移动通信信道建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在通信系统设计过程中,需要通过仿真来分析系统的性能。移动通信信道的建模是通信系统仿真中必不可少的一环。故近年来不同无线传播环境下的信道建模成为了研究热点。本文分别对跳频瑞利衰落信道、非均匀散射环境下的瑞利衰落信道和移动台对移动台瑞利衰落信道的建模进行了深入的研究。全文的主要内容包括:
     首先给出了本文的研究意义;接着对本文研究的三类信道模型的现状进行了概述,指出了现有信道模型存在的一些问题;随后介绍了移动通信信道的一些基本概念及一些常用的信道建模方法,并对基于正弦和理论的建模方法作了详细的分析和讨论。
     针对跳频瑞利衰落信道,提出了一种新的基于正弦和理论的信道仿真模型。该仿真模型能在保持其它参数不变的条件下,通过仿真模型相位的跳变来模拟物理信道频率的跳变。并且该仿真模型考虑了不同载频信道间的频率相关性,通过仿真模型可方便的得出不同跳频频率间隔下信道的相关程度。由于该仿真模型中的所有参数都存在着闭合表达式,所以能对仿真模型的相关特性进行研究。通过理论分析,本文给出了该仿真模型的相关特性表达式。数值仿真表明,该仿真模型在低计算复杂度的条件下与参考模型在相关特性方面存在着极好的吻合。
     在很多无线传播环境中,信道中的散射体是非均匀分布的。故对非均匀散射环境下的信道进行建模成为了一个研究课题。因此,针对非均匀散射环境,本文提出了两种基于正弦和理论的平坦衰落瑞利信道仿真模型。在这两种仿真模型中,冯?米塞斯(von Mises)分布被用来描述非均匀散射环境下的信号到达角度。通过理论分析,给出了这两种仿真模型的相关特性。和现有仿真模型相比,这两种仿真模型与参考模型在相关特性上存在着更好的吻合。
     随着自组织网络系统、智能交通系统和中继通信系统等的发展,移动台对移动台的信道被广泛应用。因此,本文基于正弦和理论提出了三种移动台对移动台的平坦衰落瑞利信道仿真模型。这三种仿真模型都采用了“双环”散射模型。通过理论分析,给出了这三种仿真模型的相关特性。数值仿真表明,这三种仿真模型与参考模型在相关特性上存在着较好的吻合。
In the process of communication system design, the performance of the communication system is analyzed through the simulation. The modeling of mobile radio channels is an indispensable part of communication system simulation. Therefore, the modeling of different radio propagation environments has become the research hotspot. This dissertation deeply investigates on the modeling of three types of mobile radio channels: the modeling of frequency hopping Rayleigh fading channels, the modeling of frequency non-selective Rayleigh fading channels under non-isotropic scattering environments and the modeling of frequency non-selective mobile-to-mobile Rayleigh fading channels. The research includes the following topics:
     Firstly, the dissertation gives a brief introduction of the research significance. Secondly, the current states of three types of channel models are introduced. Moreover, the problems of these channel models are pointed out. At last, the dissertation gives some basic concepts of mobile communication channel. And some approaches to the modeling of mobile radio channels are introduced, especially the modeling approach based on sum-of-sinusoids analyzed in detail.
     For frequency hopping Rayleigh fading channels, a new simulation model based on sum of sinusoids is proposed. It is shown that a frequency hop in the physical channel model corresponds to phase hops in the simulation model, while maintaining all other parameters unchanged. Moreover, the simulation model takes the frequency correlation into account. Through the simulation model, we can know the correlation between hops. Due to the fact that closed-form expressions are given for all simulation parameters, so the correlation properties of the proposed simulation model can be studied. Through theoretical analysis, the dissertation gives the expressions of the correlation properties. Numerical simulation shows that a pretty good agreement between the correlation properties of the simulation model and those of the underlying reference model has been observed in low computation complexity.
     In many radio propagation environments, the distribution of the scatterers of the channel is nonuniform. The channel modeling of non-isotropic scattering environments is a research topic. Therefore, two simulation models of Rayleigh channels based on sum of sinusoids are proposed for frequency non-selective mobile fading channels under non-isotropic scattering environments. In both simulation models, the von Mises distribution was used to characterize angle-of-arrival. Through theoretical analysis, the dissertation gives the correlation properties of the two simulation models. Compared with the existing model, the correlation properties of the two simulation models show better agreement with those of the reference model.
     With the development of mobile ad hoc networks and dedicated short-range communication systems for intelligent highways, mobile-to-mobile Rayleigh fading channels are widely used. Therefore, we propose three new simulation models based on sum of sinusoids. All of the three simulation models use the“double ring”concept. Through theoretical analysis, the dissertation gives the correlation properties of the three simulation models. Numerical simulation shows that a good agreement between the correlation properties of the simulation models and those of the underlying reference model has been observed.
引文
[1]杨大成等.移动传播环境:理论基础、分析方法和建模技术.北京:机械工业出版社, 2003
    [2] R. H. Clarke. A statistical theory of mobile-radio reception. Bell Syst. Tech. J., 1968, 47(6): 957–1000
    [3] P. Dent, G. E. Bottomley, T. Croft. Jakes fading model revisited. Electron. Lett., 1993, 29(13): 1162-1163
    [4] Y. B. Li, Y. L. Guan. Modified Jakes model for simulating multiple uncorrelated fading waveforms. In Proc. IEEE ICC, New Orleans, LA, Jun. 2000: 46–49
    [5] Y. R. Zheng, C. Xiao. Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms. IEEE Commun. Lett., 2002, 6(6): 256-258
    [6] Y. Li, X. Huang. The simulation of independent Rayleigh faders. IEEE Trans. Commun., 2002, 50(9): 1503-1514
    [7] C. X. Wang, M. P?tzold. Methods of generating multiple uncorrelated Rayleigh fading processes. In Proc. IEEE VTC—Spring, Jeju, Korea, Apr. 2003: 510–514
    [8]王欣,酆广增.多径非相关瑞利信道生成的改进.通信学报, 2007, 28(5): 122-125
    [9] C. X. Wang, M. P?tzold. Efficient simulation of multiple crosscorrelated Rayleigh fading channels. In Proc. IEEE PIMRC, Beijing, China, Sep. 2003: 1526–1530
    [10]吴湛击,皱自明,孟德香,吴伟陵.一种新的多径相关瑞利信道的数学模型:理论分析及仿真比较.电子与信息学报, 2004, 26(12): 1933-1937
    [11] N. C. Beaulieu. Generation of correlated Rayleigh fading envelopes. IEEE Commun. Lett., 1999, 3(6): 172–174
    [12] B. Natarajan, C. R. Nassar, V. Chandrasekhar. Generation of correlated Rayleigh fading envelopes for spread spectrum applications. IEEE Commun. Lett., 2000, 4(1): 9-11
    [13] S. Sorooshyari, D. G. Daut. Generation of correlated Rayleigh fading envelopes for accurate performance analysis of diversity systems. In Proc. IEEE PIMRC, Beijing, China, Sep. 2003: 1800–1804.
    [14] T. Klingenbrunn, P. Mogensen. Modeling frequency correlation of fast fading in frequency hopping GSM link simulations. In Proc. IEEE VTC—Fall, Amsterdam, The Netherlands, Sep. 1999: 2398–2402
    [15] N. C. Beaulieu, M. L. Merani. Efficient simulation of correlated diversity channels. In Proc. IEEE WCNC, Chicago, IL, Sep. 2000: 207–210
    [16] W. C. Jakes, Ed.. Microwave mobile communications. Piscataway, NJ: IEEE Press, 1994
    [17] M. P?tzold, F. Laue, U. Killat. A frequency hopping Rayleigh fading channel simulator withgiven correlation properties. In Proc. IEEE ISPACS, Kuala Lumpur, Malaysia, Nov. 1997: S8.1.1–S8.1.6
    [18] C. X. Wang, M. P?tzold, B. Itsarachai. A deterministic frequency hopping Rayleigh fading channel simulator designed by using optimization techniques. In Proc. IEEE PIMRC, Lisbon, Portugal, Sep. 2002: 478–483
    [19] C. X. Wang, M. P?tzold, Q. Yao. Stochastic modeling and simulation of frequency-correlated wideband fading channels. IEEE Trans. Veh. Technol., 2007, 56(3): 1050–1063
    [20] C. S. Patel, L. Gordon, S. T. G.pratt. Comparative analysis of statistical models for the simulation of Rayleigh faded cellular channels. IEEE Trans. Commun., 2005, 53(6): 1017–1027
    [21] A. G. Zajic, G. L. Stüber. Efficient simulation of Rayleigh fading with enhanced de-correlation properties. IEEE Trans. Wireless Commun., 2006, 5(7): 1866–1875
    [22] A. M. Donald, J. C. Olivier. A comparative study of deterministic and stochastic Sum-of-Sinusoids models of Rayleigh-fading wireless channels. In Proc. IEEE WCNC, Hong Kong, china, Mar. 2007: 2029–2033
    [23]李子,蔡跃明. Rayleigh衰落信道的仿真模型.解放军理工大学学报(自然科学版), 2004, 5(2): 1-8
    [24] J. Fuhl, J. P. Rossi, E. Bonek. High-resolution 3-D direction-of-arrival determination for urban mobile radio. IEEE Trans. Antennas Propagat., 1997, 45(4): 672–682
    [25] P. C. Fannin, A. Molina. Analysis of mobile radio channel sounding measurements in inner city dublin at 1.808 GHz. IEE Proceedings- Communications, 1996, 143(5): 311–316
    [26] A. Abdi, M. Kaveh. A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE Journal on Select. Areas in Commun., 2002, 20(3): 550–560
    [27] A. Abdi, J. A. Barger, M. KAveh. A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station. IEEE Trans. Veh. Technol., 2002, 51(3): 425–434
    [28] C. A. Gutierrez, M. P?tzold. Sum-of-Sinusoids-based simulation of flat fading wireless propagation channels under non-isotropic scattering conditions. In Proc. 50th IEEE Global Telecommunications Conference, GLOBECOM 2007, Washington DC, USA, Nov. 2007: 3842–3846
    [29] M. P?tzold, T. U. KILLA, E. F. LAU. A deterministic digital simulation model for Suzuki processes with application to a shadowed Rayleigh land mobile radio channel. IEEE Trans. Veh. Technol., 1996, 45 (2) : 318-331
    [30] C. A. Gutierrez, M. P?tzold. Efficient Sum-of-Sinusoids-based simulation of mobile fading channels with asymmetrical doppler power spectra. In Proc. 4rd International Symposium on Wireless Communication System, ISWCS’07, Trondheim, Norway, Oct. 2007: 246–251
    [31] A. S. Akki, F. Haber. A statistical model for mobile-to-mobile land communication channel. IEEE Trans. on Veh. Tech., 1986, 35: 2–10
    [32] A. S. Akki. Statistical properties of mobile-to-mobile land communication channels. IEEE Trans. on Veh. Tech., 1994, 43: 826–831
    [33] R. Wang, D. Cox. Channel modeling for ad hoc mobile wireless networks. In Proc. IEEE Veh. Tech. Conf., Birmingham, AL, May 2002, Vol.1: 21-25
    [34] C. S. Patel, G. L. Stüber, T. G. Pratt. Simulation of Rayliegh faded mobile-to-mobile communication channels. IEEE Trans. on Commun., 2005, 53: 1876- 1884
    [35]蒋秋红.移动通信信道建模与仿真的研究. [硕士学位论文],天津:天津大学, 2004
    [36] M. Mushkin, I. Bar-David. Capacity and coding for the Gilbert-Elliott channels. IEEE Trans. Inform. Theory, 1989, 35(6): 1277-1290
    [37] J. Garcia-Frias, P. M. Crespo. Hidden Markov models for burst error characterization in indoor radio channels. IEEE Trans. Veh. Technol., 1997, 46(4): 1006-1020
    [38] H. S. Wang, N. Moayeri. Finite-state Markov channel-A useful model for radio communication channels. IEEE Trans. Veh. Technol., 1995, 44(1): 163-171
    [39] H. S. Wang, P. C. Chang. On verifying the first-order Markovian assumption for a Rayleigh fading channel. IEEE Trans. Veh. Technol., 1996, 45 (2): 353-357
    [40] M. Zorzi, R. R. Rao, L. B. Milstein. On the accuracy of a first-order Markov model for data block transmission on fading channels. Proc. IEEE UPCC, 1995: 211-215
    [41] S. O. Rice. Mathematical analysis of random noise. Bell Syst. Tech. J., 1944, 23: 282-232
    [42] S. O. Rice. Mathematical analysis of random noise. Bell Syst. Tech. J., 1945, 24: 46-156
    [43] W. C. Jakes. Microwave mobile communications. New York: Wiley-Interscience, 1974
    [44] M. P?tzold. Mobile Fading Channels. Chichester, England: John Wiley and Sons, 2002
    [45] W. R. Bennett. Distribution of the sum of randomly phased components. Quart. Appl. Math., 1948, 5: 385-393
    [46] M. P?tzold, B. O. Hogstad. Classes of Sum-of-Sinusoids Rayleigh fading channel simulators and their stationary and ergodic properties. The 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005: 488-504
    [47] P. Hoeher. A statistical discrete-time model for the WSSUS multipath channel. IEEE Trans. Veh. Technol., 1992, 41(12): 461-468
    [48] C. Xiao, Y. R. Zheng, N. C. Beaulieu. Novel Sum-of-Sinusoids simulation models for Rayleigh and Rician fading channels. IEEE Trans. Wireless Commun., 2006, 5(12): 3667-3679.
    [49] P. A. Bello. Characterization of randomly time-variant linear channels. IEEE Trans. Commun., 1963, COM-11(4): 360–393
    [50] A. Papoulis, S. U. Pillai. Probability, random variables and stochastic processes, 4th ed. New York: McGraw-Hill, 2002
    [51]“Digital land mobile radio communications,”Office for Official Publications of the European Communities, 1989, Luxemburg. Final Report.
    [52] M. D. Austin, G. L. Stüber. Velocity adaptive handoff algorithms for microcellular systems. IEEE Trans. Veh. Technol., 1994, 43: 549-561
    [53] W. C. Y. Lee. Effect on correlateon between two mobile base station antennas., [J]. IEEE Trans. Commun., 1973, COM-21(11): 1214-1224
    [54] L. Chan, S. Loyka. Impact of multipath angular distribution on performance of MIMO systems. In: CCECE 2004-CCGEI 2004, Niagara Falls. 2004
    [55] F. Adachi, M. T. Feeney, A. G. Williamson, et al. Crosscorrelation between the envelops of 900MHz signals received at a mobile radio base station site. IEE proc. F., 1986, 133(6): 506-512
    [56] M. P?tzold, B. O. Hogstad. Two new methods for the generation of multiple uncorrelated Rayleigh fading waveforms. In Proc. IEEE 63th Veh. Technol. Conf., VTC’06-Spring, Melbourne, Australia, May. 2006: 2782–2786
    [57] G. L. Stüber. Principles of mobile communications. Boston, MA: Kluwer, 2001
    [58] A. G. Zajic, G. L. Stüber. A new simulation model for mobile-to-mobile Rayleigh fading channels. In Proc. Wireless Communications and Networking Conference, 2006. WCNC 2006. IEEE, Las Vegas, USA, April 2006: 1266-1270
    [59] M. P?tzold, B. O. Hogstad, D. Kim. A new design concept for high performance fading channel simulators using Set Partitioning. In Proc. Wireless Personal Communications, Aalborg, Denmark, Sep, 2005: 496-502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700