IL-1β在真菌性角膜炎中的表达和调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨炎症因子白介素-1β(Interleukin-1β,IL-1β)在真菌性角膜炎中的表达及其分子调控机制。
     方法:采用基质内注射法建立小鼠真菌性角膜炎模型,以此作为大体水平的研究对象;获取小鼠骨髓中性粒细胞,以此作为细胞水平的研究对象。实验分为四部分:(1)建立C57BL/6小鼠真菌性角膜炎模型,采用流式细胞术和激光共聚焦显微镜观察IL-1β在角膜组织的表达,探索真菌性角膜炎时IL-1β的主要细胞来源;(2)获取C57BL/6、TLR4-/-以及TRIF-/-小鼠中性粒细胞,与烟曲霉菌株共同培养,采用酶联免疫吸附试验(ELISA)和Western-blot法检测IL-1β的表达,探索真菌性角膜炎时经典Signal1通路对IL-1β的调控作用;(3)建立C57BL/6、 NLRP3-/-、ASC-/-以及Caspase-1-/-小鼠真菌性角膜炎模型,获取C57BL/6、 Dectin-1-/-、NLRP3-/-、ASC-/-以及Caspase-1-/-小鼠中性粒细胞,与烟曲霉菌共同培养,采用ELISA和Western-blot法检测IL-1β的表达,探索真菌性角膜炎时经典Signal2通路对IL-1β的调控作用;(4)建立C57BL/6、Caspase-1-/-小鼠真菌性角膜炎模型,获取C57BL/6.TLR4-/-、TRIF-/-、Dectin-1-/-以及Caspase-1-/-小鼠中性粒细胞,与烟曲霉菌共同培养,采用Western-blot法检测IL-1β、Caspase-11和Caspase-1的表达,探索真菌性角膜炎时Caspase-11对IL-1β的调控作用。
     结果:(1)C57BL/6小鼠感染烟曲霉菌24h后,可见大量募集至角膜感染区域的中性粒细胞;所有能够表达IL-1β的细胞中,92.2%的是中性粒细胞;中性粒细胞中能够表达IL-1β的比例为85.4%。感染烟曲霉菌48h后,角膜区域出现较高比例的巨噬细胞;所有能够表达IL-1β的细胞中,29.7%的是巨噬细胞;巨噬细胞中能够表达IL-1β的比例为96.6%。(2)Signal1通路预激活后给予真菌刺激,C57BL/6小鼠中性粒细胞中pro-IL-1β的表达量明显增加,未预激活而只单纯给予真菌刺激,pro-IL-1β的表达量也明显增加,但与有预激相比其增加幅度略少;TLR4-1/-或TRIF-/-小鼠的中性粒细胞被真菌刺激4h或18h后,pro-IL-1β的表达较未感染时明显增多,但是与C57BL/6小鼠相比无明显差异。(3)Dectin-1-/--小鼠或者给予sky阻断剂的C57BL/6小鼠的中性粒细胞被真菌刺激4h后,pro-IL-1β的表达较C57BL/6小鼠明显减少;建立C57BL/6、NLRP3-/-、ASC-/-以及Caspase-1-/-小鼠真菌性角膜炎模型24h后,C57BL/6、NLRP3-/-和ASC-/-小鼠角膜中pro-IL-1β和mature IL-1β的表达量无明显差异,Caspase-1-/-小鼠角膜中pro-IL-1β的表达量无明显差异,但是mature IL-1β的表达量明显低于C57BL/6小鼠;NLRP3-/-和ASC-/-小鼠的中性粒细胞被真菌刺激4h后,pro-IL-1β和mature IL-1β的表达量与C57BL/6小鼠相比无明显差异;Caspase-1-/-小鼠或者给予Caspase-1阻断剂的C57BL/6小鼠的中性粒细胞被真菌刺激4h后,pro-IL-1β的表达量无明显差异,但mature IL-1β的表达量明显低于C57BL/6小鼠。(4)预先给予Caspase-11阻断剂的C57BL/6小鼠真菌性角膜炎模型,建模24h后其角膜中pro-IL-1β的表达量无明显差异,但是mature IL-1β的表达量明显低于未给予阻断剂的C57BL/6小鼠;给予Caspase-11阻断剂的C57BL/6小鼠的中性粒细胞被真菌刺激4h后,pro-IL-1β的表达量无明显差异,但mature IL-1β和mature Caspase-1的表达量明显低于单纯刺激组;随着真菌刺激时间的延长,C57BL/6小鼠中性粒细胞内Caspase-11的表达量逐渐增加;TLR4-/-以及TRIF-/-小鼠中性粒细胞被真菌刺激4h后,Caspase-11的表达量与C57BL/6小鼠无明显差异;Dectin-1-/-小鼠中性粒细胞被真菌刺激4h后,pro-Caspase-11的表达量略少于C57BL/6小鼠,给予syk阻断剂后C57BL/6小鼠中性粒细胞内pro-Caspase-11的表达明显低于未给予阻断剂者。
     结论:(1)IL-1β参与角膜抗真菌感染的固有免疫过程,中性粒细胞是该阶段主要的细胞来源;(2)真菌感染引起IL-1β的生成可以不通过经典Signal1通路的预激,TLR4/TRIF通路不参与pro-IL-1β的生成;(3)真菌感染时Dect in-1/syk通路参与IL-1β的生成,Caspase-1参与IL-1β由前体至成熟体的修饰,但炎性复合体NLRP3与ASC不参与IL-1β的生成;(4)Caspase-11通过调控Caspase-1由前体至成熟体的修饰过程进而参与IL-1β的生成。
Objective To investigate the expression and molecular mechanisms of inflammatory cytokine IL-1β in fungal keratitis.
     Methods Mouse model of fungal keratitis established by release Aspergillus fumigatus spores into the corneal stroma with injection is used for in vivo experiments. Bone marrow cells isolated from mice are used for in vitro experiments.(1) To investigate the expression of IL-1β in the fungal keratitis model of C57BL/6mice with flow cytometry and confocal microscope and to explore the major cellular source of IL-1β in fungal keratitis.(2) To investigate the expression of IL-1β in the neutrophils of C57BL/6, TLR4-/-and TRIF-/-mice treated with Aspergillus fumigatus by ELISA and Western-blot and to explore the regulation for IL-1β by the classic Signal1pathway in fungal keratitis.(3) To investigate the expression of IL-1β in the fungal keratitis model of C57BL/6, NLRP3-/-, ASC-/-and Caspase-1-/-mice and in the neutrophils of C57BL/6, Dectin-1-/-, NLRP3-/-, ASC-/-and Caspase-1-/-mice treated with Aspergillus fumigatus by ELISA and Western-blot and to explore the regulation for IL-1β by the classic Signal2pathway in fungal keratitis.(4) To investigate the expression of IL-1β, Caspase-11and Caspase-1in the fungal keratitis model of C57BL/6and Caspase-1-/-mice and in the neutrophils of C57BL/6, Dectin-1-/-, TLR4-/-, TRIF-/-and Caspase-1-/-mice treated with Aspergillus fumigatus by Western-blot and to explore the regulation for IL-1β by Caspase-11in fungal keratitis.
     Results (1) There is a pronounced neutrophil infiltration to the corneal stroma of mouse fungal keratitis model in24h.92.2%cells in cornea of fungal keratitis which can express IL-1β are neutrophils and85.4%neutrophils can express IL-1β. There are many macrophages recruitment to the corneal stroma in48h.29.7%cells in cornea which can express IL-1β are macrophages and96.6%macrophages can express IL-1β.(2) The expression of pro-IL-1β in bone marrow neutrophils of C57BL/6mice treated with Aspergillus fumigatus spores increased when the priming signal was activated in advance. The expression of pro-IL-1β also increased without the priming, but was slightly less than priming group. The expression of pro-IL-1β in neutrophils of TLR4-/-or TRIF-/-mice treated with Aspergillus fumigatus spores increased in4h and18h, but was not different from C57BL/6mice.(3) The expression of pro-IL-1β in neutrophils of Dectin-1-/-mice or C57BL/6mice added syk inhibitor in advance treated with Aspergillus fumigatus spores was less than C57BL/6mice in4h. The expression of pro-IL-1β and mature IL-1β in the corneas of fungal keratitis model of NLRP3-/-or ASC-/-mice was not different from C57BL/6mice in24h. The expression of pro-IL-1β in the corneas of fungal keratitis model of Caspase-1-/-mice was not different from C57BL/6mice, but mature IL-1β was significantly less than C57BL/6mice in24h. The expression of pro-IL-1β and mature IL-1β in neutrophils of NLRP3-/-or ASC-/-mice treated with Aspergillus fumigatus spores was not different from C57BL/6mice in4h. The expression of pro-IL-1β in neutrophils of Caspase-1-/-mice or C57BL/6mice added Caspase-1inhibitor in advance treated with Aspergillus fumigatus spores was not different from C57BL/6mice, but mature IL-1β was significantly less than C57BL/6mice in4h.(4) The expression of pro-IL-1β in the corneas of fungal keratitis model of C57BL/6mice added Caspase-11inhibitor in advance was not different from C57BL/6mice, but mature IL-1β was significantly less than C57BL/6mice in24h. The expression of pro-IL-1β in neutrophils of C57BL/6mice added Caspase-11inhibitor in advance treated with Aspergillus fumigatus spores was not different from C57BL/6mice, but mature IL-1β and mature Caspase-1were significantly less than C57BL/6mice in4h. The expression of Caspase-11was time-dependent in neutrophils of C57BL/6mice treated with Aspergillus fumigatus spores. The expression of Caspase-11in neutrophils of TLR4-/-or TRIF-/-mice treated with Aspergillus fumigatus spores was not different from C57BL/6mice in4h. The expression of pro-Caspase-11in neutrophils of Dectin-1-/-mice treated with Aspergillus fumigatus spores was slightly less than C57BL/6mice in4h. But the expression of pro-Caspase-11in neutrophils of C57BL/6mice added Caspase-11inhibitor in advance treated with Aspergillus fumigatus spores was significantly less than C57BL/6mice in4h.
     Conclusions (1) IL-1β has a role in the innate immunity of fungal keratitis, and neutrophil is its major cellular source.(2) IL-lp can be expressed to against fungal infection without the priming signal, and the expression of pro-IL-1β is independent of TLR4/TRIF.(3) The expression of IL-1β is dependent on Dectin-1/syk in the innate immunity of fungal keratitis. Caspase-1leads to maturation of the proinflammatory cytokines IL-1β in response to fungal infection, but NLRP3inflammasome and ASC have no roles in this activation process.
引文
1. Leal SM Jr, Cowden S, Hsia YC, Ghannoum MA, Momany M, Pearlman E. Distinct roles for Dectin-1 and TLR4 in the pathogenesis of Aspergillus fumigatus keratitis. PLoS Pathog, 2010; 6(7):e1000976.
    2.谢立信.我国角膜基础和临床研究的现状及发展.中华眼科杂志,2010,46(10):883-887.
    3.王青,赵桂秋,王传富,梁涛.羊膜在真菌性角膜炎手术治疗中的应用观察.中华眼外伤职业眼病杂志,2007,29(9):693-695.
    4.赵桂秋,姜楠,胡丽婷,车成业.穿透性角膜移植治疗高危真菌性角膜溃疡51例.中国组织工程研究与临床康复,2009,13(18):3597-3600.
    5. Leal SM Jr, Pearlman E. The role of cytokines and pathogen recognition molecules in fungal keratitis-Insights from human disease and animal models. Cytokine,2012;58(1):107-111.
    6. Jie Zhao, Wu XY, Yu FS. Activation of Toll-like receptors 2 and 4 in Aspergillus fumigatus keratitis. Innate Immun,2009;15(3):155-168.
    7. Karthikeyan RS, Leal SM Jr, Prajna NV, Dharmalingam K, Geiser DM, Pearlman E, Lalitha P. Expression of innate and adaptive immune mediators in human corneal tissue infected with Aspergillus or fusarium. J Infect Dis,2011;204(6):942-950.
    8. Brauer L, Kindler C, Jager K, Sel S, Nolle B, Pleyer U, Ochs M, Paulsen FP. Detection of surfactant proteins A and D in human tear fluid and the human lacrimal system. Invest Ophthalmol Vis Sci,2007;48(9):3945-3953.
    9. Benko S, Tozser J, Miklossy G, Varga A, Kadas J, Csutak A, Berta A, Rajnavolgyi E. Constitutive and UV-B modulated transcription of Nod-like receptors and their functional partners in human corneal epithelial cells. Mol Vis,2008;29(14):1575-1583.
    10.徐玲娟Dectin-1在真菌性角膜炎中的作用及其分子机制的初步研究.华中科技大学,博士学位论文,2011.
    11. Karmakar M, Sun Y, Hise AG, Rietsch A, Pearlman E. Cutting edge:IL-1β processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1. J Immunol,2012;189(9):4231-4235.
    12. Pearlman E, Sun Y, Roy S, Karmakar M, Hise AG, Szczotka-Flynn L, Ghannoum M, Chinnery HR, McMenamin PG, Rietsch A. Host defense at the ocular surface. Int Rev Immunol,2013;32(1):4-18.
    13. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe,2009;5(5):487-497.
    14. Rathinam VA1, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell,2012;150(3):606-619.
    15. Wong MD, Dorr AE, Walls JR, Lerch JP, Henkelman RM. A novel 3D mouse embryo atlas based on micro-CT. Development,2012;139(17):3248-3256.
    16. Osherov N1, Kontoyiannis DP, Romans A, May GS. Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14alpha-demethylase gene, pdmA. J Antimicrob Chemother,2001;48(1):75-81.
    17. Galagan JE1, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Bas turkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht 0, Busch S, D' Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005;438(7071):1105-1115.
    18. Carrion Sde J, Leal SM Jr, Ghannoum MA, Aimanianda V, Latge JP, Pearlman E. The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo.J Immunol,2013;191(5):2581-2588.
    19. Embry CA1, Franchi L, Nunez G, Mitchell TC. Mechanism of impaired NLRP3 inflammasome priming by monophosphoryl lipid A. Sci Signal,2011;4(171):ra28.
    20. Lee HM, Kang J, Lee SJ, Jo EK. Microglial activation of the NLRP3 inflammasome by the priming signals derived from macrophages infected with mycobacteria. Glia,2013;61(3):441-452.
    21.Beauvais A1, Bozza S, Kniemeyer 0, Formosa C, Balloy V, Henry C, Roberson RW, Dague E, Chignard M, Brakhage AA, Romani L, Latge JP. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog,2013;9(11):e1003716.
    22.车成业.MIP-2在棘阿米巴性角膜炎中的表达.青岛大学,硕士学位论文,2008.
    23. Shenderov K, Riteau N, Yip R, Mayer-Barber KD, Oland S, Hieny S, Fitzgerald P, Oberst A, Dillon CP, Green DR, Cerundolo V, Sher A. Cutting Edge:Endoplasmic Reticulum Stress Licenses Macrophages To Produce Mature IL-1β in Response to TLR4 Stimulation through a Caspase-8- and TRIF-Dependent Pathway. J Immunol,2014;192(5):2029-2033.
    24. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science,1998;282(5396):2085-2088.
    25. Roy S, Karmakar M, Pearlman E. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J Biol Chem,2014;289(2):1174-1182.
    26. Sun Y, Karmakar M, Roy S, Ramadan RT, Williams SR, Howell S, Shive CL, Han Y, Stopford CM, Rietsch A, Pearlman E. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and-independent pathways. J Immunol,2010;185(7):4272-4283.
    27. Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, Ryffel B, Swanson JA, Muller M, Blander JM. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature,2011;474(7351):385-389.
    28. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW, Yeh WC. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature,2002;416(6882):750-756.
    29. Akashi S1, Ogata H, Kirikae F, Kirikae T, Kawasaki K, Nishijima M, Shimazu R, Nagai Y, Fukudome K, Kimoto M, Miyake K. Regulatory roles for CD14 and phosphatidylinositol in the signaling via toll-like receptor 4-MD-2. Biochem Biophys Res Commun,2000;268(1):172-177.
    30. Goodridge HS, Wolf AJ, Underhill DM. Beta-glucan recognition by the innate immune system. Immunol Rev,2009;230(1):38-50.
    31.Kankkunen P, Teirila L, Rintahaka J, Alenius H, Wolff H, Matikainen S. (1,3)-beta-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. J Immunol,2010;.184(11):6335-6342.
    32. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe,2009;5(5):487-497.
    33.Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol,2012;13(4):325-332.
    34. Marakalala MJ, Kerrigan AM, Brown GD. Dectin-1:a role in antifungal defense and consequences of genetic polymorphisms in humans. Mamm Genome,2011;22(1-2):55-65.
    35. Batbayar S, Lee DH, Kim HW. Immunomodulat ion of Fungal β-Glucan in Host Defense Signaling by Dectin-1. Biomol Ther,2012;20(5):433-445.
    36. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol,2007;8(1):31-38.
    37. Leal SM Jr, Roy S, Vareechon C, Carrion Sd, Clark H, Lopez-Berges MS, Di Pietro A, Schrettl M, Beckmann N, Redl B, Haas H, Pearlman E. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum. PLoS Pathog,2013;9(7):e1003436.
    38. Slack EC, Robinson MJ, Hernanz-Falcon P, Brown GD, Williams DL, Schweighoffer E, Tybulewicz VL, Reis e Sousa C. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur J Immunol,2007;37(6):1600-1612.
    39. Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem,2007;76:447-480.
    40. Hontelez S, Sanecka A, Netea MG, van Spriel AB, Adema GJ. Molecular view on PRR cross-talk in antifungal immunity. Cell Microbiol,2012;14(4):467-474.
    41.Dorhoi A, Desel C, Yeremeev V, Pradl L, Brinkmann V, Mollenkopf HJ, Hanke K, Gross 0, Ruland J, Kaufmann SH. The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med, 2010;207(4):777-792.
    42. Ibusuki A, Kawai K, Yoshida S, Uchida Y, Nitahara-Takeuchi A, Kuroki K, Kajikawa M, Ose T, Maenaka K, Kasahara M, Kanekura T. NKG2D triggers cytotoxicity in murine epidermal γ δ T cells via PI3K-dependent, Syk/ZAP70-independent signaling pathway. J Invest Dermatol,2014;134(2):396-404.
    43.Tsuchiya K, Hara H. The inflammasome and its regulation. Crit Rev Immunol,2014;34(1):41-80.
    44. Mao L, Zhang L, Li H, Chen W, Wang H, Wu S, Guo C, Lu A, Yang G, An L, Abliz P, Meng G. Pathogenic Fungus Microsporum canis Activates the NLRP3 Inflammasome. Infect Immun,2014;82(2):882-892.
    45. Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, Chen VS, Gris D, Matsushima GK, Ting JP. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci,2010;30(47):15811-15820.
    46. Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol,2007;25:561-586.
    47. Kim EH, Won JH, Hwang I, Yu JW. Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures. Immune Netw,2013;13(4):141-147.
    48. Martinon F, Tschopp J. Inflammatory caspases:linking an intracellular innate immune system to autoinflammatory diseases. Cell,2004;117(5):561-574.
    49. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. Non-canonical Inflammasome activation targets caspase-11. Nature, 2011;479(7371):117-121.
    50. Casson CN, Copenhaver AM, Zwack EE, Nguyen HT, Strowig T, Javdan B, Bradley WP, Fung TC, Flavell RA, Brodsky IE, Shin S. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog, 2013;9(6):e1003400.
    51. Wang S, Miura M, Jung Yk, Zhu H, Gagliardini V, Shi L, Greenberg AH, Yuan J. Identification and characterization of Ich-3, a member of the inter leukin-lbeta converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J Biol Chem, 1996;271(34):20580-20587.
    52. Rathinam VA, Fitzgerald KA. Immunology:Lipopolysaccharide sensing on the inside. Nature,2013;501(7466):173-175.
    53. Casson CN, Copenhaver AM, Zwack EE, Nguyen HT, Strowig T, Javdan B, Bradley WP, Fung TC, Flavell RA, Brodsky IE, Shin S. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog, 2013;9(6):e1003400.
    1. Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol.30,16-34 (2011).
    2. Chen, G. Y. & Nunez, G. Sterile inflammation:sensing and reacting to damage. Nat. Rev. Immunol.10,826-837 (2010).
    3. Franchi, L., Eigenbrod, T., Munoz-Planillo, R. & Nunez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol.10,241-247 (2009).
    4. Franchi, L., Warner, N., Viani, K. & Nunez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227,106-128 (2009)
    5. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1Bvia Ipaf. Nat. Immunol.7, 569-575 (2006).
    6. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1Bin Salmonella-infected macrophages. Nat. Immunol.7, 576-582 (2006).
    7. Zamboni, D. S. et al.The Bircle cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophilainfection. Nat. Immunol.7,318-325 (2006).
    8. Ren, T., Zamboni, D. S., Roy, C. R., Dietrich, W. F. & Vance, R. E. Flagellin-deficient Legionellamutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoSPathog. 2, e18 (2006).
    9. Amer, A. et al. Regulation of Legionellaphagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem. 281,35217 35223 (2006).
    10. Miao, E. A., Ernst, R. K., Dors, M., Mao, D. P. & Aderem, A. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc. Natl. Acad. Sci. USA 105, 2562-2567 (2008).
    11. Franchi, L. et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur. J. Immunol.37,3030-3039 (2007).
    12. Sun, Y. H., Rolan, H. G. & Tsolis, R. M. Injection of flagellin into the host cell cytosol by Salmonella entericaserotype Typhimurium. J. Biol. Chem.282, 33897-33901 (2007).
    13. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoSPathog. 3, e111 (2007).
    14. Miao, E. A. et al. Innate immune detection of the type Ⅲ secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. USA 107,3076-3080 (2010).
    15. Sutterwala, F. S. et al. Immune recognition of Pseudomonas aeruginosamediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204,3235-3245 (2007).
    16. Lightfield, K. L. et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat. Immunol.9,1171-1178 (2008).
    17. Zhao, Y. et al.The NLRC4 inflammasome receptors for bacterial flagellin and type Ⅲ secretion apparatus. Nature 477,596-600 (2011).
    18. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477,592-595 (2011).
    19. Lightfield, K. L. et al. Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect. Immun. 79,1606-1614 (2011).
    20. Franchi, L. Role of inflammasomes in Salmonellainfection. Front Microbiol 2, 8 (2011).
    21. Sansonetti, P. J. et al. Caspase-1 activation of IL-1Band IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12,581-590 (2000).
    22. Raupach, B., Peuschel, S. K., Monack, D. M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1B(IL-1B) and IL-18 contributes to innate immune defenses against Salmonella entericaserovar Typhimurium infection. Infect. Immun. 74, 4922-4926 (2006).
    23. Lara-Tejero, M. et al.Role of the caspase-1 inflammasome in Salmonella Typhimurium pathogenesis. J. Exp. Med. 203,1407-1412 (2006).
    24. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207,1745-1755 (2010).
    25. Fink, S.L. & Cookson, B.T. Pyroptosis and host cell death responses during Salmonellainfection. Cell. Microbiol.9,2562-2570 (2007).
    26. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol.11,1136-1142 (2010).
    27. Sauer, J. D. et al. Listeria monocytogenesengineered to activate the NLRC4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc. Natl. Acad. Sci. USA 108,12419-12424 (2011).
    28. Warren, S. E. et al. Generation of a Listeriavaccine strain by enhanced caspase-1 activation. Eur. J. Immunol.41,1934-1940 (2011).
    29. Akhter, A. et al. Caspase-7 activation by the NLRC4/Ipaf inflammasome restricts Legionella pneumophilainfection. PLoSPathog.5, e1000361 (2009).
    30. Molofsky, A. B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophilainfection. J. Exp. Med. 203,1093-1104 (2006).
    31. Lamkanfi, M. et al. The Nod-like receptor family member Naip5/Bircle restricts Legionella pneumophilagrowth independently of caspase-1 activation. J. Immunol.178, 8022-8027 (2007).
    32. Archer, K. A., Ader, F., Kobayashi, K. S., Flavell, R. A. & Roy, C. R. Cooperation between multiple microbial pattern recognition systems is important for host protection against the intracellular pathogen Legionella pneumophila. Infect. Immun. 78,2477-2487 (2010).
    33. Martinon, F., Burns, K. & Tschopp, J. The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-B. Mol. Cell 10,417-426 (2002).
    34. Faustin, B. et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 25,713-724 (2007).
    35. Hsu, L.C. et al. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1Bsecretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc. Natl. Acad. Sci. USA 105,7803-7808 (2008).
    36. D'Osualdo, A. et al. CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLoS ONE 6, e27396 (2011).
    37. Boyden, E. D. & Dietrich, W. F. Nalplb controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet.38,240-244 (2006).
    38. Broz, P., von Moltke, J., Jones, J. W., Vance, R.E. & Monack, D. M. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8,471-483 (2010).
    39. Terra, J. K. et al.Cutting edge:resistance to Bacillus anthracisinfection mediated by a lethal toxin sensitive allele of Nalplb/Nlrplb. J. Immunol.184,17-20 (2010).
    40. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol.14,1929-1934 (2004).
    41. Marina-Garcia, N. et al. Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J. Immunol.180,4050-4057 (2008).
    42. Kanneganti, T. D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440,233-236 (2006).
    43. Bauernfeind, F. G. et al. Cutting edge:NF-KB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol.183,787-791 (2009).
    44. Harder, J. et al. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin 0 and NF-KB activation but proceeds independently of TLR signaling and P2X7 receptor. J. Immunol.183,5823-5829 (2009).
    45. Franchi, L., Eigenbrod, T. & Nunez, G. Cutting edge:TNF-Amediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol.183,792-796 (2009).
    46. Bauernfeind, F. et al. Cutting edge:reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J. Immunol.187,613-617 (2011).
    47. Embry, C. A., Franchi, L., Nunez, G. & Mitchell, T. C. Mechanism of impaired NLRP3 inflammasome priming by monophosphoryl lipid A. Sci. Signal.4, ra28 (2011).
    48. Sander, L. E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385-389 (2011).
    49. Ferrari, D., Chiozzi, P., Falzoni, S., Hanau, S. & Di Virgilio, F. Purinergic modulation of interleukin-1Brelease from microglial cells stimulated with bacterial endotoxin. J. Exp. Med. 185,579-582 (1997).
    50. Netea, M. G. et al. Differential requirement for the activation of the inf lammasome for processing and release of IL-lBin monocytes and macrophages. Blood 113,2324-2335 (2009).
    51. Piccini, A. et al. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-lBand IL-18 secretion in an autocrine way. Proc. Natl. Acad. Sci. USA 105,8067-8072 (2008).
    52. Saitoh, T. et al. Loss of the autophagy protein Atgl6L1 enhances endotoxininduced IL-1Bproduction. Nature 456,264-268 (2008).
    53. Harris, J. et al. Autophagy controls IL-1Bsecretion by targeting pro-IL-1B for degradation. J. Biol. Chem. 286,9587-9597 (2011).
    54. Crisan, T.0. et al. Inf lammasome-independent modulation of cytokine response by autophagy in human cells. PLoS ONE 6, e18666 (2011).
    55. Franchi, L., Kanneganti, T.D., Dubyak, G. R. & Nunez, G. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J. Biol. Chem. 282,18810-18818 (2007).
    56. Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583-1589 (2007).
    57. Perregaux, D. G. & Gabel, C. A. Human monocyte stimulus-coupled IL-1B posttranslational processing:modulation via monovalent cations. Am. J. Physiol. 275, C1538-C1547 (1998).
    58. Bauernfeind, F. et al. Inflammasomes:current understanding and open questions. Cell Mol. Life Sci. 68,765-783 (2011).
    59. Munoz-Planillo, R., Franchi, L., Miller, L. S. & Nunez, G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J. Immunol. 183,3942-3948 (2009).
    60. Pelegrin, P. & Surprenant, A. Pannexin-1 mediates large pore formation and interleukin-1Brelease by the ATP-gated P2X7 receptor. EMBOJ. 25,5071-5082 (2006).
    61. Qu, Y. et al. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol.186,6553-6561 (2011).
    62. Duncan, J. A. et al. Neisseria gonorrhoeaeactivates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J. Immunol.182,6460-6469 (2009).
    63. Chu, J. et al. Cholesterol-dependent cytolysins induce rapid release of mature IL-1Bfrom murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner. J. Leukoc. Biol.86,1227-1238 (2009).
    64. Dostert, C. et al. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS ONE 4, e6510 (2009).
    65. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320,674-677 (2008).
    66. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol.11,136-140 (2010).
    67. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1Bin type 2 diabetes. Nat. Immunol. 11,897-904 (2010).
    68. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469,221-225 (2011).
    69. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol.12,222-230 (2011).
    70. Miller, L. S. et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24, 79-91 (2006).
    71. Miller, L. S. et al. Inf lammasome-mediated production of IL-1Bis required for neutrophil recruitment against Staphylococcus aureus in vivo. J. Immunol.179, 6933-6942 (2007).
    72. Toma, C. et al. Pathogenic Vibrioactivate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-KB signaling. J. Immunol. 184,5287-5297 (2010).
    73. Witzenrath, M. et al. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J. Immunol.187,434-440 (2011).
    74. McNeela, E. A. et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoSPathog. 6,e1001191 (2010).
    75. Hoegen, T. et al. The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J. Immunol.187,5440-5451 (2011).
    76. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479,117-121 (2011).
    77. Ng, J. et al. Clostridium difficiletoxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139, 542-552 (2010).
    78. Brodsky, I. E. et al. A Yersiniaeffector protein promotes virulence by preventing inflammasome recognition of the type Ⅲ secretion system. Cell Host Microbe 7,376-387 (2010).
    79. Zheng, Y. et al.A Yersiniaeffector with enhanced inhibitory activity on the NF-KB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages. PLoSPathog. 7, e1002026 (2011).
    80. Kanneganti, T. D. et al.Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281,36560-36568 (2006).
    81. Muruve, D. A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452,103-107 (2008).
    82. Ichinohe, T., Pang, I.K. & Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol.11, 404-410 (2010).
    83. Ichinohe, T., Lee, H.K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med.206,79-87 (2009).
    84. Thomas, P. G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30,566-575 (2009).
    85. Allen, I. C. et al. The NLRP3 inflammasome mediates in vivoinnate immunity to influenza A virus through recognition of viral RNA. Immunity 30,556-565 (2009).
    86. Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459,433-436 (2009).
    87. Joly, S. et al. Cutting edge:Candida albicanshyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol.183,3578-3581 (2009).
    88. Hise, A. G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5,487-497 (2009).
    89. Tomalka, J. et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoSPathog. 7, e1002379 (2011).
    90. Shio, M. T. et al. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoSPathog. 5, e1000559 (2009).
    91. Reimer, T. et al. Experimental cerebral malaria progresses independently of the Nlrp3 inf lammasome. Eur. J. Immunol.40, 764-769 (2010).
    92. Franchi, L., Munoz-Planillo, R., Reimer, T., Eigenbrod, T. & Nunez, G. Inflammasomes as microbial sensors. Eur. J. Immunol.40, 611-615 (2010).
    93. Rathinam, V. A. et al.The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol.11,395-402 (2010).
    94. Meixenberger, K. et al. Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1B, depending on listeriolysin 0 and NLRP3. J. Immunol.184,922-930 (2010).
    95. Kim, S. et al. Listeria monocytogenes is sensed by the NLRP3 and AIM2 inf lammasome. Eur. J. Immunol.40, 1545-1551 (2010).
    96. Hara, H. et al. Dependency of caspase-1 activation induced in macrophages by Listeria monocytogeneson cytolysin, listeriolysin 0, after evasion from phagosome into the cytoplasm. J. Immunol.180, 7859-7868 (2008).
    97. Ozoren, N. et al. Distinct roles of TLR2 and the adaptor ASC in IL-1B/IL-18 secretion in response to Listeria monocytogenes. J. Immunol.176,4337-4342 (2006).
    98. Tsuji, N. M. et al. Roles of caspase-1 in Listeriainfection in mice. Int. Immunol. 16,335-343 (2004).
    99. Willingham, S. B. et al. Microbial pathogen-induced necrotic cell death mediated by the inf lammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2, 147-159 (2007).
    100. Smith, P. D. et al. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol.4,31-42 (2011).
    101. Willingham, S. B. et al.NLRP3 (NALP3, cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGBl release via inflammasome-dependent and -independent pathways. J. Immunol.183, 2008-2015 (2009).
    102. Dunne, A. et al. Inf lammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J. Immunol.185, 1711-1719 (2010).
    103. Brereton, C. F. et al. Escherichia coliheat-labile enterotoxin promotes protective Th17 responses against infection by driving innate IL-1 and IL-23 production. J. Immunol.186,5896-5906 (2011).
    104. Shimada, K. et al. Caspase-1 dependent IL-1Bsecretion is critical for host defense in a mouse model of Chlamydia pneumoniaelung infection. PLoS ONE 6, e21477 (2011).
    105. He, X. et al. Inflammation and fibrosis during Chlamydia pneumoniaeinfection is regulated by IL-1 and the NLRP3/ASC inf lammasome. J. Immunol.184,5743-5754 (2010).
    106. Master, S. S. et al. Mycobacterium tuberculosisprevents inflammasome activation. Cell Host Microbe 3,224-232 (2008).
    107. Koo, I.C. et al. ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol.10, 1866-1878 (2008).
    108. Mishra, B. B. et al. Mycobacterium tuberculosisprotein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol.12,1046-1063 (2010).
    109. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440,228-232 (2006).
    110. Warren, S. E., Mao, D. P., Rodriguez, A. E., Miao, E. A. & Aderem, A. Multiple Nodlike receptors activate caspase 1 during Listeria monocytogenesinfection. J. Immunol.180,7558-7564 (2008).
    111. Wu, J., Fernandes-Alnemri, T. & Alnemri, E. S. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J. Clin. Immunol.30,693-702 (2010).
    112. Tsuchiya, K. et al. Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J. Immunol.185, 1186-1195 (2010).
    113. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126,1135-1145 (2006).
    114. Galle, M. et al. The Pseudomonas aeruginosatype Ⅲ secretion system plays a dual role in the regulation of caspase-1 mediated IL-1Bmaturation. J. Cell Mol. Med. 12,1767-1776 (2007).
    115. Lightfield, K. L. et al. Differential requirements for NAIP5 in activation of the NLRC4 (IPAF) inflammasome. Infect. Immun. 79,1606-1614 (2011).
    116. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477,592-595 (2011).
    117. Nour, A.M. et al. Anthrax lethal toxin triggers the formation of a membraneassociated inflammasome complex in murine macrophages. Infect. Immun.77, 1262-1271 (2009).
    118. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol.11,385-393 (2010).
    119. Said-Sadier, N., Padilla, E., Langsley, G. & Ojcius, D. M. Aspergillus fumigatusstimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE 5, e10008 (2010).
    120. Nour, A.M. et al. Varicella-zoster virus infection triggers formation of an interleukin-1B(IL-1B)-processing inflammasome complex. J. Biol. Chem.286, 17921-17933 (2011).
    121. Hornung, V. et al.AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514-518 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700