氡致人支气管上皮细胞线粒体损伤及RNA表达改变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:流行病学调查和实验研究证实高浓度氡(Rn)暴露和肺癌的发生密切相关。支气管上皮细胞和细胞核DNA是氡及其子体作用的直接靶细胞和重要靶分子。线粒体在α粒子辐射旁效应的调节中起重要作用,而线粒体DNA (mtDNA)是致癌物作用的重要靶点。本课题在建立的线粒体DNA敲除人支气管上皮细胞(p-HBE)模型的基础上,观察氡及其子体照射对p-HBE细胞的损伤效应,同时采用高通量芯片技术,筛选p+HBE与p-HBE细胞间以及氡染毒前后差异表达的mRNA和微小RNA (miRNA),为探讨线粒体在氡致HBE细胞恶性转化中的作用机制提供实验依据。
     方法:采用溴化乙锭(EB)诱导法构建p-HBE细胞株,并将其置于特制的氡染毒装置中,氡暴露浓度为20, OOOBq/m3,染毒时间20min,染毒3d后重复染毒1次,连续染毒2次后作为染毒第1代(Rn1),分别染氡10代(Rn10)和30代(Rn30)。以线粒体正常的HBE细胞(p+HBE)为对照细胞,用Real-time PCR测定pHBE细胞氡染毒前后线粒体拷贝数,活细胞探针标记线粒体DNA数目、线粒体形态、线粒体膜电位以及细胞内活性氧(ROS)的水平,用Annexin V和PI染色测定细胞凋亡及细胞周期的改变。选用6种细胞:p+HBE、p+HBE染氡10代细胞(低剂量染氡组)、p+HBE染氡30代细胞(高剂量染氡组)、p-HBE、p-HBE染氡10代(低剂量染氡组p-HBE)以及p-HBE染氡30代细胞(高剂量染氡组p-HBE),采用NimbleGen-135K mRNA表达谱芯片和miRCURYTM芯片筛选差异表达的mRNA和miRNA,并用实时荧光定量PCR进行验证。
     结果:用EB诱导30d后,p+HBE细胞中的线粒体拷贝数减少了约77%,细胞浆内mtDNA的数量显著减少,线粒体膜电位降低,同时在无尿嘧啶的培养液中细胞开始大量死亡,表明EB已成功诱导线粒体DNA缺失,建立了p-HBE细胞。经氡染毒后,p+HBE细胞生长速率加快,克隆形成率和存活分数明显下降,而p"HBE细胞的克隆形成率和存活分数却明显升高,提示线粒体DNA敲除后,p-HBE细胞更易受到氡暴露的损伤,可能促进细胞发生恶性转化。p-HBE细胞中ROS水平低于p+HBE细胞,经氡染毒后两种类型细胞中ROS水平都显著升高,但p-HBE细胞内ROS水平仅为p+HBE细胞的48%,提示除线粒体外,细胞内ROS的产生还有其他的来源。p-HBE细胞的线粒体膜电位经氡照射后显著下降,表明线粒体的膜结构和功能受到了严重损伤。p-HBE细胞染氡后的凋亡率有所升高但明显低于p+HBE细胞,提示线粒体缺失细胞增殖能力的增强与其凋亡功能的降低存在密切的相关。p-HBE细胞在高剂量氡染毒后S期细胞增加,G1和G2/M期细胞减少,提示发生了G1期和G2/M期阻滞,延缓细胞进入S期和M期的速度,导致细胞周期的延长。mRNA表达谱的分析结果显示,氡染毒致p+HBE细胞mRNA表达明显上调的有TFF1、TFF2和IGHG1等,表达明显下调的mRNA包括NCOA7,FN1, EGR1, IL-8, RASEF和BNDF等。GO通路分析表明,上调的]mRNA主要是影响信号传导通路,下调的基因70%以上影响蛋白质的结合和酶活性。在p-HBE细胞中,低剂量染氡组p-HBE上调变化最大的mRNA为SPRR家族中的SPRR2E、 SPRR2A、SPRR2D等,下调表达的基因包括HAND2和FCRLM1等。高剂量染氡组p"HBE上调变化最大的mRNA为BICC1、ASNA、KIAA1045等,表达下调的有GNAI3、TSGA2、BAX、PKP2、GNPDA1等。GO通路分析表明,这些上调和下调的mRNA主要功能是影响受体信号、信号传导以及蛋白质结合等通路。microRNA表达谱的分析结果显示,氡暴露致p+HBE细胞miRNA表达上调的有miR-107, miR-3651和miR-3074-3p等,表达下调的有miR-1227以及miR486-5p等。氡暴露致p-HBE细胞miRNA表达上调的有miR-1919-5p、miR-3157-3p和miR-484等,表达下调的有miR-3607-3p,miR-98和miR-1275等。
     结论:(1)采用EB诱导法成功构建了mtDNA部分敲除的人支气管上皮细胞株(p-HBE),并通过观察细胞形态学、营养缺陷和活细胞染色及检测线粒体DNA拷贝数、线粒体膜电位的改变,了解了p-HBE细胞的生物学特性,为研究氡致线粒体DNA敲除细胞的损伤效应提供了细胞模型。(2)氡染毒后,p-HBE细胞在生长速度、ROS产生量、线粒体膜电位、细胞凋亡及细胞周期等生物学指标上均出现了明显改变,表明氡染毒后所产生的细胞损伤效应与线粒体的结构和功能障碍密切相关,为进一步从分子水平上探讨氡致肺癌的发生机制提供了基础资料。(3)通过高通量芯片筛选,发现了一批p+HBE与p-HBE细胞间以及氡染毒前后差异表达的mRNA和miRNA,对这些mRNA和miRNA进行深入的生物信息学分析,将有助于阐明在氡致肺癌的过程中,核基因组和线粒体基因组所起的不同作用,以及可能涉及的基因网络和细胞信号通路。
Objective:Both Epidemiological investigation and experimental research confirmed the correlation between exposure of high level of radon and lung cancer. Bronchial epithelial cells, as well as their nuclei, are the targets of radon and its progeny. Mitochondrial has been shown to play an important role in the regulation of bystander effects of a particle, and mitochondrial DNA is one of the targets of carcinogens. This study is to set up a model of human bronchial epithelial cells (HBE) with knockdown of mitochondrial DNA (p") to observe the adverse effects of radon irradiation, and to screen differentially expressed mRNA/miRNA beteen p+HBE and p" HBE cells upon radon exposure, in order to provide experimental data for exploring potential mechanisms underlying malignant transformation induced by radon.
     Methods:p" HBE cells were generated by treatment of ethidium bromide (EB), and exposed to radon gas in a special inhalation chamber. The exposure concentration was set to20,000Bq/m3and lasted for20min each time and repeated in3days. Ten generations (Rn10) and30generations (Rn30) were exposed to radon, and the copy numbers of mitochondrial were determined by Real-time PCR, the number, morphology, membrane potential of mitochondrial and intracellular reactive oxygen species (ROS) were labeled by live cell probes. The alternation of apoptosis and cell cycle distribution were evaluated by Annexin V and PI staining. The NimbleGen-135K mRNA chip and miRCURYTM chip were used to reveal changes in mRNA and miRNA expression, and Q-PCR was performed to further confirm the data.
     Results:Thirty days after the EB induction, the number of mitochondrial in p-HBE cells decreased77%of that in p+HBE cells. Intracellular mitochondrial DNA was reduced significantly and mitochondrial membrane potential (MMP) was decreased. After removal of uridine for3days, lots of cells could not survive, suggesting that the p"HBE cells were successfully established. Upon exposure to radon, the proliferation of p+HBE cells was accelerated, with decreased clonogenic rate and survival fraction. In p'HBE cells, the clonogenic rate and survival fraction were increased, implicating a more severe damage by radon. The ROS level in both cells were elevated by radon exposure, but the level in p-HBE cells was only48%of that in p+HBE cells. The membrane potential in p"HBE cells was lowered as a result of mitochondrial damage. The apoptotic rate of the p-HBE cells was also found lower than in the p+HBE cells, although both cells showed increased apoptosis when exposed to radon, suggesting a correlation between mitochondrial function and cell proliferation. DNA partial depletion could inhibit apoptosis. Cells in S phase increased and those in G1and G2decreased after radon exposure, indicating a G1and G2/M phase arrest and prolonged cell cycle. The screening of mRNA expression revealed an up-regulation of TFF1, TFF2and IGHG1, and down-regulation of NCOA7, FN1, EGR1, IL-8, RASEF and BNDF. The GO analysis showed that these mRNA mainly affect signal transduction and protein/enzyme activity. In radon exposed p+HBE cells, BICC1, ASNA, KIAA1045were up-regulated, and GNAB, TSGA2, BAX, PKP2and GNPDA1were down-regulated. In radon exposed p-HBE cells, SPRR2E, SPRR2A, and SPRR2D were up-regulated and HAND2and FCRLM1were down-regulated, with functions in receptor signal, signal transduction and protein synthesis. The screening of miRNA expression revealed an up-regulation of miR-107, miR-3651and miR-3074-3p, and a down-regulation of miR-1227and miR486-5p in radon exposed p+HBE cells. In radon exposed p-HBE cells, miR-1919-5p,miR-3157-3p and miR-484were up-regulated, and miR-3607-3p, miR-98and miR-1275were down-regulated.
     Conclusions:
     1. A p-HBE cell model was successfully established by EB induction. The copy numbers and membrane potential of mitochondria, intracellular reactive oxygen species, apoptosis and cell cycle were determined to characterize the p-HBE cells.
     2. Upon radon exposure, indexes reflecting cell growth, ROS production, membrane potential of mitochondria, apoptosis and cell cycle were altered indicating a correlation between mitochondrial disfunction and the cell damage.
     3. High-through chip screening revealed a set of differential expressed mRNAs and miRNAs between p+HBE and p-HBE cells and between pre-and after radon exposure. Bioinformatic analysis will help elucidate roles that nuclear DNA and mtDNA may play in signal transduction of radon induced lung cancer.
引文
[1]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002 [J]. CA Cancer J Clin,2005,55(2):74-108;
    [2]Cortez MA, Ivan C, Zhou P, et al. microRNAs in cancer:from bench to bedside[J]. Adv Cancer Res,2010,108:113-57;
    [3]王启俊,祝伟星,刑秀梅,等.北京城区居民1982年-1997年癌症发病趋势[J]。中国肿瘤,2001,10(9):507-509;
    [4]符适,孙浩,张浩,深圳市光明新区土壤氡浓度水平及分布规律调查[J]。广东科技,2010,247:6-8;
    [5]IPCS. Enviromental Health Criteria 211. Health Effects of Interactions Between Tobacco Use and Exposure to Other Agents. WHO.1999;
    [6]UNSCEAR.2000 Report to the General Assembly with Scientific Annexes. UN. New York,2000:97-105;
    [7]杨觉雄,王武芳,张富山。 室内氡及其子体暴露研究近况[J]。中华预防医学杂志,1999,33(2):125-126;
    [8]National Research Council, Committee on Health Risks of Exposure to Radon,Health Effects of Exposure to Radon (REIR Ⅵ) [M], National Academy Press, Washington, DC,1999;
    [9]Ionizing Radiation, Part 2:Some internally deposited radionuclides. IARCmonogr-aphs on the Evaluation of Carcinogenic Risks to Humans[M]. International Associa-tion for Research on Cancer.2001,78(Pt 2):1-559;
    [10]Hellman B, Friis L, Vaghef H, et al. Alkaline single cell gel eletrophoresis and human biomonitoring for genotoxicity:a study on subject with residential exposure to radon[J]. Mutat Res,1999,442:121-132;
    [11]朱寿彭,李章.放射毒理学[M].苏州:苏州大学出版社,2004:174;
    [12]Senderowicz AM. Cell cycle modulators for the treatment of lung malignancies. Clin Lung Cancer,2003,5(3):158-168;
    [13]Meyerson M,Franklin W A, Kelley MJ. Molecular classification and molecular genetics of human lung cancers.Semin Oncol,2004,31(1 Suppl 1):4-19;
    [14]Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet.2005,6(5):389-402;
    [15]贾立明,刘丽红.线粒体基因组与肺癌的相关研究进展[J]中国肺癌杂志,2004,5: 459-461;
    [16]Zhou H, Ivanov VN, Lien YC, Davidson M and Hei TK. Mitochondrial function and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects. Cancer Res.2008,68:2233-2340;
    [17]Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, Amundson SA and Geard CR. Mechanism of radiation-induced bystander effects:a unifying model. J Pharm Pharmacol.2008,60:943-950;
    [18]Stefani G, Slack FJ. Small non-coding RNAs in animal development[J]. Nat Rev Mol Cell Biol,2008,9(3):219-230;
    [19]SchickeR, Boyerinas B, Park SM, et al. MicroRNAs:key players in the immeune system,differentiation, tumorigenesis and cell death[J]. Oncogene,2008,27(45): 5959-5974;
    [20]Reid G, Kirschner M. B, Zandwijk N. van. Circulating microRNAs:Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol,2010;
    [21]Heneghan H. M, Miller N, Kerin M. J,Systemic microRNAs:novel biomankers for colorectal and other cancers Gut,2010,59(7):1002-1004; author reply 1004;
    [22]Huang Y, Yang S, Zhang J, et al. MicroRNAs as promising biomarkers for diagnosing human cancer. Cancer Invest,2010,28(6):670-671;
    [23]Hu H, Li Y, Gu J, et al. Antisense oligonucleotide against miR-21 inhibits migration and induces apoptosis in leukemic K562 cells. Leuk Lymphoma,2010, 51(4):694-701;
    [24]Wada R, Akiyama Y, Hashimoto Y, et al. miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int J Cancer,2010, 127(5):1106-1114;
    [25]Andreasen D, Fog J. U, Biggs W, et al. Improved microRNA quantification in total RNA from clinical samples. Methods,2010,50(4):S6-9;
    [26]Mayrc C, Hemann M.T, Ba-el D.P. Disrupting the pairing between let-7 and Hamga2 enchances oncogenic transformation[J]. Science,2007.315(5818): 1576-1579;
    [27]Lee YS, Dutta A. The tumor suppressor microRNA let-7represses the HMGA2 oncogene[fJ]. Genes Dev,2007,21(9):1025-1030;
    [28]Hiyoshi Y, Kamohara H, Karashima R, et al. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma[J]. Clin Cancer Res,2009,15(6):1915-1922;
    [29]Fei J, Lan F, Guo M, et al. Inhibitory effects of anti-miRNA oligonucleotides (AMOs)on A549 cell growth[J]. J Drug Target,2008,16(9):688-693;
    [30]Crawford M, Brawner E, Batte K, et al. MicroRNA—126 in—hibits invasion in non—small cell lung carcinoma cell linesp[J] Biochem Biophys Res Common, 2008,373(4):607-612;
    [31]Navaro A, Marrades RM, Vindas N, et al. MicroRNAs expressed during lung cancer development are expressed in human pseudoglandular lung embryogenesis [J]. Oncology,2009,76(3):162-169;
    [32]Tian T, Shu Y, Chen J, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese[J]. Cancer Epidemiol Biomarkers Prey,2009,18(4):1183-1187;
    [33]Bartnik E, Lorenc A, Mroczek K. Human mitochlndrial in health, disease, ageing and cancer[J]. J Appl Genet,200142(1):65-71;
    [34]Modica-Napolitano JS, Singh KK. Mitochondrial dysfunction in cancer[J]. Mitochondrion,2004(4):755-762;
    [35]Chatterjee A, Mambo E, Sidransky D. Mitochondrial DNA mutations in human cancer[J]. Oncogene,2006,25(34):4663-4674;
    [36]Lee HC, Yin PH, Lin JC, et al. Mitochondrial genome instability and mt DNA depletion in human cancers[J]. Ann N Y Acad Sci,2005,1042:109-122;
    [37]Zhao YB, Yang HY, Zhang XW, et al. Mutation in D-Loop region of mitochondrial DNA in gastric cancer and its significance [J]. World J Gastroenterol,2005,11(21): 3304-3306;
    [38]Lubin J. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J Natl Cancer Inst,1995,87:817-827;
    [39]Hofmann W, Crawford-Brown DJ, Fakir H, Monchaux G. Modeling lung cancer incidence in rats following exposure to radon progeny. Radiat Prot Dosimetry. 2006,122(1-4):345-348;
    [40]Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ,et al. Cardiac mitochondrial dysfunction and DNA depletion in children with hypertrophic cardiomyophthy. J Inherit Metab Dis,1997,20(5):674-680;
    [41]Grossman, LI and Shoubridge EA. Mitochondrial genetics and human disease. Bioessays,1996,18:983-991;
    [42]King MP, Attardi G. Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA[J]. Cell,1988,52(6):811-9;
    [43]Richard SM, Bailliet G, Paez GL. Nuclear and mitochondrial genome instability in human breast cancer [J]. Cancer, Res,2000,60:4231-4237;
    [44]Wallace DC. Mitochondrial diseases in man and mouse[J]. Science,1999, 283(5407):1482-1488;
    [45]Bernard PS, Wirrwer CT. Real-time PCR technology for cancer diagnostics[J]/Clin Chem.2002,48(8):1178-1185;
    [46]King M P, Attardi G Isolation of human cell lines lacking mitochondrial DNA[J]. Methods Enzymol,1996,264:304-313;
    [47]Jafar J, Iamail AF, Mustafa A, et al. Physicochemical study of poly (ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application[J]. Materials Science and Engineering.2007; 460(15):475-484;
    [48]Morais R, Zinkewich-Peotti K, Parent M, et al. Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA[J]. Cancer Res,1994, 54(14):3889-3896;
    [49]Green DR, Reed JC. Mitochondria and apoptosis[J]. Science,1998,281(5381): 1309-1312;
    [50]US National Academy of Sciences. Health risks of radon and other internally deposited alpha-emitters. Washington DC, National Academy Press.1988;
    [51]孙世醛等编著,人类辐射危害评价,原子能出版社,1996年6月,北京,原子能出版社;
    [52]Prise KM, Pinto M. Newman HC, Michael BD. A review of studies of ionizing radiation-induced double-strand break clustering. Radiat Res.2001,156(5): 572-576;
    [53]Heddi A, Stepien G, Benke PJ, et al. Coordinate induction of energy gene expression in tissues of mitochondrial diseases patients[J]. J Biol Chem,1999,274: 22968-22976;
    [54]IARC, ionizing Radiation. Part 2. Some internally deposited radionuclides. IARC monographs on the Evaluation of Carcinogenic Risks to Humans[M]. International Association for Research on Cancer. Lyon,2001. Vol.78;
    [55]Lee HC, Yin PH, Chi CW, Wei YH. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci.2002,9:517-526;
    [56]Shay JW and Werbin H. New evidence for the insertion of mitochondrial DNA into the human genome:significance for cancer and aging[J]. Mutat Res,1992,275: 227-235;
    [57]Xian-Long Ling. Dian-Chun Fang. Rong-Quan Wang, Shi-Ming Yang, Li Fang. Mitochondrial microsatellite instability in gastric cancer and its precancerous lesions. World Journal of Gastroenterology,2004,10(6);
    [58]孙恒文,胡义德.肺癌细胞系mtDNA D-环序列微卫星不稳定性的研究[J].中华肿瘤防治杂志。2006,17-1281-04;
    [59]Glenda M, Bishop, Ralf Dringen, et al. Zinc stimulates the production of toxic reactive oxygen species(ROS) and inhibits glutathione reductase in astrocytes[J]. Free Rdical Biology and Medicine.2007,42(8):1222-1230;
    [60]仲恒高,苗超,臧黎慧,等.氡及其子体吸入对大鼠肺与血细胞的氧化应激损伤[J].苏州大学学报(医学版).2005,25(5):765-767;
    [61]Stephen L. GOMBERG-MAITLAND Mardi. MAITLAND Michael L. RICH Stuart. GARCIA Joe G N. WEIR E. Kenneth. Mitochondrial metabolism, redox signaling, and fusion:a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. American journal of physiology. Heart and circulatory physiology.2008, vol.63;
    [62]Paul T. Schumacker. Reactive oxygen species in cancer cells:Live by the sword, die by the sword. Cancer cell,2006,10(3):175-176;
    [63]John GP, Marco T, Ronald JR, et al. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore[J] Bio Chem,1999,274(44):31734-31739;
    [64]Coriop assi GA,Wong A.M itochondria in organ ismal aging and degeneration[J].Bioch in Biophys A cta,1999,1410(2):183-193;
    [65]Wang J, Silva J P, Gustafsson CM, et al. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression[J]. Proc Natl Acad Sci USA,2001,98(7): 4038-4043;
    [66]Yoneda M, Katsumata K, Hayakawa M, et al. Oxygen stress induces anapoptstic cell death associated with fragmentation of mitochondrial genome J. Biochem Biophys Res Commun,1995,209(2):723-729.);
    [67]Simone, F.2010. Evasion of apoptosis as a cellular stress response in cancer. Int. J Cell Biol.2010:Article ID 370835,doi:10.1155/2010/370835;
    [68]AL Givan. Flow Cytometry First Principles, second edition[M].2001, Wiley-Liss. Inc;
    [69]韦伟,龚建平,裘法祖.细胞周期调控与肿瘤的发生发展[J]。癌症,1999,18(1):95-97;
    [70]Molenaar JJ, Koster J, Ebus ME, et, al. Copy number defects of Gl-Cell cycle genes in neuroblastoma are frequent and correlate with high expression of E2F target genes and a poor prognosis[J]. Genes, Chromosomes & Cancer,2012,51: 10-19;
    [71]Henley SA, Dick FA. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle[J]. Cell Division,2012,7:10;
    [72]Maskos U, Southern EM. Oligonucleotide hybridizations on glass supports:a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res 1992;20:1679-1684;
    [73]Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467-470;
    [74]Yang X, Lee Y, Fan H, Sun X, Lussier YA. Identification of common microRNA-mRNA regulatory biomodules in human epithelial cancers. Chin Sci Bull;55:3576-3589;
    [75]Jayaswal V, Lutherborrow M, Ma DD, Yang YH. Identification of microRNA-mRNA modules using microarray data. BMC Genomics;12:138;
    [76]Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell 2009; 136:215-233;
    [77]Shukla GC, Singh J, Barik S. MicroRNAs:Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol;3:83-92;
    [78]Nelson PT, Baldwin DA, Kloosterman WP, et al. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA,2006, 12(2):187-191;
    [79]Castoldi M, Schmidt S, Benes V, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA,2006, 12(5):913-920;
    [80]Mestdagh P, Feys T, Bernard N, et al. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res,2008,36(21):el43;
    [81]Lewis BP, Shih IH, Jones-Rhoades M, Bartel DP, Burge CB. Prediction of Mammalian MicroRNA Targets.2003, Cell 115 (7):787-798;
    [82]Seib T, Blin N, Hilgert K, et al. The three human trefoil genes TFF1, TFF2, and TFF3 are located within a region of 55 kb on chromosome 21q22.3. Genomics 1997,40(1):200-2;
    [83]Hanby AM, Poulsom R, Singh S, et al. Spasmolytic polypeptide is a major antral peptide:distribution of the trefoil peptides human spasmolytic polypeptide and pS2 in the stomach. Gastroenterology 1993,105 (4):1110-1116;
    [84]Newton JL, Allen A, Westley BR, May FE. The human trefoil peptide, TFF1, is present in different molecular forms that are intimately associated with mucus in normal stomach. Gut 2000,46 (3):312-320;
    [85]Martignetti JA, Aqeel AA, Sewairi WA, Boumah CE, Kambouris M, Mayouf SA, Sheth KV, Eid WA, Dowling O, Harris J, Glucksman MJ, Bahabri S, Meyer BF, Desnick RJ. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome". Nat. Genet.2001,28 (3): 261-265;
    [86]Bein K, Simons M. Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J. Biol. Chem. 2000,275 (41):32167-32173.;
    [87]高刚,田梅,杨英杰,等.氡染毒小鼠肺组织Let-7a表达的初步研究.中华放射医学和防护杂志,2009,29(2):92-93;
    [88]Morgunova E, Tuuttila A, Bergmann U, Tryggvason K. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc. Natl. Acad. Sci. U.S.A.2002,99 (11):7414-7419;
    [89]Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A,LeMeur M, Wendling C, Tomasetto C, Chambon P, Rio MC.Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science 1996;274:259-262;
    [90]Efstathiou JA, Noda M, Rowan A, Dixon C, Chinery R, Jawhari A, Hattori T, Wright NA, Bodmer WF, Pignatelli M. Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells. Proc Natl Acad Sci USA 1998; 95:3122-3127;
    [91]Guo CB, Wang S, Deng C, Zhang DL, Wang FL, Jin XQ. Relationship between matrix metalloproteinase 2 and lung cancer progression. Mol Diagn Ther 2007;11:183-192;
    [92]Cabral A, Voskamp P, Cleton-Jansen AM, South A, Nizetic D, Backendorf C. Structural organization and regulation of the small proline-rich family of cornified envelope precursors suggest a role in adaptive barrier function. J Biol Chem 2001;276:19231-19237;
    [1]Meyerson M, Carbone D. Genomic and proteomic profiling of lung Cancers:lung cancer classification in tile age of targeted therapy [J]. J Clin Oncol,2005,23: 3219-3226;
    [2]Cortez MA, Ivan C, Zhou P, et al. microRNAs in cancer:from, bench to bedside[J]. Adv Cancer Res,2010,108:113-157;
    [3]Stefani G, Slack FJ. Small non-coding RNAs in animal development[J]. Nat Rev Mol Cell Biol,2008,9(3):219-230;
    [4]Schickel R, Boyerinas B, Park SM, et al. MicroRNAs:key players in the immune system differentiation, tumorigenesis and cell death[J]. Oncogene,2008,27(45): 5959-5974;
    [5]Shell S, Park SM, Radjabi AR, et al. Let-7 expression defines two differentiation stages of cancer[J]. Proc Natl Acad Sci USA 2007,104(27):11400-11405;
    [6]Cortez M.A, Ivan C, Zhou P, et al. microRNAs in cancer:from bench to bedside[J]. Adv Cancer Res,2C10,108:113-157;
    [7]Lagos-Quintata M, Rauhut R, Lendeckel W, et al Identification of novel genes coding for small expressed RNAs[J]. Science,2001,294(5543):853-858;
    [8]Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRN A expression by similar mechanisms [J]. Proc Natl Acad Sci USA,2003, 100(17):9779-9784;
    [9]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancer in association with sho-ened postoperative survival[J]. Cancer Res,2004.64(11):3753-3756;
    [10]Shell S, Park S.M.Radjabi A.R, et al. Let-7 expression defines two differentiation stages of cancer[J]. Proc Natl Acad Sei U S A.2007.104(27):11400-11405;
    [11]Boyerinas B, Park SM Shomron N. et al. Identification of let-7 regulated oncofetal genes [J]. Cancer Res,2008,68(8):2587-2591;
    [12]Inamura K, Togashi Y, Nomura K, et al. let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis[J].Lung Cancer,2007,58(3):392-396;
    [13]Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family [J]. Proc Natl Acad Sci U S A, 2008,105F(10):3903-3908;
    [14]Esquela—Kerseher A, Trang P, Wiggins J.F, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer[J]. Cell Cycle,2008,7(6):759-764;
    [15]Chin LJ, Ratner E, Leng S, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3 untranslated region increases non—small cell lung cancer risk[J]. Caneer Res,2008,68(20):8535-8540;
    [16]Mayrc C, Hemann M.T, Ba-el D.P. Disrupting the pairing between let-7 and Hamga2 enchances oncogenic transformation[J]. Science,2007. 115(5818): 1576-1579;
    [17]Lee YS, Dutta A. The tumor suppressor microRNA let-7represses the HMGA2 oncogene[J]. Genes Dev,2007,21(9):1025-1030;
    [18]Johnson S.M, Grosshans H, Shinagara J, et al. RAS is regulated by the let—7 microRNA family[J]. Cell,2005,120(5):635-647;
    [19]Garofalo M, Di Leva G, Romano G, et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation[J]. Cancer Cell,2009,16(6):498-539;
    [20]Vogt P.K, Gymnopoulos M, Hart J.R. PI 3-kinase and cancer:changing accents[J].Curr Opin Genet Dev,2009,19(1):12-17;
    [21]Seike M, Goto A, Okano T, et al. MiR—21 is an EGFR regulated anti-apoptosic factor in lung cancer in never-smokers [J]. Proc Natl Acad Sci U S A,2009, 106(29):12085—12090;
    [22]Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B[J]. Proc Natl Acad Sci USA,2007,104(40):15805-15810;
    [23]Minoru T. Epigenetic silencing of microRNA-34b/c and B cell translocation gene 4 is associated with CpG island methylation in colorectal cancer[J]. Cancer Res, 2008,68:4123;
    [24]Liu B, Peng XC, Zheng XL, et al. miR—126 restoration down, regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo[J]. Lung Cancer,2009,66(2):169-175;
    [25]Weiss GJ, Bemis LT, Nakajima E, et al. EGFR regulation by microRNA in lung cancer:correlation with clinical response and survival to gefitinib and EGFR expression in cell lines[J]. Ann Oncol,2008,19(6):1053-1059;
    [26]Webster RJ, Giles KM, ce KJ, et al. Regulation of epiderm al growth factor receptor signaling in human cancer cells by MirRNA-7[J]. J Biol Chem,2009, 284(9):5731-5741;
    [27]Kovalehuk O, Zemp F1, Filkowski JN, et al. MicroRNA come changes in bystander three—dimensional humnan tissue models suggest priming of apoptotie pathways [J]. Carcinogenesis,2010,31(10):1882-1888;
    [28]Malurnbres R,Sarosiek KA, Cubedo E.et al. Differentiafion stage specific expression of mi croRNAs in Blymphocytes and diffuse large B-cell lymphomas[J]. Blood,2009,113(16):3754-3764;
    [29]Lebanony D, Benjamin H, Gilad S, et al. Diagnostic assay based on has miR-205 expression distinguishes squamousfrom nonsquam ous non—small—cell lung carcinoma[J].Clin Oncol,2009,27(12):20-30;
    [30]Raponi M, Dosssey L, Jatkoe T, et al. M icroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res,2009,69(14):5776-5783;
    [31]Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stableblood-based markers for cancer detection[J]. Proc Natl Acad Sci USA,2008, 105(30):10513-10518;
    [32]Foss KM, Sima C, Ugolini D, et al. MiR-1254 and miR -574 -5p:serum-based microRNA biomarkers for early-stage non-small cell lung cancer [J]. Thorac Oncol,2011,6(3):482-488;
    [33]Heegard NH, Schetter AJ, Welsh JA, et al. Circulating microRNA expression profiles in early stage non-small cell lung cancer [J]. Int J Cancer,Article first published online:26 AUG 2011,DOI:10.1002/ijc.26153;
    [34]Markou A, Tsaroucha EG, Kaklamanis L,et al.Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR[J]. Clin Chem.2008.54(10):1696-1704;
    [35]Yus L, Chert H Y, Chang G C, et al. MicroRNA signature predicts survival and relapse in lung cancer[J]. Cancer Cell,2008, t3:48-57;
    [36]Volinia S, Calin G A, lAuCG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci USA, 2006,103(7):2257-2261;
    [37]Fei J, LanF, GuoM, etal. Inhibitory effects of anti-miRNA oligonucleotides(AMOs)on A549 cell growth. J Drug Target,2008,16(9):688-693;
    [38]Matsubara H, Takeuchi T, Nishikawa E, et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92 Oncogene,2007,26(41):6099-6105;
    [39]Shin S, Cha HJ, Lee EM, et al. Alteration of miRN A profiles by ionizing radiation in A549 human non—small cell lung cancer cells. Int J Oncol,2009,35(1):81-86;
    [40]Weidhaas JB, Babar I, Nallur SM, et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res.2007.67(23):11111-11116;
    [41]Weiss GJ, Bemis LT, Nakajima E, et al. BGFR regulation by microRNA A in lung cancer:correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol,2008,19f6):1053-1059;
    [42]Bian HB, Pan X, Yang JS, et al. Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549) [J]. J Exp Clin Cancer Res,2011,30:20-31;
    [43]Garofalo M, Di Leva G, Romano G, et al. MiR -221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation[J].Cancer Cell,2009,16(6):498-509;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700