脂肪来源Flk-1~+间充质干细胞三系分化过程中的MicroRNA表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成体间充质干细胞是存在于成体内的一群有自我增殖和多系分化能力的细胞群体。近年来多有关于成体间充质干细胞向中胚层各种细胞类型分化以及向其他胚层细胞类型横向分化的报导,但对分化具体调控机制的研究报导少见。本次实验以脂肪来源成体间充质干细胞(AD-MSC)向胶质细胞、内皮细胞和上皮细胞三种不同胚层来源细胞的分化为模型,在前期microRNA芯片结果的基础上检测了miR-X和miR-Y在三种分化途径过程中的表达差异,并以miR-X在MSC向胶质细胞分化为例通过microRNA靶基因的预测探讨了microRNA在分化过程中可能发挥的后转录水平的调控作用。我们的结果显示miR-X和miR-Y在AD-MSC三系分化过程中表现出了各系特异性的表达时相特征,提示它们可能通过在后转录水平抑制功能性靶基因的表达而对AD-MSC的三系分化起重要的调控作用。
Adult mesenchymal stem cells are a group of cells in adult tissue with the capacity of self-renewal and multi-lineage differentiation. A lot of reports have been published in recent years regarding the differentiation potential of mesenchymal stem cell to mesodermal as well as ectodermal and endodermal cells. However, the detailed regulatory mechanism underlying these processes remains unclear. In this research, adult mesenchymal stem cells were isolated from human adipose tissue and induced to differentiate into glial cells, endothelial cells and epithelial cells. Specific microRNAs were selected based on previous microarray results and their expression profiles during above processes were dectected. To further explore the possible mechanism of miR-X's function in glial cell differentiation, its molecular targets were predicted through bioinformatic approach. Our data showed that miR-X and miR-Y had distinct expression profile in different lineage differentiation process, indicating that they may have important regulatory functions through post-transcriptional repression of functional target molecules.
引文
1. Chunmeng S, Tianmin C. Skin: a promising reservoir for adult stem cell populations. Med Hypotheses. 2004;62:683-688.
    
    2. De Bari C, Dell'Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928-1942.
    
    3. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;l 8:696-704.
    
    4. Bieback K, Kern S, Kluter H, et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625-634.
    
    5. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003; 102:1548-1549.
    
    6. Li CD, Zhang WY, Li HL, et al. Isolation and Identification of a Multilineage Potential Mesenchymal Cell from Human Placenta. Placenta. 2005.
    
    7. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147.
    
    8. Barry FP, Murphy JM. Mesenchymal stem cells: Clinical applications and biological characterization. Int J Biochem Cell Biol 2004;36:568-584.
    
    9. Safford KM, Hicok KC, Safford SD et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 2002;294:371-379.
    
    10. Wislet-Gendebien, S., Hans, G., Leprince, P. et al. (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23, 392-402.
    
    11. Planat-Benard V, Silvestre JS, Cousin B et al. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation 2004; 109:656-663.
    
    12. Moon MH, Kim SY, Kim YJ et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 2006; 17: 279-290.
    
    13. Seo MJ, Suh SY, Bae YC et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun 2005;328:258 -264.
    
    14. 102 Kim DH, Je CM, Sin JY et al. Effect of partial hepatectomy on in vivo engraftment after intravenous administration of human adipose tissue stromal cells in mouse. Microsurgery 2003;23:424-431.
    
    15. Hu Ying, Wang Qiuying, Ma Li et.al. Identification and Isolation of Mesenchymal Stem Cells from Human Fetal Pancreas. J Lab Clin Med. 2003 141(5): 342-9
    
    16. Fang B, Liao L, Shi M et al. Multipotency of FlklCD34 progenitors derived from human fetal bone marrow. J Lab Clin Med. 2004 Apr;143(4):230-40.
    
    17. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415.
    
    18. Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003; 17:3011.
    
    19. Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834.
    
    20. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304:594-596.
    
    21. Giraldez AJ, Mishima Y, Rihel J, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006;312:75-79.
    
    22. Zhang L, Huang J, Yang N, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A. 2006;103:9136-9141.
    
    23. Tay YM, Tam WL, Ang YS, et al. MicroRNA-134 Modulates the Differentiation of Mouse Embryonic Stem Cells where it Causes Post-transcriptional Attenuation of Nanog and LRH1. Stem Cells. 2007.
    
    24. Mansfield JH, Harfe BD, Nissen R, et al. MicroRNAresponsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat.Genet. 2004;36:1079.
    
    25. Cheng AM, Byrom MW, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33:1290-1297.
    
    26. Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731-743.
    
    27. Sullivan CS, Ganem D. MicroRNAs and viral infection. Mol Cell. 2005;20:3-7.
    
    28. Calin GA. Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13ql4 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524-15529.
    
    29. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc.Natl.Acad.Sci.U.S.A. 2004; 101:11755.
    30. Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007.
    
    31. Wulczyn FG, Smirnova L, Rybak A, et al. Posttranscriptional regulation of the let-7 microRNA during neural cell specification. Faseb J. 2007;21:415-426.
    
    32.. Cao X, Pfaff SL, Gage FH. A functional study of miR-124 in the developing neural tube. Genes Dev. 2007;21:531-536.
    
    33. Wu L, Belasco JG. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol. 2005;25:9198-9208.
    
    34. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005,120:15-20
    
    35. Rehmsmeier M, Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA target duplexes. RNA, 2004,10:1507-1517
    
    36. Mansfield JH, Harfe BD, Nissen R et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet,2004, 36 (10): 1079-1083
    
    37. Felli N, Fontana L, Pelosi E et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA, 2005, 102 (50): 18081-18086
    
    38. Chen Y, Teng FY, Tang BL. Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell Mol Life Sci. 2006 Jul;63(14):1649-57
    
    39. Fang B, Liao L, Shi M et al. Multipotency of FlklCD34 progenitors derived from human fetal bone marrow. J Lab Clin Med. 2004 Apr;143(4):230-40.
    
    40. Cao Y, Sun Z, Liao L et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun. 2005 Jul 1;332(2):370-9.
    
    41. Yin JQ, Zhao RC, Morris KV. Profiling microRNA expression with microarrays. Trends Biotechnol. 2008 Feb;26(2):70-6. Epub 2008 Jan 11. Review.
    
    42. Sempere LF, Freemantle S, Pitha-Rowel et al . Expression profiling of mammalian micro RNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 2004, 5(3): R13
    
    43. Chen C, Ridzon DA, Broomer AJ et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005, 33(20):e179
    44. Calaora V, Rogister B, Bismuth K et al. Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J Neurosci. 2001 Jul 1;21(13):4740-51.
    
    45. Warren N, Caric D, Pratt T et al. The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cereb Cortex 1999;9:627-635.
    
    46. Groszer M, Erickson R, Scripture-Adams DD. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science. 2001 Dec 7;294(5549):2186-9. Epub 2001 Nov 1.
    1.Friedenstein,A.J."Marrow stromal fibroblasts." Calcif.Tissue Int.56 Suppl 1(1995):S17
    2.Bruder SP,Jaiswal N,Haynesworth SE.Growth kinetics,self-renewal,and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation.J Cell Biochem.1997;64:278-294.
    3.Bruder SP,Kurth AA,Shea M,et al.Bone regeneration by implantation of purified,cultureexpanded human mesenchymal stem cells.J Orthop Res.1998;16:155-162.
    4.Dennis JE,Merriam A,Awadallah A,et al.A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse.J Bone Miner Res.1999;14:700-709.
    5.Pittenger MF,Mackay AM,Beck SC,et al.Multilineage potential of adult human mesenchymal stem cells.Science.1999;284:143-147.
    6.Haynesworth SE,Baber MA,Caplan AI.Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies.Bone.1992;13:69-80.
    7.Caplan AI.Mesenchymal stem cells.J Orthop Res.1991;9:641-650.
    8.Chunmeng S,Tianmin C.Skin:a promising reservoir for adult stem cell populations. Med Hypotheses. 2004;62:683-688.
    
    9. De Bari C, Dell'Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928-1942.
    
    10. Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003; 18:696-704.
    
    11. Bieback K, Kern S, Kluter H, et al. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625-634.
    
    12. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548-1549.
    
    13. Li CD, Zhang WY, Li HL, et al. Isolation and Identification of a Multilineage Potential Mesenchymal Cell from Human Placenta. Placenta. 2005.
    
    14. Horwitz, E.M., et al., Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood, 2001. 97(5): p. 1227-31.
    
    15. Koc, O.N., et al., Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant, 2002. 30(4): p. 215-22.
    
    16. Koc, O.N., et al., Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol, 2000. 18(2): p. 307-16.
    
    17. Chen, S.L., et al., Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl), 2004. 117(10): p. 1443-8.
    
    18. Casteilla L, Planat-Benard V, Cousin B et al. Plasticity of adipose tissue: A promising therapeutic avenue in the treatment of cardiovascular and blood diseases. Arch Mal Coeur Vaiss 2005;98:922-926.
    
    19. Oedayrajsingh-Varma M, van Ham S, Knippenberg M et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 2006;8: 166-177.
    
    20. Kern S, Eichler H, Stoeve J et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. STEM CELLS 2006;24:1294 -1301.
    
    21. Izadpanah R, Trygg C, Patel B et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 2006;99:1285-1297.
    
    22. Wagner W, Wein F, Seckinger A et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005;33:1402-1416.
    
    23. Lee RH, Kim B, Choi I et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004; 14:311-324.
    
    24. Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-317.
    
    25. Jiang, Y., Jahagirdar, B. N. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002: 418, 41-49.
    
    26. Woodbury D, Schwarz EJ, Prockop DJ et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61:364-70.
    
    27. Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Com 2001;282:148-52.
    
    28. Bang YJ, Pirnia F, Fang WG et al. Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP. Proc Natl Acad Sci 1994;91:5330-4.
    
    29. Cox ME, Deeble PD, Lakhani S, Parsons SJ. Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res 1999; 59:3821-30.
    
    30. Kim BJ, Seo JH, Bubien JK, Oh YS. Differentiation of adult bone marrow stem cells into progenitor cells in vitro. Neuroreport 2002; 13:1185—8.
    
    31. Ki-Soo Park1, Yong-Soon Lee, Kyung-Sun Kang et al. In vitro neuronal and osteogenic differentiation of mesenchymal stem cells from human umbilical cord blood[J]. J. Vet. Sci. 2006, 7(4): 343-348.
    
    32. Baker, N. E. (2000) Notch signaling in the nervous system. Pieces still missing from the puzzle. Bioessays 22, 264-273.
    
    33. Gaiano, N. and Fishell, G. (2002) The role of notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 25, 471-490.
    
    34. Park, H. C. and Appel, B. (2003) Delta-Notch signaling regulates oligodendrocyte specification. Development 130, 3747-3755.
    
    35. Dezawa, M., Kanno, H., Hoshino et al. (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest. 113, 1701-1710.
    
    36. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F. et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164, 247-256.
    
    37. Wislet-Gendebien, S., Bruyere, F., Hans, G. et al. (2004) Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neurosci. 5, 33.
    
    38. Wislet-Gendebien, S., Hans, G., Leprince, P. et al. (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23, 392-402.
    
    39. Brazelton, T. R.,Rossi, Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775-1779.
    
    40. Mezey, E., Chandross, K. J., Harta, G. et al. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779-1782.
    
    41. Mezey, E., Key, S.., Vogelsang, G., Szalayova, I., Lange, G. D. and Crain, B. (2003) Transplanted bone marrow generates new neurons in human brains, Proc. Natl. Acad. Sci. USA 100, 1364-1369.
    
    42. Castro, R. F., Jackson, K. A., Goodell, M. A., Robertson, C. S., Liu, H. and Shine, H. D. (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297, 1299.
    
    43. Wagers, A. J., Sherwood, R. I., Christensen, J. L. and Weissman, I. L. (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256-2259.
    
    44. Weimann, J. M., Charlton, C. A., Brazelton, T. R., Hackman, R. C. and Blau, H. M. (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl. Acad. Sci. USA 100, 2088-2093.
    
    45. Weimann, J. M., Johansson, C. B., Trejo, A. and Blau, H. M. (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5, 959-966.
    
    46. Vassilopoulos, G., Wang, P. R. and Russell, D. W. (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901-904.
    
    47. Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al-Dhalimy, M., Lagasse, E., Finegold, M., Olson, S. and Grompe, M. (2003) Cell fusion is the principal source of bonemarrow-derived hepatocytes. Nature 422, 897-901.
    
    48. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., Lois, C., Morrison, S. J. and Alvarez-Buylla, A. (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968-973.
    
    49. Cogle, C. R., Yachnis, A. T., Laywell, E. D., Zander, D. S., Wingard, J. R., Steindler, D. A. and Scott, E. W. (2004) Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 363, 1432-1437.
    
    50. Munoz-Elias, G., Marcus, A. J., Coyne, T. M., Woodbury, D. and Black, I. B. (2004) Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J. Neurosci. 24, 4585-4595.
    
    51. Crain, B. J., Tran, S. D. and Mezey, E. (2005) Transplanted human bone marrow cells generate new brain cells. J. Neurol. Sci. 233, 121-123.
    
    52. Rismanchi, N., Floyd, C. L., Berman, R. F. and Lyeth, B. G.(2003) Cell death and long-term maintenance. of neuron-like state after differentiation of rat bone marrow stromal cells: a comparison of protocols. Brain Res. 991, 46-55.
    
    53. Lu, P., Blesch, A. and Tuszynski, M. H. (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 77, 174-191.
    
    54. Neuhuber, B., Gallo, G., Howard, L., Kostura, L., Mackay, A. and Fischer, I. (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res. 77, 192-204.
    
    55. Bertani, N., Malatesta, P., Volpi, G., Sonego, P. and Penis, R. (2005) Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J. Cell Sci. 118, 3925-3936.
    
    56. Terada N, Hamazaki T, Ok M, Hoki M, Mastalerz DM, Nakano Y, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002;416:542-5.
    
    57. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003;422:901-4.
    
    64. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM. Contribution of transplanted bone marrow cells to purkinje neurons in adult brains. Proc Natl Acad Sci 2003;100:2088-93.
    
    65. Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in purkinje neurons after bone marrow transplant. Nat Cell Biol 2003;5:959-66.
    
    66. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, et al. Fusion of bone marrow-derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003;425:968-73.
    
    67. Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, et al. Brain from bone: ef-ficient "meta-differentiation" of marrow stroma derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 2001;68:235-44.
    
    68. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system [J]. Science, 1992, 255(5052): 1707-10.
    
    68. Doetsch, F., I. Caille, D. A. Lim, J. M. Garcia-Verdugo & A. Alvarez-Buylla: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97,703-16(1999)
    
    69. Sun Y, Nadal-Vicens M, Misono S et al. Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms [J]. Cell, 2001, 104(3):365-76
    
    70. Amoureux MC, Cunningham BA, Edelman GM et al. N-CAM binding inhibits the proliferation of hippocampal progenitor cells and promotes their differentiation to a neuronal phenotype [J]. J Neurosci, 2000, 20(10):3631-40
    
    71. Francesco P. Jori, Marco A. Napolitano, Mariarosa A.B. Melone et al. Molecular Pathways Involved in Neural In Vitro Differentiation of Marrow Stromal Stem Cells, Journal of Cellular Biochemistry 94:645-655 (2005)
    
    72. FP Joril, MAB Melone1, MA Napolitano et al. RB and RB2/p130 genes demonstrate both specific and overlapping functions during the early steps of in vitro neural differentiation of marrow stromal stem cells. Cell Death and Differentiation (2005) 12, 65-77
    
    73. Wakamatsu Y, Endo Y, Osumi N et al. Multiple roles of Sox2, an HMG-box transcription factor in avian neural crest development. Dev Dyn 2004;229:74-86.
    
    74. Britsch S, Goerich DE, Riethmacher D et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 2001 ;15:66-78.
    
    75. Stolt CC, Rehberg S, Ader M et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 2002;16:165-170.
    
    76. Talamillo A, Quinn JC, Collinson JM et al. Pax6 regulates regional development and neuronal migration in the cerebral cortex. Dev Biol 2003;255:151-163.
    
    77. Calaora V, Rogister B, Bismuth K et al. Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J Neurosci 2001;21:4740-4751.
    
    78. Canoll PD, Kraemer R, Teng KK et al. GGF/neuregulin induces a phenotypic reversion of oligodendrocytes. Mol Cell Neurosci 1999; 13:79-94.
    
    79. Bao J, Wolpowitz D, Role LW et al. Back signaling by the Nrg-1 Intracellular domain. J Cell Biol 2003;161:1133—1141
    
    80. Wrage PC, Tran T, To K et al. The neuro-glial properties of adipose-derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage. PLoS ONE. 2008 Jan 16;3(1):e1453
    
    81. Gaiano N, Fishell G (2002) The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25: 471-490.
    
    82. Taylor MK, Yeager K, Morrison SJ (2007) Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 134: 2435-2447.
    
    83. Weinmaster G, Kopan R (2006) A garden of Notch-ly delights. Development 133: 3277-3282.
    
    84. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415.
    
    85. Hutvagner G, McLachlan J, Pasquinelli AE, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001 ;293:834.
    
    86. Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell. 2003;15:2730-2741.
    
    87. Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005;122:553-563.
    
    88. Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation.Science. 2004;303:83-86.
    
    89. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304:594-596.
    
    90. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73:427-433.
    
    91. Giraldez AJ, Mishima Y, Rihel J, et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006;312:75-79.
    
    92.. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A. 2006; 103:4034-4039.
    93. Zhang L, Huang J, Yang N, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A. 2006;103:9136-9141.
    
    94. Luzi E, Marini F, Sala SC et al. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-Aa targeting of the SMAD1 transcription factor. J Bone Miner Res. 2008 Feb;23(2):287-95
    
    95. Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004;279:52361-52365.
    
    96. Tuddenham L, Wheeler G, Ntounia-Fousara S, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580:4214-4217.
    
    97. Sempere LF, Freemantle S, Pitha-Rowe I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004;5:R13.
    
    98. Wu L, Belasco JG. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol. 2005;25:9198-9208.
    
    99. Wulczyn FG, Smirnova L, Rybak A, et al. Posttranscriptional regulation of the let-7 micro RNA during neural cell specification. Faseb J. 2007;21:415-426.
    
    100. Cao X, Pfaff SL, Gage FH. A functional study of miR-124 in the developing neural tube. Genes Dev. 2007;21:531-536.
    
    101. Smirnova L, Grafe A, Seiler A, et al. Regulation of miRNA expression during neural cell specification. Eur J Neurosci. 2005;21:1469-1477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700