microRNA在胃癌多药耐药中的作用及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】
     胃癌细胞发生多药耐药(multidrug resistance,MDR)是导致胃癌患者化疗失败的最主要原因。经过几十年的研究,目前已明确胃癌MDR是一个多因素参与的复杂过程。近年来随着基因组学和蛋白质组学研究手段的飞速发展,新的胃癌耐药相关分子不断得以发现,然而胃癌MDR的分子机制仍未完全阐明。值得思考的是,目前的研究大多热衷于挖掘耐药与亲本/药敏细胞之间差异表达的基因,进而探究其介导耐药的下游分子通路,而忽略了导致诸多基因差异表达的幕后操纵者,即这些耐药相关基因的上游调控网络是研究中的盲点。如果逆向探寻上游的调节分子,找到处于耐药分子网络中的“始作俑者”,将其作为靶点来逆转胃癌MDR,将为胃癌化疗开辟新的道路。
     microRNA (miRNA)是近年来得以发现的一类广泛存在于动植物体内的非编码小RNA,在转录后水平负性调控基因的表达。据预测,每个miRNA可以调控大约200个基因的表达,存在于人体内的大约1000个miRNAs可调控超过1/3的蛋白编码基因的表达,影响着几乎所有的信号通路。miRNA已被证实广泛参与多种生理病理过程,包括肿瘤的发生和发展。由此,我们推测:miRNA可能是我们要寻找的一类处于胃癌耐药分子网络上游的调节分子,调控众多耐药相关基因的表达,进而影响胃癌细胞的耐药表型。目前为止,miRNA在胃癌MDR中的作用及机制尚未见报道。
     【目的】
     探讨miRNA在胃癌MDR中的调节作用及其分子机制,以期更全面的阐明胃癌MDR机制,并为寻找新的耐药逆转策略提供理论依据。
     【方法】
     1.通过miRNA芯片检测胃癌多药耐药细胞SGC7901/VCR和其亲本细胞SGC7901的miRNA表达谱,找出差异表达的miRNA;2.利用real-time RT-PCR法对miRNA芯片结果进行验证;3.通过细胞转染,利用miR-15b/miR-16/let-7a特异的前体寡核苷酸分别上调SGC7901/VCR细胞中miR-15b/miR-16/let-7a的表达,miR-15b/miR-16/let-7a特异的反义寡核苷酸抑制物分别下调SGC7901细胞中miR-15b/miR-16/let-7a的表达;4.通过MTT试验检测miR-15b/miR-16/let-7a对胃癌细胞(SGC7901、SGC7901/VCR)体外药物敏感性的影响;5.通过小鼠肾包膜下移植法(SRCA)检测miR-15b/miR-16/let-7a对胃癌细胞(SGC7901/VCR)体内药物敏感性的影响;6.利用生物信息学网站或软件预测miR-15b/miR-16/let-7a可能调控的靶基因;7.利用Western blot、RT-PCR以及荧光素酶报告基因实验验证miR-15b/miR-16/let-7a调控的靶基因;8.通过AnnexinV/PI染色流式细胞术和caspase-3/7活性试验分析miR-15b/miR-16对胃癌多药耐药细胞SGC7901/VCR的凋亡敏感性的影响;9.借助宿主细胞再活化试验分析let-7a对胃癌多药耐药细胞SGC7901/VCR的DNA损伤修复能力的影响。
     【结果】
     1. 12个miRNAs在胃癌多药耐药细胞SGC7901/VCR和其亲本细胞SGC7901中差异表达(>2倍),在SGC7901/VCR细胞中表达升高的miRNAs为miR-302b和miR-492,表达降低的miRNAs为let-7a、miR-15b、miR-16、miR-17-5p、miR-20a、miR-23b、miR-106a、miR-106b、miR-196a和miR-320。其中一些miRNAs已报道与肿瘤相关,即‘oncomir’,而与胃癌多药耐药的关系未见报道;2. real-time RT-PCR结果显示:miR-15b、miR-16和let-7a的表达在SGC7901/VCR细胞较SGC7901细胞中显著降低,与芯片结果一致;3.体外药物敏感性实验表明,上调miR-15b/miR-16/let-7a的表达,SGC7901/VCR细胞对不同化疗药物的敏感性显著增加,而下调miR-15b/miR-16/let-7a的表达可显著降低SGC7901细胞对不同化疗药物的敏感性;4. SRCA体内药物敏感性实验证实,上调miR-15b/miR-16/let-7a的表达可显著增强SGC7901/VCR细胞体内对顺铂的敏感性;5. miR-15b和miR-16属于同一miRNA家族,具有结构上的同源性,生物信息学预测的众多miR-15b和miR-16的靶基因中包括已明确的耐药相关分子Bcl-2,而let-7a的预测靶基因中包括已明确的耐药相关分子Ras;6.与对照细胞相比,转染miR-15b/miR-16特异前体的SGC7901/VCR细胞的Bcl-2蛋白水平明显降低,而mRNA水平则无显著差异。miR-15b/miR-16通过结合克隆于荧光素酶基因编码区下游的Bcl-2 3’UTR的靶位点,抑制荧光素酶表达,破坏该靶位点可以解除miR-15b/miR-16对荧光素酶表达的抑制效应;7.与对照细胞相比,转染let-7a反义抑制物的SGC7901细胞的H-Ras蛋白水平明显升高,而mRNA水平则无显著差异。let-7a通过结合克隆于荧光素酶基因编码区下游的H-Ras 3’UTR的靶位点,抑制荧光素酶表达。8. AnnexinV/PI染色流式细胞术、caspase-3/7活性试验的结果显示:与对照细胞相比,转染miR-15b/miR-16特异前体的SGC7901/VCR细胞对化疗药物诱导的凋亡的敏感性显著增加;9.宿主细胞再活化试验结果表明:与对照细胞相比,转染let-7a特异前体的SGC7901/VCR细胞的DNA损伤修复能力显著降低。
     【结论】
     1. miRNA在胃癌多药耐药细胞和其亲本细胞中差异表达,可能参与胃癌多药耐药的发生;2. miR-15b,miR-16参与调节胃癌细胞多药耐药表型,其可能的分子机制是:miR-15b、miR-16负性调控靶基因Bcl-2的表达,从而调节胃癌细胞对于化疗药物诱导的凋亡的敏感性;3. let-7a参与调节胃癌细胞多药耐药表型,其可能的分子机制是:let-7a负性调控靶基因Ras的表达,从而影响胃癌细胞的DNA损伤修复能力。
【Background】
     The development of multidrug resistance (MDR) in cancer cells is the primary cause for failed chemotherapy in gastric cancer patients. It is now well acknowledged that mechanisms responsible for MDR in gastric cancer are likely to be multifaceted and extremely intricate. New MDR-related molecules keep emerging owing to the great advances in genomics and proteomics approaches, but the understanding to gastric cancer MDR still remains incomplete. It is worth noticing that while great efforts have been made in identifying differentially expressed genes between drug-resistant and parental/ drug-sensitive cells, and then exploring its downstream signal pathway, much less insight has been gained into the regulatory networks that establish such altered gene expression states. If the‘crime boss’in the MDR molecule network could be identified by inversely exploring upstream regulators, strategies targeting them may pave a new road for chemotherapy of gastric cancer.
     microRNAs (miRNAs) are a newly discovered class of small noncoding RNAs encoded by the genomes of a wide range of multicellular organisms and negatively regulate gene expression at posttranscriptional level. It is predicted that each miRNA could regulate about 200 genes and the ~1000 miRNAs in the human body may regulate the expression of up to 1/3 of human protein-coding genes, which implies the potential influence of miRNAs on almost every genetic pathway. Indeed, miRNAs have been shown to play crucial roles in many physiological and pathological processes, including cancer development and progression. Thus, we postulated that miRNA could be such class of modulators located in the upstream of MDR molecule network, which regulate the expression of numerous MDR-related genes, hence the MDR phenotype of gastric cancer cells. Until now, there has been no report on the potential role of miRNAs in MDR of gastric cancer.
     【Aims】
     To investigate the regulatory role of miRNAs in MDR of gastric cancer cells and the underlying mechanisms, with the aim of better elucidating the mechanisms of gastric cancer MDR and laying a foundation for formulating novel MDR reversing strategies.
     【Methods】
     1. The differentially expressed miRNAs between multidrug-resistant gastric cancer cell line SGC7901/VCR and its parental cell line SGC7901 were identified by miRNA profiling of these two cell lines using miRNA microarray; 2. The results obtained by microarray profiling were validated using real-time RT-PCR analysis; 3. The specific miRNA precursor for miR-15b/miR-16/let-7a was respectively transfected into SGC7901/VCR cells to up-regulate its expression and the specific antisense inhibitor for miR-15b/miR-16/let-7a was transfected into SGC7901 cells to down-regulate its expression; 4. the effect of miR-15b/miR-16/let-7a on in vitro drug sensitivity of gastric cancer cells (SGC7901、SGC7901/VCR) was determined by MTT assay; 5. The effect of miR-15b/miR-16/let-7a on in vivo drug sensitivity of gastric cancer cells (SGC7901/VCR) was determined by subrenal capsule xenograft assay (SRCA); 6. The putative target genes of miR-15b/miR-16/let-7a were predicted using bioinformatics website or software; 7. The putative target genes of miR-15b/miR-16/let-7a were validated by Western blot, RT-PCR and luciferase reporter assay; 8. The effect of enforced miR-15b or miR-16 expression on drug-induced apoptosis in SGC7901/VCR cells was evaluated using AnnexinV/PI staining flow cytometry and caspase-3/7 activity assay; 9. The effect of let-7a on DNA repair capacity in SGC7901/VCR cells was assessed by host cell reactivation assay.
     【Results】
     1. There are 12 miRNAs differentially expressed (>2 fold) in multidrug-resistant gastric cancer cell line SGC7901/VCR and its parental cell line SGC7901. The up-regulated miRNAs in SGC7901/VCR cell line were miR-302b and miR-492 and the down-regulated miRNAs were let-7a、miR-15b、miR-16、miR-17-5p、miR-20a、miR-23b、miR-106a、miR-106b、miR-196a and miR-320. Among them, some have been implicated in cancer, or known as‘oncomir’, but their involvement in MDR of gastric cancer has yet been reported; 2. In accordance with the microarray data, real-time RT-PCR showed decreased miR-15b, miR-16 and let-7a levels in SGC7901/VCR cells compared with its counterpart; 3. In vitro drug sensitivity assay demonstrated that overexpression of miR-15b/miR-16/let-7a sensitized SGC7901/VCR cells to different anticancer drugs whereas inhibition of them conferred SGC7901 cells multidrug resistance; 4. SRCA in vivo drug sensitivity assay demonstrated that overexpression of miR-15b/miR-16/let-7a sensitized SGC7901/VCR cells to CDDP in vivo; 5. miR-15b and miR-16 belong to miR-15/16 family and exhibit structural homology, thus they potentially target same genes by in silico analysis. Among the numerous putative target genes for miR-15b, miR-16 and let-7a, some are well-defined MDR-related molecules, e.g. Bcl-2 for miR-15b and miR-16, and Ras for let-7a; 6. Compared with precursor control-transfected cells, Bcl-2 protein level in miR-15b or miR-16 precursor-transfected cells were decreased significantly, whereas no visible difference was observed in mRNA level. miR-15b and miR-16 caused a decrease in relative luciferase activity by binding to the target site in Bcl-2 3’UTR which was cloned immediately downstream of luciferase gene coding region. As expected, this suppression was abolished by disrupting the target site; 7. Compared with inhibitor control-transfected cells, H-Ras protein level in let-7a antisense inhibitor-transfected cells were increased significantly, whereas no visible difference was observed in mRNA level. let-7a caused a decrease in relative luciferase activity by binding to the target site in H-Ras 3’UTR which was cloned immediately downstream of luciferase gene coding region; 8. AnnexinV/PI staining flow cytometry and caspase-3/7 activity assay showed that miR-15b or miR-16 precursor-transfected SGC7901/VCR cells exhibited much higher sensitivity to VCR-induced apoptosis compared to precursor control-transfected ones; 9. Host cell reactivation assay revealed that DNA repair capacity in let-7a precursor-transfected SGC7901/VCR cells were greatly depressed compared with precursor control-transfected ones.
     【Conclusions】
     1. miRNAs are differentially expressed in multidrug-resistant gastric cancer cell line and its parental cell line, which suggests that miRNAs may play a role in the development of MDR in gastric cancer cells; 2. miR-15 and miR-16 were demonstrated to modulate MDR phenotype in gastric cancer cells and the underlying mechanism is that miR-15 and miR-16 regulate target gene Bcl-2, thereby modulating the sensitivity of gastric cancer cells to drug-induced apoptosis; 3. let-7a was demonstrated to modulate MDR phenotype in gastric cancer cells and the underlying mechanism is that let-7a regulates target gene H-Ras, thereby modulating DNA repair capacity of gastric cancer cells.
引文
1. Beck WT. The cell biology of multiple drug resistance. Biochem Pharmacol. 1987; 36: 2879.
    2. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002; 2(1):48-58.
    3. Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007; 446(7137): 749-57
    4. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM.Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999; 39:361-98.
    5. Deuchars KL, Ling V. P-glycoprotein and multidrug resistance in cancer chemotherapy. Semin Oncol. 1989; 16(2):156-65.
    6. Zaman GJ, Versantvoort CH, Smit JJ, Eijdems EW, de Haas M, Smith AJ, Broxterman HJ, Mulder NH, de Vries EG, Baas F, et al. Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Res. 1993;53(8):1747-50.
    7. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000; 92(16):1295-302.
    8. Litman T, Brangi M, Hudson E, Fetsch P, Abati A, Ross DD, Miyake K, Resau JH, Bates SE. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci. 2000; 113(11):2011-21.
    9. Ross DD, Keay T, Timmel D, Alexander C, Dignon C, O'Mara A, O'Brien W 3rd. Required training in hospice and palliative care at the University of Maryland School of Medicine. J Cancer Educ. 1999;14(3):132-6.
    10. Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 2003; 22(47):7340-58.
    11. Hamada A, Miyano H, Watanabe H, Saito H. Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther. 2003; 307(2) 824-8.
    12. Chin KV, Ueda K, Pastan I, Gottesman MM.Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science. 1992; 255(5043):459-62.
    13. Rafki N, Liautaud-Roger F, Devy L, Trentesaux C, Dufer J. P53 protein expression in human multidrug-resistant CEM lymphoblasts. Leuk Res. 1997; 21(2):147-52.
    14. Raspollini MR, Amunni G, Villanucci A, Boddi V, Taddei GL. Increased cyclooxygenase-2 (COX-2) and P-glycoprotein-170 (MDR1) expression is associated with chemotherapy resistance and poor prognosis. Analysis in ovarian carcinoma patients with low and high survival. Int J Gynecol Cancer. 2005; 15(2):255-60.
    15. Dunne BM, McNamara M, Clynes M, Shering SG, Larkin AM, Moran E, Barnes C, Kennedy SM. MDR1 expression is associated with adverse survival in melanoma of the uveal tract. Hum Pathol. 1998; 29(6): 594-8.
    16. Hopper E, Belinsky MG, Zeng H, Tosolini A, Testa JR, Kruh GD. Analysis of the structure and expression pattern of MRP7 (ABCC10), a new member of the MRP subfamily. Cancer Lett. 2001; 162(2):181-91.
    17. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: themultidrug resistance-associated proteins. J Natl Cancer Inst. 2000; 92(16), 1295-1302.
    18. Chow KC, Lu MP, Wu MT. Expression of dihydrodiol dehydrogenase plays important roles in apoptosis- and drug-resistance of A431 squamous cell carcinoma. J Dermatol Sci. 2006; 41(3): 205-12.
    19. Mansilla S, Rojas M, Bataller M, Priebe W, Portugal J. Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells. Biochem Pharmacol. 2007; 73(7): 934-42.
    20. Kowalski P, Wichert A, Holm PS, Dietel M, Lage H. Selection and characterization of a high-activity ribozyme directed against the antineoplastic drug resistance-associated ABC transporter BCRP/MXR/ ABCG2. Cancer Gene Ther. 2001; 8(3):185-92.
    21. Ross DD, Gao Y, Yang W, Leszyk J, Shively J, Doyle LA. The 95-kilodalton membrane glycoprotein overexpressed in novel multidrug- resistant breast cancer cells is NCA, the nonspecific cross-reacting antigen of carcinoembryonic antigen. Cancer Res. 1997; 57(24):5460-4
    22. Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone- selected cell lines. J Natl Cancer Inst. 1999; 91(5):429-33.
    23. Hazlehurst LA, Foley NE, Gleason-Guzman MC, Hacker MP, Cress AE, Greenberger LW, De Jong MC, Dalton WS. Multiple mechanisms confer drug resistance to mitoxantrone in the human 8226 myeloma cell line. Cancer Res. 1999; 59(5):1021-8.
    24. Ross DD. Novel mechanisms of drug resistance in leukemia. Leukemia.2000; 14(3):467-73.
    25. Sargent JM, Williamson CJ, Maliepaard M, Elgie AW, Scheper RJ, Taylor CG. Breast cancer resistance protein expression and resistance to daunorubicin in blast cells from patients with acute myeloid leukaemia. Br J Haematol. 2001; 115(2):257-62.
    26. Scheper RJ, Broxterman HJ, Scheffer GL, et al. Overexpression of a (Mr) 110000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance.Cancer Res.1993; 53:1475-1479.
    27. Kitazono M, Okumura H, Ikeda R, Sumizawa T, Furukawa T, Nagayama S, Seto K, Aikou T, Akiyama S. Reversal of LRP-associated drug resistance in colon carcinoma SW-620 cells. Int J Cancer. 2001; 91(1): 126-31.
    28. Kitazono M, Sumizawa T , Takebayashi Y,et al . Multidrug resistance and the lung resistance - related protein in human colon carcinoma SW - 620 cells. J Natl Cancer Inst. 1999; 81:1647-1653.
    29. Izquierdo MA, Scheffer GL, Flens MJ, et al. Major vault protein LRP-related multidrug resistance. Euro J Cancer. 1996; 32:979.
    30. Komiya S, Gebhardt MC, Mangham DC, Inoue A. Role of glutathione in cisplatin resistance in osteosarcoma cell lines. J Orthop Res. 1998; 16(1):15-22.
    31. Yu DS, Ma CP, Chang SY. Establishment and characterization of renal cell carcinoma cell lines with multidrug resistance. Urol Res. 2000; 28(2):86-92.
    32. Satoh T, Nishida M, Tsunoda H, Kubo T. Expression of glutathione S-transferase pi (GST-pi) in human malignant ovarian tumors. Eur J Obstet Gynecol Reprod Biol. 2001; 96(2):202-8.
    33. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science.1984; 226(4673):466-8.
    34. Robinson MJ, Martin BA, Gootz TD, McGuirk PR, Moynihan M, Sutcliffe JA, Osheroff N. Effects of quinolone derivatives on eukaryotic topoisomerase II. A novel mechanism for enhancement of enzyme-mediated DNA cleavage. J Biol Chem. 1991; 266(22):14585-92.
    35. Hoshino K, Sato K, Une T, Osada Y. Inhibitory effects of quinolones on DNA gyrase of Escherichia coli and topoisomerase II of fetal calf thymus. Antimicrob Agents Chemother. 1989; 33(10):1816-8.
    36. Johnston PG, Drake JC, Steinberg SM, Allegra CJ. Quantitation of thymidylate synthase in human tumors using an ultrasensitive enzyme-linked immunoassay. Biochem Pharmacol. 1993; 45(12):2483-6.
    37. Tsurutani J, Komiya T, Uejima H, Tada H, Syunichi N, Oka M, Kohno S, Fukuoka M, Nakagawa K. Mutational analysis of the beta-tubulin gene in lung cancer. Lung Cancer. 2002; 35(1):11-6.
    38. Murakami J, Lee YJ, Kokeguchi S, Tsujigiwa H, Asaumi J, Nagatsuka H, Fukui K, Kuroda M, Tanaka N, Matsubara N. Depletion of O6-methylguanine-DNA methyltransferase by O6-benzylguanine enhances 5-FU cytotoxicity in colon and oral cancer cell lines. Oncol Rep. 2007; 17(6):1461-7.
    39. Kokkinakis DM, Ahmed MM, Chendil D, Moschel RC, Pegg AE. Sensitization of pancreatic tumor xenografts to carmustine and temozolomide by inactivation of their O6-Methylguanine-DNA methyltransferase with O6-benzylguanine or O6-benzyl-2'-deoxyguanosine. Clin Cancer Res. 2003; 9:3801-7.
    40. Park SY, Lam W, Cheng YC. X-ray repair cross-complementing gene I protein plays an important role in camptothecin resistance. Cancer Res.2002; 62(2):459-65.
    41. Weaver DA, Crawford EL, Warner KA, Elkhairi F, Khuder SA, Willey JC. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines. Mol Cancer. 2005; 4(1):18.
    42. Li Q, Yu JJ, Mu C, Yunmbam MK, Slavsky D, Cross CL, et al. Association between the level of ERCC-1 expression and the repair of cisplatin-induced DNA damage in human ovarian cancer cells. Anticancer Res 2000; 20:645-52.
    43. Simon GR, Sharma S, Cantor A, Smith P, Bepler G. ERCC1 expression is a predictor of survival in resected patients with non-small cell lung cancer. Chest 2005; 127:978-83.
    44. Kwon HC, Roh M, Oh S, Kim SH, Kim M, Kim JS, et al. Prognostic value of expression of ERCC1, thymidylate synthase, and glutathione S-transferase P1 for 5-fluorouracil/oxaliplatin chemotherapy in advanced gastric cancer. Ann Oncol 2007; 18:504-9.
    45. Chen ZP, Malapetsa A, Monks A, Myers TG, Mohr G, Sausville EA, Scudiero DA, Panasci LC. Nucleotide excision repair protein levels and anticancer drug resistance in 60 human tumor cell lines. Ai Zheng. 2002; 21(3):233-9.
    46. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002; 108(2):153-64.
    47. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000; 256(1):42-9.
    48. Matsuhashi N, Saio M, Matsuo A, Sugiyama Y, Saji S. The evaluation of gastric cancer sensitivity to 5-FU/CDDP in terms of induction of apoptosis:time- and p53 expression-dependency of anti-cancer drugs. Oncol Rep. 2005; 14(3):609-15.
    49. Yeh KH, Shun CT, Chen CL, Lin JT, Lee WJ, Lee PH, Chen YC, Cheng AL. Overexpression of p53 is not associated with drug resistance of gastric cancers to 5-fluorouracil-based systemic chemotherapy. Hepatogastroenterology. 1999; 46(25):610-5.
    50. Reed JC. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 1995;7:541-6.
    51. Liu Q, Gazitt Y. Potentiation of dexamethasone-, paclitaxel-, and Ad-p53-induced apoptosis by Bcl-2 antisense oligodeoxynucleotides in drug-resistant multiple myeloma cells. Blood. 2003; 101(10): 4105-14.
    52. Chang J, Ormerod M, Powles TJ, et al. Apoptosis and proliferation as predictors of chemotherapy response in patients with breast carcinoma. Cancer. 2000; 89:2145-52.
    53. Friesen C, Herr I, Krammer PH, Debatin KM. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med. 1996; 2(5):574-7.
    54. Fulda S, Susin SA, Kroemer G, Debatin KM. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res. 1998 Oct 1;58(19):4453-60.
    55. Herr I, Posovszky C, Di Marzio LD, Cifone MG, Boehler T, Debatin KM. Autoamplification of apoptosis following ligation of CD95-L, TRAIL and TNF-alpha. Oncogene. 2000; 19(37): 4255-62.
    56. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997; 349:1498-504.
    57. Alberts SR, Cervantes A, van de Velde CJ. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol. 2003;14:31-36.
    58. Xia S, Yu S, Yuan X. Effects of hypoxia on expression of P-gp and mutltidrug resistance protein in human lung adenocarcinoma A549 cell line. Huazhong Univ Sci Technolog Med Sci. 2005;25(3):279-81.
    59. Kim DH,Park JY,et al. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int J Cancer.2005; 114(2):219-23.
    60. Fan K, Fan D, Cheng LF, et al. Expression of multidrug resistance-related markers in gastric cancer. Anticancer Res. 2000; 20(6C): 4809-14.
    61. Zhao Y, You H, Fan D,et al. Differentially expressed gene profiles between multidrug resistant gastric adenocarcinoma cells and their parental cells. Cancer Lett. 2002; 185(2): 211-8.
    62. Wang X, Lan M, Shi YQ, Lu J, Zhong YX, Wu HP, Zai HH, Ding J, Wu KC, Pan BR, Jin JP, Fan DM. Differential display of vincristine-resistance-related genes in gastric cancer SGC7901 cell. World J Gastroenterol. 2002; 8(1):54-9.
    63. Sun L, Shi Y, Guo C, Yao L, Lin T, Du J, Han Q, Han Y, Fan D. Regulation of multidrug resistance by MGr1-antigen in gastric cancer cells. Tumour Biol. 2006; 27(1): 27-35.
    64. Liu L, Ning X, Sun L, Shi Y, Han S, Guo C, Chen Y, Sun S, Yin F, Wu K, Fan D. Involvement of MGr1-Ag/37LRP in the vincristine-induced HIF-1 expression in gastric cancer cells. Mol Cell Biochem. 2007; 303(1-2):151-60.
    65. Hao Z, Li X, Qiao T, Du R, Hong L, Fan D. CIAPIN1 confers multidrug resistance by upregulating the expression of MDR-1 and MRP-1 in gastriccancer cells. Cancer Biol Ther. 2006 Mar;5(3):261-6.
    66. Shi Y, Hu W, et al. Regulation of drug sensitivity of gastric cancer cells by human calcyclin-binding protein (CacyBP). Gastric Cancer. 2004; 7(3):160-6.
    67. Zhang YM, Zhao YQ, Pan YL, Shi YQ, Jin XH, Yi H, Fan DM. Effect of ZNRD1 gene antisense RNA on drug resistant gastric cancer cells. World J Gastroenterol. 2003; 9(5): 894-8.
    68. Hong L, Qiao T, Han Y, Han S, Zhang X, Lin T, Gao J, Zhao P, Chen Z, Fan D. ZNRD1 mediates resistance of gastric cancer cells to methotrexate by regulation of IMPDH2 and Bcl-2. Biochem Cell Biol. 2006; 84(2): 199-206.
    69. Yin F, Du Y, Hu W, Qiao T, Ding J, Wu K, Liu Z, Fan D. Mad2beta, an alternative variant of Mad2 reducing mitotic arrest and apoptosis induced by adriamycin in gastric cancer cells. Life Sci. 2006 Feb 16;78(12):1277-86.
    70. Shi Y, Zhai H, Wang X, Han Z, Liu C, Lan M, Du J, Guo C, Zhang Y, Wu K, Fan D. Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Exp Cell Res. 2004; 296(2):337-46.
    71. Du J,Pan Y,Shi Y,et al. Overexpression and significance of prion protein in gastric cancer and multidrug-resistant gastric carcinoma cell line SGC7901/ADR. Int J Cancer. 2005; 113:213-220.
    72. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75:843-54.
    73. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403:901-6.
    74. Ambros, V. et al. A uniform system for microRNA annotation. RNA. 2003; 9:277-9.
    75. Berezikov E, Cuppen E, Plasterk RH. Approaches to microRNA discovery. Nat Genet. 2006; 38 Suppl:S2-7.
    76. Bentwich I. Prediction and validation of microRNAs and their targets. FEBS Lett. 2005; 579:5904–5910.
    77. Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics. 2005; 37:766-70.
    78. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281-97.
    79. Hurteau GJ, Spivack SD, Brock GJ. Potential mRNA degradation targets of hsa-miR-200c, identified using informatics and qRT-PCR. Cell Cycle. 2006; 5(17):1951-6.
    80. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006; 6(4):259-69.
    81. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005; 120, 21–4.
    82. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004; 14:1902-10.
    83. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005; 11:241-7.
    84. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs andmiRNAs exhibit strand bias. Cell 115, 209–216 (2003).
    85. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).
    86. Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).
    87. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).
    88. John, B. et al. Human microRNA targets. PLoS Biol. 2, e363 (2004). Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).
    89. Pasquinelli, A., Reinhart, B., Slack, F., Maller, B. & Ruvkun, G. Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide C. elegans let-7 heterochronic regulatory RNA. Nature 2000; 408, 86-89.
    90. Vella, M. C., Reinert, K. & Slack, F. J. Architecture of a validated microRNA::target interaction. Chem. Biol. 11, 1619–1623 (2004).
    91. Reinhart, B. et al. The 21 nucleotide let-7 RNA regulates C. elegans developmental timing. Nature 403, 901–906 (2000).
    92. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005)
    93. Hipfner, D. R., Weigmann, K. & Cohen, S. M. The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537 (2002).
    94. Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795 (2003).
    95. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005; 33(4):1290-7.
    96. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci.USA 2005; 102, 13944–9.
    97. Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005; 65, 6029–33.
    98. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2006 Oct 30;
    99. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007.
    100.Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M, Jackson AL, Carleton M, Lim L. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 2007; 27(6):2240 -52.
    101.Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004; 303, 83–6.
    102.Thai TH, Calado DP, Casola S et al.: Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).
    103.Zhou B, Wang S, Mayr C et al.: miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc. Natl Acad. Sci. USA 104, 7080–7085 (2007).
    104.Esau, C. et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol.Chem. 279, 52361–52365 (2004).
    105.Chen JF, Mandel EM, Thomson JM et al.: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006)
    106.van Rooij E, Sutherland LB, Qi X et al.: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).
    107.van Rooij E, Sutherland LB, Liu N et al.: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006).
    108.Zhao Y, Ransom JF, Li A et al.: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell 129, 303–317 (2007).
    109.Poy MN, Eliasson L, Krutzfeldt J et al.: A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004).
    110.Krutzfeldt J, Rajewsky N, Braich R et al.: Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005).
    111.Boehm M, Slack FJ: MicroRNA control of lifespan and metabolism. Cell Cycle 5, 837–840 (2006).
    112.Kulshreshtha R, Ferracin M, Wojcik SE et al.: A microRNA signature of hypoxia. Mol. Cell. Biol. 27, 1859–1867 (2007).
    113.Taganov KD, Boldin MP, Baltimore D: MicroRNAs and immunity: tiny players in a big field. Immunity 26, 133-137 (2007).
    114.Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101:2999-3004.
    115.Calin, G. A. et al. Frequent deletions and downregulation of micro-RNAgenes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).
    116.Sonoki, T., Iwanaga, E., Mitsuya, H. & Asou, N. Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 19, 2009–2010 (2005).
    117.Chen CZ, Lodish HF. MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol. 2005; 17(2):155-65
    118.Tam W, Dahlberg JE. miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer. 2006; 45(2):211-2.
    119.Calin GA, Ferracin M, Cimmino A et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353, 1793–1801 (2005).
    120.Iorio MV,Ferracin M,Liu CG.MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005; 65(15):7065-7070.
    121.Yanaihara N, Caplen N, Bowman E et al.: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006; 9:189-198.
    122.Takamizawa J, Konishi H, Yanagisawa K. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004; 64:3753-3756.
    123.Lu J, Getz G, Miska EA et al.: MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).
    124.Volinia S, Calin GA, Liu CG et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 2006;103, 2257-2261.
    125.Ota A, Tagawa H, Karnan S et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31–32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004).
    126.Tagawa H, Seto M: A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19, 2013–2016 (2005).
    127.He L, Thomson JM, Hemann MT et al.: A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).
    128.Dews M. Augmentation of tumor angiogenesis by a Myc-activated microRNAs cluster. Nat. Genet. 38, 1060–1065 (2006).
    129.O’Donnell KA, Wentzel EA, Zeller KI. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005; 435, 839-843.
    130.Hayashita Y, Osada H, Tatematsu Y et al.: A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005).
    131.Matsubara H, Takeuchi T, Nishikawa E et al.: Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene (2007)
    132.Hossain A, Kuo MT, Saunders GF et al.: MiR-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell. Biol. 26, 8191–8201 (2006).
    133.Tam W: Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene 274, 157–167 (2001).
    134.Kluiver J, Poppema S, de Jong D et al.: BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249 (2005).
    135.Metzler M, Wilda M, Busch K et al.: A high expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 167–169 (2004).
    136.Tam W, Dahlberg JE: miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer 45, 211–212 (2006).
    137.Thai TH, Calado DP, Casola S et al.: Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).
    138.Rodriguez A, Vigorito E, Clare S et al.: Requirement of bic/microRNA-155 for normal immune function. Science 316, 608 (2007).
    139.Martin MM, Lee EJ, Buckenberger JA et al.MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J. Biol. Chem. 281, 18277–18284 (2006).
    140.Costinean S, Zanesi N, Pekarsky Y et al.: Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc. Natl Acad. Sci. USA 103, 7024–7029 (2006).
    141.Meng F, Henson R, Lang et al.: Involvement of human microRNAs in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130, 2113–2129 (2006).
    142.Zhu S, Si ML, Wu H et al.: MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. (2007)
    143.Johnson SM, Grosshans H, Shingara J et al.: RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).
    144.Lee YS, Dutta A: The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. DOI: 10.1101/gad.1540407 (2007)
    145.Mayr C, Hemann MT, Bartel DP: Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579(2007).
    146.Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D, Slack FJ. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007; 67(16):7713-22.
    147.Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007; 131(6):1109-23.
    148.Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003 Oct;1(12):882-91.
    149.Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J. Prognostic Values of microRNAs in Colorectal Cancer. Biomark Insights. 2006;2:113-121.
    150.Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 2007;56:248-53.
    151.Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008 Jan 15;68(2):425-33.
    152.Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z, Liu CG, Reinhold W, Lorenzi PL, Kaldjian EP, Croce CM, Weinstein JN, et al. MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 2007;6:1483-91.
    153.Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, Weinstein JN, Sadee W. MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther. 2008 Jan;7(1):1-9.
    154.Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 2007; 67(23):11111-6.
    155.Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol. 2007; 310(2):442-53.
    156.Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P, Mittal K, Soteropoulos P, Wei JJ. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007; 46(4):336-47.
    157.Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, Sevignani C, Byrne D, Negrini M, Pagano F, Gomella LG, Croce CM, Baffa R. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol. 2007; 25(5):387-92.
    158.Landais S, Landry S, Legault P, Rassart E. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 2007; 67(12):5699-707.
    159.Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, Ruco LP, Baldassarre G, Croce CM, Vecchione A. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis ingastric cancer. Cancer Cell. 2008 Mar;13(3):272-86.
    160.Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, Kobayashi SV, Lim L, Burchard J, Jackson AL, Linsley PS, Cleary MA. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol. 2008; 28(7):2167-74.
    161.Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008; 132(5):875-86.
    162.Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007; 297(17):1901-8.
    163.Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, Sharp PA, Tabin CJ, McManus MT. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet. 2004; 36(10):1079-83.
    164.Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006; 12:913-20.
    165.Cai X, Zhang X, Fan D. Cytogenetic alteration associated with the acquisition of resistance to VCR, MTX of the human gastric cancer cell lines SGC7901. J Gastroenterology Hepatology 1993; 8S:226.
    166.Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438:685-9.
    167.Bogden AE, Cobb WR, Kelton DE, LePage D, Remington K, Cote TH. A six-day subrenal capsule assay for drug screening using the normal immunocompetent mouse as host for human tumor xenografts. Proc Am Assoc Cancer Res/Am Soc Clin Oncol 1978; 19:105.
    168.Bogden AE, Haskell PM, LePage DL, Kelton DE, Cobb WR, Esber HJ. Growth of human tumor xenografts implanted under the renal capsule of normal immunocompetent mice. Exp Cell Biol 1979; 47:281-93.
    169.Levi FA, Blum JP, Lemaigre G, Bourut C, Reinberg A, Mathe G. A four-day subrenal capsule assay for testing the effectiveness of anticancer drugs against human tumors. Cancer Res 1984; 44:2660-7.
    170.Dumont P, van der Esch EP, Jabri M, Lejeune F Atassi G. Chemosensitivity of human melanoma xenografts in immunocompetent mice and its histological evaluation. Int J Cancer 1984; 33: 447-51.
    171.Bennett JA, Nguyen M, Pilon V, MacDowell RT. Histopathological changes induced by human colon cancer xenografts implanted under the kidney capsule of immunocompetent and immunosuppressed mice. Proc Am Assoc Cancer Res 1984; 25:372.
    172.Bennett JA, Pilon VA, MacDowell RT. Evaluation of growth and histology of human tumor xenografts implanted under the renal capsule of immunocompetent and immunode-deficient mice. Cancer Res 1985; 45:4963-9.
    173.Fingert HJ, Treiman A, Pardee AB. Transplantation of human or rodent tumors into cyclosporine-treated mice: a feasible model for studies of tumor biology and chemotherapy. Proc Natl Acad Sci USA 1984; 81:7927-31.
    174.Reed JC. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 1995;7:541-6.
    175.Cho HJ, Jeong HG, Lee JS, Woo ER, Hyun JW, Chung MH, You HJ. Oncogenic H-Ras enhances DNA repair through the Ras/phosphatidylinositol 3-kinase/Rac1 pathway in NIH3T3 cells. Evidence for association with reactive oxygen species. J Biol Chem. 2002; 277:19358-66.
    176.Youn CK, Kim MH, Cho HJ, Kim HB, Chang IY, Chung MH, You HJ. Oncogenic H-Ras up-regulates expression of ERCC1 to protect cells from platinum-based anticancer agents. Cancer Res. 2004; 64:4849-57.
    177.Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000; 256:42-9.
    178.Houghton JA, Harwood FG, Tillman DM. Thymineless death in colon carcinoma cells is mediated via Fas signaling. Proc Natl Acad Sci USA 1997; 94:8144-9.
    179.Tillman DM, Petak I, Houghton JA. A Fas dependent component in 5-fluorouracil/ leucovorin-induced cytotoxicity in colon carcinoma cells. Clin Cancer Res 1999;5:425–30.
    180.Park IC, Park MJ, Hwang CS, Rhee CH, Whang DY, Jang JJ, Choe TB, Hong SI, Lee SH. Mitomycin C induces apoptosis in a caspases-dependent and Fas/CD95-independent manner in human gastric adenocarcinoma cells. Cancer Lett 2000; 158:125-32.
    181.Kang YH, Lee KA, Ryu CJ, Lee HG, Lim JS, Park SN, Paik SG, Yoon DY. Mitomycin C induces apoptosis via Fas/FasL dependent pathway and suppression of IL-18 in cervical carcinoma cells. Cancer Lett 2006; 237:33-44.
    182.Nakamura Y, Sato H, Motokura T. Development of multidrug resistance due to multiple factors including P-glycoprotein overexpression underK-selection after MYC and HRAS oncogene activation. Int J Cancer. 2006; 118:2448-54.
    183.McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007; 1773:1263-84.
    184.Eskandarpour M, Kiaii S, Zhu C, Castro J, Sakko AJ, Hansson J. Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells. Int J Cancer. 2005; 115:65-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700