAs表达下调;鼻息肉组织中,有7种miRNAs表达上调,69种miRNAs表达下调。实时定量RT-PCR显示miR-125b鼻息肉表达升高,且有统计学意义(P<0.05)。miR-125b在BEAS-2B细胞上存在表达,miR-26a在BEAS-2B细胞无表达。miR-125b在人体鼻息肉组织的上皮表达上调。
     结论:miRNA在慢性鼻窦炎和鼻息肉的表达存在差异。miR-125b在鼻息肉中表达明显上调,可能与鼻息肉的发生发展有关。研究其调控方式,可为进一步探索鼻息肉的发病机制提供线索。
     第二部分MiR-125b表达上调在鼻息肉发病机制中的意义
     背景:miR-125b已被证明在鼻息肉表达增强。用生物信息学方法预测出4EBP1的3’非编码区与miR-125b有互补系列。4EBP1通过对Ⅰ型IFN信号通路有调控作用。我们对4EBP1是否为miR-125b的直接靶点进行验证,并对miR-125b是否通过调控4EBP1在鼻息肉发病中发挥作用进行了探讨。
     方法:采用免疫组织化学方法检测4EBP1在慢性鼻窦炎及鼻息肉中的表达情况。将miR-125b的mimic及inhibitor转染BEAS-2B细胞,24小时后采用免疫印迹法(Western blot)检测4EBP1蛋白质表达水平;构建将4EBP1 3’UTR的部分序列嵌入pGL3质粒,以构建pGL3-4EBP1质粒;重组质粒与miR-125b的mimic共转染BEAS-2B细胞,检测荧光素酶吸光度;实时定量RT-PCR用于检测慢性鼻窦炎及鼻息肉中IFN-β和IL-5 mRNA的表达水平有无差异,对IFN-β和IL-5 mRNA表达水平进行相关性分析。
     结果:免疫组化发现与正常对照比较,4EBP1蛋白质水平在鼻息肉出现下调;体外实验发现,分别上调和下调miR-125b水平后,4EBP1蛋白水平相应出现下降和升高。荧光素酶报告基因检测发现共转染重组有miR-125b互补结合序列的质粒和miR-125b mimic后,荧光素强度明显降低,提示miR-125b能抑制4EBP1的表达。实时定量RT-PCR显示与对照组相比,IFN-β和IL-5 mRNA在鼻息肉表达增强,且有统计学差异(P<0.05)。慢性鼻窦炎及鼻息肉中IFN-β和IL-5 mRNA水平呈负相关(P<0.05)。
     结论:4EBP1是miR-125b的直接靶向调控分子。miR-125b通过介导4EBP1的表达,在鼻息肉的发病中发挥作用。4EBP1表达水平能影响IFN-β产生量,可能对鼻粘膜天然免疫发挥影响。IFN-β在鼻粘膜不仅与天然免疫有关,而且与鼻息肉中Th1/Th2失衡关系密切。
PartⅠIdentification of differentially expressed miRNAs in chronicrhinosinusitis with and without nasal polyps
     Background: Chronic rhinosinusitis (CRS) is one of the most frequently reportedchronic diseases. Although many causative factors have been implicated in pathogenesis ofCRS, the exact etiology of CRS is still far from completely revealed. MicroRNAs havebeen shown to be involved in various immunological events and several inflamatorydiseases. Therefore, our study was aimed to determine the miRNA expression profile inboth CRS with and without NPs and to identify differentially-expressed miRNAs.
     Methods: The miRNA array analysis was used to obtain miRNA expression profilingin both CRS with and without NPs. MicroRNA-125b and miR-26a were selected to validatethe array result by real-time PCR and in situ hybridization, which was based on literature.
     Results: Four miRNAs were up-regulated in CRS without NPs compared withcontrols, while 23miRNAs down-regulated. Seven miRNAs were increased in CRS withNPs compared with controls, while 69 miRNAs reduced. The enhanced level of miR-125bin CRS with NPs and reduced miR-26a were validated by real-time RT-PCR.MicroRNA-125b was expressed in BEAS-2B cells and sinasal epithelium, while theexpression of miR-26a was not detected in BEAS-2B cells.
     Conclusion: Differentially-expressed miRNAs were identified in CRS with andwithout NPs. The increased expression of miR-125b was associated with CRS with NPs. Afurther study of miR-125b may provide new clues to the pathogenesis of CRS with NPs.
     PartⅡThe impilcation of the enhanced expression of miR-125b innasal polyps
     Background: MicroRNA-125b was demonstrated to be increased in CRS with NP inour previous study. The binding site of miR-125b with 4EBP1 was demonstrated bybioinformatics prediction. 4EBP1 was showed to have influence in I-IFN signaling. Thisstudy was designed to investigate whether 4EBP1 was a direct target of miR-125b and toexplore the the role of miR-125b in pathogenesis of CRS with NPs by regulating 4EBP1.
     Methods: The expression of 4EBP1 was assessed by means withimmunohistochemistry. Western blot was used to examine 4EBP1 level of BEAS-2B cellsuntreated.or transfected with mimic 125b and inhibitor. 4EBP13' UTR and its mutant wereinserted into luciferase report plasmid to contruct chimeric vectors. A luciferase reporterassays was performed to investigate direct effect of miR-125b on 4EBP1. IL-5 and IFN-βmRNA level were detected by using real time RT-PCR.
     Results: The 4EBP1 expression in sinonasal mucosa was significantly inhibited inCRS patients with NPs. Experimentally induced suppression or forced expression ofmiR-125b causes reciprocal alterations in protein expression of 4EBP1 in BEAS-2B cells.Moreover, a significant negative effect on luciferase activity was observed in BEAS-2Bcells con-transfected with construct bearing an intact miR-125b binding sites and mimicwhen compared with control. IL-5 and IFN-βmRNA were showed to be enhanced in CRSpatients with NPs compared with controls. IL-5 level inversely correlated with IFN-βexpression in sinonasal mucosa.
     Conclusion: 4EBP1 was a direct target of miR-125b. 4EBP1 may play a role insinasal epithelial immunity through modulating production of IFN-β, which was associatedwtih Th1/Th2 unbalance in CRS with NPs. MicroRNA-125b may be involved inpathogenesis of CRS with NPs by targeting 4EBP1.
引文
1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281-97.
    2. Lai EC. miRNAs: whys and wherefores of miRNA-mediated regulation. Curr Biol 2005; 15:R458-60.
    3. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity 2007; 26:133-7.
    4. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development 2005; 132:4645-52.
    5. Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol 2008; 33:312-5.
    6. Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene 2006; 25:6176-87.
    7. Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am J Pathol 2007; 171:728-38.
    8. Calin GA, Croce CM. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 2006; 33:167-73.
    9. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci 2007; 32:189-97.
    10. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006; 25:2537-45.
    11. Asirvatham AJ, Gregorie CJ, Hu Z, Magner WJ, Tomasi TB. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol Immunol 2008; 45:1995-2006.
    12. Giannakakis A, Coukos G, Hatzigeorgiou A, Sandaltzopoulos R, Zhang L. miRNA genetic alterations in human cancers. Expert Opin Biol Ther 2007; 7:1375-86.
    13. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006; 103:12481-6.
    14. Chen XM, Splinter PL, O'Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 2007; 282:28929-38.
    15. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129:147-61.
    16. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316:604-8.
    17. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316:608-11.
    18. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104:1604-9.
    19. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179:5082-9.
    20. Jones SW, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SM, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage 2009; 17:464-72.
    21. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 2008; 58:1284-92.
    22. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 2008; 58:1001-9.
    23. Fokkens W, Lund V, Mullol J. EP3OS 2007: European position paper on rhinosinusitis and nasal polyps 2007. A summary for otorhinolaryngologists. Rhinology 2007; 45:97-101.
    24. Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: Establishing definitions for clinical research and patient care. Otolaryngol Head Neck Surg 2004; 131 :S1-62.
    25. Bhattacharyya N. The economic burden and symptom manifestations of chronic rhinosinusitis. Am J Rhinol 2003; 17:27-32.
    1. Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: Establishing definitions for clinical research and patient care. Otolaryngol Head Neck Surg 2004; 131:Sl-62.
    2. Bhattacharyya N. The economic burden and symptom manifestations of chronic rhinosinusitis. Am J Rhinol 2003; 17:27-32.
    3. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity 2007; 26:133-7.
    4. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development 2005; 132:4645-52.
    5. Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene 2006; 25:6176-87.
    6. Lai EC. miRNAs: whys and wherefores of miRNA-mediated regulation. Curr Biol 2005; 15:R458-60.
    7. Giannakakis A, Coukos G, Hatzigeorgiou A, Sandaltzopoulos R, Zhang L. miRNA genetic alterations in human cancers. Expert Opin Biol Ther 2007; 7:1375-86.
    8. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol 2007; 302:1-12.
    9. Calin GA, Croce CM. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 2006; 33:167-73.
    10. Jones SW, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SM, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage 2009; 17:464-72.
    11. Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, et al. MicroRNAs: novel regulators involved in the pathogenesis of Psoriasis? PLoS ONE 2007;2:e610.
    12. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 2008; 58:1284-92.
    13. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pemaute O, Rolling C, Gay RE, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum 2008; 58:1001-9.
    14. Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P, et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006; 61:1280-9.
    15. Lane AP, Truong-Tran QA, Schleimer RP. Altered expression of genes associated with innate immunity and inflammation in recalcitrant rhinosinusitis with polyps. Am J Rhinol 2006; 20:138-44.
    16. Ramanathan M, Jr., Lee WK, Dubin MG, Lin S, Spannhake EW, Lane AP. Sinonasal epithelial cell expression of toll-like receptor 9 is decreased in chronic rhinosinusitis with polyps. Am J Rhinol 2007; 21:110-6.
    17. Ramanathan M, Jr., Lee WK, Spannhake EW, Lane AP. Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells. Am J Rhinol 2008; 22:115-21.
    18. Ferguson BJ, Seethala R, Wood WA. Eosinophilic bacterial chronic rhinosinusitis. Laryngoscope 2007; 117:2036-40.
    19. Asirvatham AJ, Gregorie CJ, Hu Z, Magner WJ, Tomasi TB. MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol Immunol 2008; 45:1995-2006.
    20. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281-97.
    21. Fokkens W, Lund V, Mullol J. EP3OS 2007: European position paper on rhinosinusitis and nasal polyps 2007. A summary for otorhinolaryngologists. Rhinology 2007; 45:97-101.
    22. Chen XM, Splinter PL, O'Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 2007; 282:28929-38.
    23. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129:147-61.
    24. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316:604-8.
    25. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316:608-11.
    26. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006; 103:12481-6.
    27. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 2007; 104:1604-9.
    28. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179:5082-9.
    29. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci 2007; 32:189-97.
    30. Thomas G, Hall MN. TOR signalling and control of cell growth. Curr Opin Cell Biol 1997; 9:782-7.
    31. Lane AP. The role of innate immunity in the pathogenesis of chronic rhino sinusitis. Curr Allergy Asthma Rep 2009; 9:205-12.
    32. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007; 13:1241-7.
    33. Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000; 19:6680-6.
    34. Inoki K, Ouyang H, Li Y, Guan KL. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005; 69:79-100.
    35. Flynn A, Proud CG. The role of eIF4 in cell proliferation. Cancer Surv 1996; 27:293-310.
    36. Colina R, Costa-Mattioli M, Dowling RJ, Jaramillo M, Tai LH, Breitbach CJ, et al.
    ??Translational control of the innate immune response through IRF-7. Nature 2008; 452:323-8.
    37. Kaur S, Lal L, Sassano A, Majchrzak-Kita B, Srikanth M, Baker DP, et al. Regulatory effects of mammalian target of rapamycin-activated pathways in type Ⅰ and Ⅱ interferon signaling. J Biol Chem 2007; 282:1757-68.
    1. Rhoads RE. Regulation of eukaryotic protein synthesis by initiation factors. J Biol Chem 1993; 268:3017-20.
    2. Jackson RJ, Wickens M. Translational controls impinging on the 5'-untranslated region and initiation factor proteins. Curr Opin Genet Dev 1997; 7:233-41.
    3. Thomas G, Hall MN. TOR signalling and control of cell growth. Curr Opin Cell Biol 1997; 9:782-7.
    4. Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000; 19:6680-6.
    5. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001; 15:807-26.
    6. Sachs AB, Varani G. Eukaryotic translation initiation: there are (at least) two sides to every story. Nat Struct Biol 2000; 7:356-61.
    7. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Annu Rev Biochem 1987; 56:727-77.
    8. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998; 67:227-64.
    9. Kaur S, Lal L, Sassano A, Majchrzak-Kita B, Srikanth M, Baker DP, et al. Regulatory effects of mammalian target of rapamycin-activated pathways in type Ⅰ and Ⅱ interferon signaling. J Biol Chem 2007; 282:1757-68.
    10. Darnell JE, Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264:1415-21.
    11. Coccia EM. IFN regulation and functions in myeloid dendritic cells. Cytokine Growth Factor Rev 2008; 19:21-32.
    12. Severa M, Fitzgerald KA. TLR-mediated activation of type Ⅰ IFN during antiviral immune responses: fighting the battle to win the war. Curr Top Microbiol Immunol 2007; 316:167-92.
    13. Bertolotto A, Gilli F. Interferon-beta responders and non-responders. A biological approach. Neurol Sci 2008; 29 Suppl 2:S216-7.
    14. Colina R, Costa-Mattioli M, Dowling RJ, Jaramillo M, Tai LH, Breitbach CJ, et al. Translational control of the innate immune response through IRF-7. Nature 2008; 452:323-8.
    15. Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P, et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006; 61:1280-9.
    16. Lane AP, Truong-Tran QA, Schleimer RP. Altered expression of genes associated with innate immunity and inflammation in recalcitrant rhino sinusitis with polyps. Am J Rhinol 2006; 20:138-44.
    17. Ramanathan M, Jr., Lee WK, Dubin MG, Lin S, Spannhake EW, Lane AP. Sinonasal epithelial cell expression of toll-like receptor 9 is decreased in chronic rhino sinusitis with polyps. Am J Rhinol 2007; 21:110-6.
    18. Ramanathan M, Jr., Lee WK, Spannhake EW, Lane AP. Th2 cytokines associated with chronic rhinosinusitis with polyps down-regulate the antimicrobial immune function of human sinonasal epithelial cells. Am J Rhinol 2008; 22:115-21.
    19. Ronnblom L, Alm GV. The natural interferon-alpha producing cells in systemic lupus erythematosus. Hum Immunol 2002; 63:1181-93.
    20. Johnston SL. Innate immunity in the pathogenesis of virus-induced asthma exacerbations. Proc Am Thorac Soc 2007; 4:267-70.
    21. al-Janadi M, al-Balla S, al-Dalaan A, Raziuddin S. Cytokine profile in systemic lupus erythematosus, rheumatoid arthritis, and other rheumatic diseases. J Clin Immunol 1993; 13:58-67.
    22. Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: Establishing definitions for clinical research and patient care. Otolaryngol Head Neck Surg 2004; 131 :S1-62.
    23. Inoki K, Ouyang H, Li Y, Guan KL. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005; 69:79-100.
    24. Shamji AF, Nghiem P, Schreiber SL. Integration of growth factor and nutrient signaling: implications for cancer biology. Mol Cell 2003; 12:271-80.
    25. Flynn A, Proud CG. The role of eIF4 in cell proliferation. Cancer Surv 1996; 27:293-310.
    26. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity 2007; 26:133-7.
    27. Diaz MO, Bohlander S, Allen G. Nomenclature of the human interferon genes. J Interferon Res 1994; 14:221-2.
    28. Hobbs DS, Pestka S. Purification and characterization of interferons from a continuous myeloblastic cell line. J Biol Chem 1982; 257:4071-6.
    29. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004; 202:8-32.
    30. Pestka S. The human interferon-alpha species and hybrid proteins. Semin Oncol 1997; 24:S9-4-S9-17.
    31. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 2008; 9:361-8.
    32. Markowitz CE. Interferon-beta: mechanism of action and dosing issues. Neurology 2007;68:S8-11.
    33. O'Gorman MR, Oger J, Kastrukoff LF. Reduction of immunoglobulin G secretion in vitro following long term lymphoblastoid interferon (Wellferon) treatment in multiple sclerosis patients. Clin Exp Immunol 1987; 67:66-75.
    34. Panitch HS, Hirsch RL, Schindler J, Johnson KP. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 1987; 37:1097-102.
    35. Kukita A. [Clinical trials of interferon-beta (MR-21) in the treatment of malignant tumors of the skin]. Nippon Gan Chiryo Gakkai Shi 1987; 22:977-86.
    36. Legha SS, Papadopoulos NE, Plager C, Ring S, Chawla SP, Evans LM, et al. Clinical evaluation of recombinant interferon alfa-2a (Roferon-A) in metastatic melanoma using two different schedules. J Clin Oncol 1987; 5:1240-6.
    37. Bye A, Balkwill F, Brigden D, Wilson J. Use of interferon in the management of patients with subacute sclerosing panencephalitis. Dev Med Child Neurol 1985; 27:170-5.
    38. Carreno V, Quiroga JA. Biologic response modifiers in chronic hepatitis C. J Hepatol 1995; 22:122-6.
    39. Gall SA, Hughes CE, Mounts P, Segriti A, Week PK, Whisnant JK. Efficacy of human lymphoblastoid interferon in the therapy of resistant condyloma acuminata. Obstet Gynecol 1986; 67:643-51.
    40. Gall SA, Hughes CE, Trofatter K. Interferon for the therapy of condyloma acuminatum. Am J Obstet Gynecol 1985; 153:157-63.
    41. Reichman RC, Oakes D, Bonnez W, Greisberger C, Tyring S, Miller L, et al. Treatment of condyloma acuminatum with three different interferons administered intralesionally. A double-blind, placebo-controlled trial. Ann Intern Med 1988; 108:675-9.
    42. Szoke B. Condyloma acuminatum treated with human leukocyte interferon. J Urol 1986; 135:1247-8.
    43. Vance JC, Bart BJ, Hansen RC, Reichman RC, McEwen C, Hatch KD, et al. Intralesional recombinant alpha-2 interferon for the treatment of patients with condyloma acuminatum or verruca plantaris. Arch Dermatol 1986; 122:272-7.
    44. Rass K, Hassel JC. Chemotherapeutics, chemoresistance and the management of melanoma. G Ital Dermatol Venereol 2009; 144:61-78.
    45. Pardo M, Castillo I, Navas S, Carreno V. Treatment of chronic hepatitis C with cirrhosis with recombinant human granulocyte colony-stimulating factor plus recombinant interferon-alpha. J Med Virol 1995; 45:439-44.
    46. Martin-Saavedra FM, Gonzalez-Garcia C, Bravo B, Ballester S. Beta interferon restricts the inflammatory potential of CD4+ cells through the boost of the Th2 phenotype, the inhibition of Th17 response and the prevalence of naturally occurring T regulatory cells. Mol Immunol 2008; 45:4008-19.
    47. Chitnis T, Khoury SJ. Cytokine shifts and tolerance in experimental autoimmune encephalomyelitis. Immunol Res 2003; 28:223-39.
    48. Bachert C, Wagenmann M, Hauser U, Rudack C. IL-5 synthesis is upregulated in human nasal polyp tissue. J Allergy Clin Immunol 1997; 99:837-42.
    49. Jahnsen FL, Haraldsen G, Aanesen JP, Haye R, Brandtzaeg P. Eosinophil infiltration is related to increased expression of vascular cell adhesion molecule-1 in nasal polyps. Am J Respir Cell Mol Biol 1995; 12:624-32.
    1. Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene 2006; 25:6176-87.
    2. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci 2007; 32:189-97.
    3. Lai EC. miRNAs: whys and wherefores of miRNA-mediated regulation. Curr Biol 2005; 15:R458-60.
    4. Zhang W, Dahlberg JE, Tarn W. MicroRNAs in tumorigenesis: a primer. Am J Pathol 2007; 171:728-38.
    5. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity 2007; 26:133-7.
    6. Giannakakis A, Coukos G, Hatzigeorgiou A, Sandaltzopoulos R, Zhang L. miRNA genetic alterations in human cancers. Expert Opin Biol Ther 2007; 7:1375-86.
    7. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75:843-54.
    8. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403:901-6.
    9. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37:766-70.
    10. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126:1203-17.
    11. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 2004; 10:1957-66.
    12. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ Embo J 2004; 23:4051-60.
    13. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18:3016-27.
    14. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature 2003; 425:415-9.
    15. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002; 16:720-8.
    16. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development 2005; 132:4645-52.
    17. Calin GA, Croce CM. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol 2006; 33:167-73.
    18. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004; 5:R13.
    19. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, et al. The microRNAs of Caenorhabditis elegans. Genes Dev 2003; 17:991-1008.
    20. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65:9628-32.
    21. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, et al. MicroRNA expression in zebrafish embryonic development. Science 2005; 309:310-1.
    22. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 2006; 3:27-9.
    23. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. Rna 2003; 9:1274-81.
    24. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 2004; 101:9740-4.
    25. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 2004; 101:11755-60.
    26. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006; 25:2537-45.
    27. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 2004; 1:155-61.
    28. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). Rna 2006; 12:913-20.
    29. Zhang HH, Wang XJ, Li GX, Yang E, Yang NM. Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J Gastroenterol 2007; 13:2883-8.
    30. Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 2005; 39:519-25.
    31. Chen XM, Splinter PL, O'Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 2007; 282:28929-38.
    32. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006; 103:12481-6.
    33. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 2007; 104:1604-9.
    34. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007; 179:5082-9.
    35. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007; 129:147-61.
    36. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316:604-8.
    37. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316:608-11.
    38. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303:83-6.
    39. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 2005; 102:18081-6.
    40. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH, et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005; 6:R71.
    41. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131:146-59.
    42. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123:819-31.
    43. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451:1125-9.
    44. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 2007; 9:775-87.
    45. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A 2005; 102:5570-5.
    46. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV, et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 2007; 3:e65.
    47. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005; 435:682-6.
    48. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, et al. Host immune system gene targeting by a viral miRNA. Science 2007; 317:376-81.
    49. Couturier JP, Root-Bernstein RS. HIV may produce inhibitory microRNAs (miRNAs) that block production of CD28, CD4 and some interleukins. J Theor Biol 2005; 235:169-84.
    50. Cameron JE, Yin Q, Few ell C, Lacey M, McBride J, Wang X, et al. Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 2008; 82:1946-58.
    51. Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci U S A 2007; 104:16164-9.
    52. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, et al. A cellular microRNA mediates antiviral defense in human cells. Science 2005; 308:557-60.
    53. Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J, et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicerl-deficient mice is due to impaired miR24 and miR93 expression. Immunity 2007; 27:123-34.
    54. Hariharan M, Scaria V, Pillai B, Brahmachari SK. Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun 2005; 337:1214-8.
    55. Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007; 315:1579-82.
    56. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007; 13:1241-7.
    57. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005; 309:1577-81.
    58. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007; 449:919-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700