原发性胆汁性肝硬化患者外周血T细胞microRNA表达谱及其调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在探讨原发性胆汁性肝硬化中T细胞microRNA(miRNA)表达谱及其调控机制。首先采用芯片和定量PCR技术分析并验证原发性胆汁性肝硬化中T细胞miRNA的表达谱;然后培养自身抗原PDC-E2特异性T细胞,研究特定miRNA对其自身反应性的调控作用;接着建立原发性胆汁性肝硬化小鼠模型,研究特定miRNA对小鼠PBC样病变的调控作用;最后通过生物信息学预测和生物学实验验证,探讨特定miRNA可能的靶基因及其作用位点。结果表明,与正常对照组相比,PBC患者T细胞中有23个miRNA低表达,仅有2个miRNA高表达;miR-1et-7b、miR-17-5p、miR-20a和miR-346表达可抑制自身抗原特异性T细胞增殖和IFN-γ、TNF-α的分泌,而miR-129和miR-451可促进细胞增殖和IFN-γ、TNF-α的分泌;在小鼠中输入Ad-miR-17-5p或Ad-miR-346可延缓由poly I:C诱发产生的PBC样病变;miR-17-5p、miR-346的靶基因分别为TNFRSF21、BCL-6,作用位点分别为TNFRSF21 3'UTR区335-342位和BCL-63'UTR区576-583及893-900位。
To explore the RNA mechanism of PBC,we focus on the microRNA(miRNA) profile in the peripheral blood T cells of PBC and study on the action mechanism of miRNA in PBC.We first explored changes in the miRNA expression profile in the peripheral blood T cells of PBC patients by microarray and real-time PCR,then investigated the regulatory effects of some miRNA abnormally expressed in PBC on the proliferation of PDC-E2-specific autoreactive T cells.Subsequently,the effects of miRNA on the pathology of PBC disease were studied in animal models.Finally,miRNA target genes were predicted by bioinformatics and the effect of miRNA on the function of target genes was determined.The results showed that Twenty-three miRNA in the array were found to be expressed in low levels and two miRNA had high levels of expression in the peripheral blood T cells of patients with PBC.The proliferation and secretion of IFN-γ,TNF-αof autoantigen-specific T cells were inhibited by miR-let-7b,miR-17-5p,miR-20a,miR-346 and promoted by miR-129,miR-451.Injecting poly I:C into syngenic wild-type mice produced PBC-like pathological changes,which were alleviated following injection of Ad-miR-17-5p or Ad-miR-346.The target gene of miR-17-5p,miR-346 is TNFRSF21, BCL-6.The interaction sites are TNFRSF21 3' UTR 335-342,BCL-6 3' UTR 576-583 and 893-900.
引文
1. VI Reshetnyak. Concept on the pathogenesis and treatment of primary biliary cirrhosis. World J Gastroenterol 2006; 12(45):7250-62.
    2. RF Liermann Garcia, C Evangelista Garcia, P McMaster, J Neuberger. Transplantation for primary biliary cirrhosis: retrospective analysis of 400 patients in a single center. Hepatology 2001; 33(1):22-7.
    3. XH Jiang, RQ Zhong, XY Fan, Y Hu, F An, JW Sun, XT Kong. Characterization of M2 antibodies in asymptomatic Chinese population. World J Gastroenterol 2003; 9(9):2128-31.
    4. DP Bogdanos, D Vergani. Origin of cross-reactive autoimmunity in primary biliary cirrhosis. Liver Int 2006; 26(6):633-5.
    5. Y Ichiki, PS Leung, H Ishibashi, RL Coppel, AA Ansari, ME Gershwin. Mitochondria and autoimmunity in primary biliary cirrhosis. Mitochondrion 2004; 4(5-6):743-53.
    6. I Sutton, J Neuberger. Primary biliary cirrhosis: seeking the silent partner of autoimmunity. Gut 2002; 50(6):743-6.
    7. N Bushati, SM Cohen. microRNA functions. Annu Rev Cell Dev Biol 2007; 23:175-205.
    8. S Volinia, GA Calin, CG Liu et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103(7):2257-61.
    9. P Guglielmelli, L Tozzi, A Pancrazzi et al. MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exp Hematol 2007; 35(11):1708-18.
    10. S Sassen, EA Miska, C Caldas. MicroRNA-implications for cancer. Virchows Arch 2008;452(1):1-10.
    11. RM O'Connell, KD Taganov, MP Boldin, G Cheng, D Baltimore. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A 2007; 104(5):1604-9.
    12. TH Thai, DP Calado, S Casola et al. Regulation of the germinal center response by microRNA-155. Science 2007; 316(5824):604-8.
    13. A Rodriguez, E Vigorito, S Clare et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316(5824):608-11.
    14. S Shimoda, K Harada, H Niiro et al. Biliary epithelial cells and primary biliary cirrhosis: The role of liver-infiltrating mononuclear cells. Hepatology 2008.
    15. S Shimoda, F Ishikawa, T Kamihira et al. Autoreactive T-cell responses in primary biliary cirrhosis are promflammatory whereas those of controls are regulatory. Gastroenterology 2006; 131(2):606-18.
    16. E van Rooij, EN Olson. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 2007; 117(9):2369-76.
    17. S Latinovic-Golic, M Walch, H Sundstrom, C Dumrese, P Groscurth, U Ziegler. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes. BMC Immunol 2007; 8:9.
    18. EJ Heathcote. Management of primary biliary cirrhosis. The American Association for the Study of Liver Diseases practice guidelines. Hepatology 2000; 31(4): 1005-13.
    19. MM Kaplan, ME Gershwin. Primary biliary cirrhosis. N Engl J Med 2005; 353(12): 1261-73.
    20. XS He, AA Ansari, WM Ridgway, RL Coppel, ME Gershwin. New insights to the immunopathology and autoimmune responses in primary biliary cirrhosis. Cell Immunol 2006;239(1):1-13.
    21. H Kita, S Matsumura, XS He et al. Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 2002; 109(9): 1231-40.
    22. DJ Guarnieri, RJ Dileone. MicroRNAs: A new class of gene regulators. Ann Med 2008; 40(3): 197-208.
    23. J Takamizawa, H Konishi, K Yanagisawa et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64(11):3753-6.
    24. O Slaby, M Svoboda, P Fabian, T Smerdova, D Knoflickova, M Bednarikova, R Nenutil, R Vyzula. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of Colorectal cancer. Oncology 2007; 72(5-6):397-402.
    25. J Kluiver, E Haralambieva, D de Jong, T Blokzijl, S Jacobs, BJ Kroesen, S Poppema, A van den Berg. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 2006; 45(2): 147-53.
    26. MV Iorio, M Ferracin, CG Liu et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65(16):7065-70.
    27. GM Kasof, JJ Lu, D Liu, B Speer, KN Mongan, BC Gomes, MV Lorenzi. Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene 2001; 20(55):7965-75.
    28. M Miozzo, C Selmi, B Gentilin et al. Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis. Hepatology 2007; 46(2):456-62.
    29. H Miyakawa, A Tanaka, C Selmi et al. Serum reactivity against bacterial pyruvate dehydrogenase: increasing the specificity of anti-mitochondrial antibodies for the diagnosis of primary biliary cirrhosis. Clin Dev Immunol 2006; 13(2-4):289-94.
    30. DP Bogdanos, H Baum, A Grasso et al. Microbial mimics are major targets of crossreactivity with human pyruvate dehydrogenase in primary biliary cirrhosis. J Hepatol 2004; 40(1):31-9.
    31. T Dalmay. MicroRNAs and cancer. J Intern Med 2008; 263(4):366-75.
    32. AJ Lowery, N Miller, RE McNeill, MJ Kerin. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res 2008; 14(2):360-5.
    33. S Shimoda, M Nakamura, H Ishibashi, K Hayashida, Y Niho. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 1995; 181(5):1835-45.
    34. AA Kaspar, S Okada, J Kumar et al. A distinct pathway of cell-mediated apoptosis initiated by granulysin. J Immunol 2001; 167(1):350-6.
    35. MN Nikiforova, GC Tseng, D Steward, D Diorio, YE Nikiforov. MicroRNA Expression Profiling of Thyroid Tumors: Biological Significance and Diagnostic Utility. J Clin Endocrinol Metab 2008.
    36. J Tinmouth, M Lee, IR Wanless, FW Tsui, R Inman, EJ Heathcote. Apoptosis of biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. Liver 2002; 22(3):228-34.
    37. DE Jones. T-cell autoimmunity in primary biliary cirrhosis. Clin Sci (Lond) 1996; 91(5):551-8.
    38. Y Ichiki, S Shimoda, H Hara, H Shigematsu, M Nakamura, K Hayashida, H Ishibashi, Y Niho. Analysis of T-cell receptor beta of the T-cell clones reactive to the human PDC-E2 163-176 peptide in the context of HLA-DR53 in patients with primary biliary cirrhosis. Hepatology 1997; 26(3):728-33.
    39. M Yamashiki, Y Kosaka, A Nishimura, S Watanabe, M Nomoto, F Ichida. Analysis of serum cytokine levels in primary biliary cirrhosis patients and healthy adults. J Clin Lab Anal 1998; 12(2):77-82.
    40. DE Jones, FE Watt, J Grove et al. Tumour necrosis factor-alpha promoter polymorphisms in primary biliary cirrhosis. J Hepatol 1999; 30(2):232-6.
    41. M Neuman, P Angulo, I Malkiewicz et al. Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J Gastroenterol Hepatol 2002; 17(2): 196-202.
    42. TK Mao, PA Davis, JA Odin, RL Coppel, ME Gershwin. Sidechain biology and the immunogenicity of PDC-E2, the major autoantigen of primary biliary cirrhosis. Hepatology 2004;40(6):1241-8.
    43. C Okada, SM Akbar, N Horiike, M Onji. Early development of primary biliary cirrhosis in female C57BL/6 mice because of poly I:C administration. Liver Int 2005; 25(3):595-603.
    44. Z Ben-Ari, H Weiss-Schmilovitz, J Sulkes et al. Serum cholestasis markers as predictors of early outcome after liver transplantation. Clin Transplant 2004; 18(2): 130-6.
    45. KL Berkner, PA Sharp. Generation of adenovirus by transfection of plasmids. Nucleic Acids Res 1983; 11(17):6003-20.
    46. K Jooss, N Chirmule. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther 2003; 10(11):955-63.
    47. DA Muruve. The innate immune response to adenovirus vectors. Hum Gene Ther 2004; 15(12):1157-66.
    48. ZC Hartman, DM Appledorn, A Amalfitano. Adenovirus vector induced innate immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 2008; 132(1-2):1-14.
    49. SJ Sawchuk, GP Boivin, LE Duwel, W Ball, K Bove, B Trapnell, R Hirsch. Anti-T cell receptor monoclonal antibody prolongs transgene expression following adenovirus-mediated in vivo gene transfer to mouse synovium. Hum Gene Ther 1996; 7(4):499-506.
    50. DA Einfeld, PW Roelvink. Advances towards targetable adenovirus vectors for gene therapy. Curr Opin Mol Ther 2002; 4(5):444-51.
    51. D Xia, T Moyana, J Xiang. Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res 2006; 16(3):241-59.
    52. J Krutzfeldt, N Rajewsky, R Braich, KG Rajeev, T Tuschl, M Manoharan, M Stoffel. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438(7068):685-9.
    53. G Stefani, FJ Slack. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008; 9(3):219-30.
    54. C Welch, Y Chen, RL Stallings. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26(34):5017-22.
    55. DG Romero, MW Plonczynski, CA Carvajal, EP Gomez-Sanchez, CE Gomez-Sanchez. MicroRNA-21 Increases Aldosterone Secretion and Proliferation in H295R Human Adrenocortical Cells. Endocrinology 2008.
    56. E Wienholds, RH Plasterk. MicroRNA function in animal development. FEBS Lett 2005; 579(26):5911-22.
    57. S Tsuchiya, Y Okuno, G Tsujimoto. MicroRNA: biogenetic and functional mechanisms and involvements in cell differentiation and cancer. J Pharmacol Sci 2006; 101(4):267-70.
    58. W Filipowicz, SN Bhattacharyya, N Sonenberg. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9(2): 102-14.
    59. M Kato, FJ Slack. microRNAs: small molecules with big roles - C. elegans to human cancer. Biol Cell 2008; 100(2):71-81.
    60. DE Kuhn, MM Martin, DS Feldman, AV Terry, Jr., GJ Nuovo, TS Elton. Experimental validation of miRNA targets. Methods 2008; 44(1):47-54.
    61. RC Lee, RL Feinbaum, V Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5):843-54.
    62. FA Cucinotta, JW Wilson, JR Williams, JF Dicello. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO. Radiat Meas 2000; 32(3): 181-91.
    63. N Rajewsky. microRNA target predictions in animals. Nat Genet 2006; 38 Suppl:S8-13.
    64. AJ Enright, B John, U Gaul, T Tuschl, C Sander, DS Marks. MicroRNA targets in Drosophila. Genome Biol 2003; 5(1):R1.
    65. A Krek, D Grun, MN Poy et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5):495-500.
    66. BP Lewis, CB Burge, DP Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20.
    67. S Romagnani. Immunological tolerance and autoimmunity. Intern Emerg Med 2006; 1(3): 187-96.
    68. A Khoruts, MK Jenkins. Studying immunological tolerance by physically monitoring antigen-specific T cells in vivo. Ann N Y Acad Sci 1996; 778:72-9.
    69. CS Schmidt, J Zhao, J Chain et al. Resistance to myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis by death receptor 6-deficient mice. J Immunol 2005; 175(4):2286-92.
    70. MJ McGeachy, SM Anderton. Cytokines in the induction and resolution of experimental autoimmune encephalomyelitis. Cytokine 2005; 32(2):81-4.
    71. S Parekh, JM Polo, R Shaknovich et al. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 2007; 110(6):2067-74.
    72. A Hossain, MT Kuo, GF Saunders. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 2006; 26(21):8191-201.
    1.Ambros V,Horvitz HR.Heterochronic mutants of the nematode Caenorhabditis elegans[J].Science,1984,226:409-416.
    2.Rane S,Sayed D,Abdellatif M,et al.MicroRNA with a macrofunction[J].Cell Cycle,2007,6:1850-1855.
    3.Sun M,Hurst LD,Carmichael GG,et al.Evidence for a preferential targeting of 3'-UTRs by cis-encoded natural antisense transcripts[J].Nucleic Acids Res,2005,33:5533-5543.
    4.Liu J,Sanchez MAV,Harmon GJ,et al.MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies[J].Nat Cell Biol,2005,7:719-723.
    5.Kobayashi T,Chappell JD,Danthi P,et al.Gene-specific inhibition of reovirus replication by RNA interference[J].J Virol,2006,80:9053-9063.
    6.Cullen BR.Viruses and microRNAs[J].Nat Genet,2006,38:S25-S30.
    7.Leonard JN,Schaffer DV.Antiviral RNAi therapy:emerging approaches for hitting a moving target[J].Gene Therapy,2006,13:532-540.
    8.Konstantinova P,de Vries W,Haasnoot J,et al.Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA[J].Gene Therapy,2006,13:1403-1413.
    9.Grimm D,Streetz KL,Jopling CL,et al.Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways[J].Nature,2006,441:537-541.
    10.Stem-Ginossar N,Elefant N,Zimmermann A,et al.Host immune system gene targeting by a viral miRNA[J].Science,2007,317:376-81.
    11.Taganov KD,Boldin MP,Chang KJ,et al.NF-κB-dependent induction of microRNA miR-146,an inhibitor targeted to signaling proteins of innate immune responses[J].Proc Natl Acad Sci,2006,103:12481-12486.
    12.Rodriguez A,Vigorito E,Clare S,et al.Requirement of bic/microRNA-155 for normal immune function[J].Science,2007,316:608-11.
    13.O'Connell RM,Taganov KD,Boldin MP,et al.MicroRNA-155 is induced during the macrophage inflammatory response[J].Proc Natl Acad Sci,2007,104:1604-9.
    14.Jing Q,Huang S,Guth S,Zarubin T,Motoyama A,Chen J et al.Involvement of microRNA in AU-rich element-mediated mRNA instability[J].Cell,2005,120:623-634.
    1.Ueno Y,Moritoki Y,Shimosegawa T,et al.Primary biliary cirrhosis:what we know and what we want to know about human PBC and spontaneous PBC mouse models[J].J Gastroenterol.2007,42:189-95.
    2.Edward H,Ahrens Jr,Kunkel HG.The relationship between serum lipids and skin xanthomata in 18 patients with primary biliary cirrhosis[J].J Clin Invest,1949,28:1565-1574.
    3.Fuertes I,Espinosa G,Ramos-Casals M,et al.Association of Sjogren syndrome,autoimmune thyroiditis,sarcoidosis,primary biliary cirrhosis and primary amyloidosis in a single patient[J].Rev Clin Esp,2007,207:376.
    4.Heathcote EJ.Management of primary biliary cirrhosis.The American Association for the Study of Liver Diseases practice guidelines.Hepatology,2000;31:1005-1013.
    5.Invemizzi P.Role of X chromosome defects in primary biliary cirrhosis[J].Hepatol Res,2007,37:S384-8.
    6..刘海英,邓安梅,张建,等.原发性胆汁性肝硬化患者人类白细胞抗原等位基因多态性分析[J].中华肝脏病杂志,2005,13:410-413.
    7.Lazaridis KN,Juran BD,Boe GM,et al.Increased prevalence of antimitochondrial antibodies in first-degree relatives of patients with primary biliary cirrhosis[J].Hepatology,2007,46:785-792.
    8.Tanaka A,Nezu S,Uegaki S,et al.The clinical significance of IgA antimitochondrial antibodies in sera and saliva in primary biliary cirrhosis[J].Ann N Y Acad Sci,2007,1107:259-270.
    9.Kita H,Lian ZX,Van De Water J,et al.Identification of HLA-A2-restricted CD8(+)cytotoxic T cell responses in primary biliary cirrhosis:T cell activation is augmented by immune complexes cross-presented by dendritic cells[J].J Exp Med,2002,195:113-23.
    10.Lindor K.Ursodeoxycholic acid for the treatment of primary biliary cirrhosis[J].N Engl J Med,2007,357:1524-1529.
    11.张福奎,贾继东.熊去氧胆酸治疗原发性胆汁性肝硬化[J].肝脏,2007,12:210-212.
    12.闫惠平,庄辉,刘燕敏,等.原发性胆汁性肝硬化患者的免疫学特点分析[J].中华肝脏病杂志2005,13:12-16.
    13.姚光弼.中国人原发性胆汁性肝硬化的前瞻性研究[J].肝脏,2002,7:146-149.
    14.史旭华,张奉春.原发性胆汁性肝硬化临床与基础研究[J].医学研究杂志,2006,35:31.
    15.李新民,马雄,邱德凯,等.244原发性胆汁性肝硬化临床特征分析[J].现代消化及介入诊疗,2006,11:196-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700