InP/GaAs、GaAs/Si、InP/GaAs/Si异质外延生长技术及其在集成光电子器件中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类通信需求量的急剧增长是光纤通信系统发展的潜在驱动力,而新一代光纤通信系统的发展必然要以新型通信光电子器件作为支撑。当前通信光电子器件正处于由分立转向集成的重大变革时期,而通信光电子集成器件研究所面临的最突出问题是半导体材料兼容、结构兼容和工艺兼容。
     本论文工作是围绕任晓敏教授为首席科学家的国家重点基础研究发展规划(973计划)项目(No:2003CB314900),及其课题组承担的国家863计划项目(No:2003AA31g050,2006AA032416,2007AA032418)、国家自然基金重点项目(No:90601002,60576018)和国际科技合作重点项目计划项目(No:2006DFB11110)展开的,针对GaAs/Si、InP/GaAs以及InP/GaAs/Si材料间的大失配异质外延生长开展了大量的研究工作,并在此基础上首次研制成功了单片集成的GaAs基和Si基新型波长选择性光探测器。主要研究成果如下所述:
     1、在InP/GaAs的异质外延生长方面取得重要进展。探索了InP低温缓冲层和InP/Ga_(0.1)In_(0.9)P应变超晶格(SLS)的最佳生长条件和结构参数,利用低压金属有机物化学气相沉积(LP-MOCVD)技术在GaAs衬底上外延生长出高质量的InP材料。在此基础上,在GaAs衬底上生长的2.6μm厚InP外延层的X射线衍射(XRD)ω-2θ扫描的半高全宽(FWHM)达到208arcsec,测试结果表明该外延层位错密度已降到了10~7cm~(-2)量级。
     2、首次实现了单片集成的GaAs基长波长可调谐“一镜斜置三镜腔”光探测器。在GaAs衬底上,首先生长GaAs/AlAs法布里—泊罗(F-P)滤波腔,利用InP/GaAs(100)异质外延的低温缓冲层技术,继续生长出InP基的p-i-n光探测结构和斜面形成层。所制备的光探测器获得了51.5%的峰值量子效率、10.0nm的波长调谐范围、低于0.8nm的光谱响应线宽(FWHM)以及6.0GHz的3dB响应带宽。
     3、综合分析了引入楔形衬底导致的双波长现象,并制备出了单片集成可调谐双波长探测器。利用低温缓冲层技术,在生长完F-P腔滤波器的GaAs衬底上生长了InP基的p-i-n光探测结构。通过引入角度为3°的楔形衬底,使得探测器可以同时工作于两个波长(1537nm和1530nm),此器件还有5nm以上的调谐范围,测试响应3dB带宽为6.4GHz,并探讨了其应用情况。
     4、在GaAs/Si外延方面取得突破。通过探索有偏角衬底、Al(GaAs)As低温缓冲层和循环热退火等技术的最优条件,在Si衬底上外延生长出了高质量的GaAs材料。对于1.2μm厚GaAs外延层,其XRDω-2θ扫描的FWHM仅为192.3arcsec,透射电子显微镜(TEM)图像显示外延材料层中位错能被有效弯曲、合并,测试结果表明在距GaAs/Si界面处0.5μm的位错密度为10~7cm~(-2)量级。
     5、摸索出了一种GaAs层分两个阶段生长、中间插入刻槽工序(mid-pattern)的GaAs/Si无裂纹外延方法。先在Si衬底上生长1~3μm厚的GaAs层,然后通过刻槽(台面面积为700μm×800μm)释放热失配应力,最后进行二次外延,得到了13μm厚的无裂纹GaAs外延层。
     6、综合利用mid-patern无裂纹技术和低温缓冲层法实现了InP/GaAs/Si高质量外延。外延层包含13μm的GaAs基F-P腔和5μm的InP基p-i-n结构,由此制作出了Si基波长选择性、长波长光探测器,测试结果显示,选择波长为1495.5nm,线宽为2.0nm,暗电流仅为40.1nA。
The increasing demand for communication is driving force behind modern fiber communication systems, which are always based on novel optoelectronic devices. It is revolutionary period that independent devices change to optoelectronic integrated devices, which have been encountered by the compatibilities of semiconductor materials, structures and processes.
     The research work of this doctoral thesis is mainly supported by the grants from the National Basic Research Program of China (No.2003CB314900), which professor Xiaomin Ren is responsible for as a chief scientist, the National High Technology Research and Development Program of China(No: 2003AA31g050, 2006AA03Z416, 2007AA03Z418), Key Program of the National Natural Science Foundation of China(No. 90601002, 60576018) and Program of Key International Science and Technology Cooperation Projects (2006DFB11110). In this thesis, a great deal of work is demonstrated about theorical and experimental research on heteroepitaxy of large mismatched materials, including InP/GaAs, GaAs/Si and InP/GaAs/Si. Based on high quality hoteroepitaxy, the novel monolithically integrated GaAs-based and Si-based wavelength-selective photodetectors has been successfully fabricated first time. The main achievements are listed as follows:
     1. Important progress has been achieved on InP/GaAs heteroepitaxy. The optimum conditions of low temperature InP buffer layer and the optimum structures of InP/Ga_(0.1)In_(0.9)P strained layer superlattice (SLS) have been obtained. Based on these methods, a 2.6μm high quality InP epilayer has been grown on GaAs substrates by using low pressure metalorganic chemical vapor deposition (LP-MOCVD). The FWHM of X-ray diffraction (XRD)ω-2θscans is only 208arcsec. Test results indicate the dislocation density of InP epilayer has been reduced to 10~7cm~(-2).
     2. The monolithically integrated long-wavelength tunable "One-Mirror Inclined Three-Mirror Cavity" photodetector has been realized first time. By employing a thin low-temperature buffer layer, the high quality InP-based p-i-n structures and taper-fabricated layers have been grown on a GaAs-based GaAs/AlAs Fabry-Pérot-filter. A wavelength tuning range of 10.0 nm, an external quantum efficiency of about 51.5%, a spectral linewidth of 0.8 nm and a 3-dB bandwidth of 6.0 GHz have been obtained in this device.
     3. Detailed analysis and fabrication of a monolithically integrated dual-wavelength tunable photodetectors has been demonstrated. The dual-wavelength character is realized first by fabricating a taper GaAs substrate with the angle of 3°. The photodetector is monolithically integrated by using a heteroepitaxy growth of InP-In0.53Ga0.47As-InP p-i-n structure on a GaAs-based GaAs/AlAs Fabry-Perot-filter structure, which can be tuned via the thermal-optic effect. High-quality heteroepitaxy was realized by employing a thin low-temperature buffer layer. The devices with a dual-peak distance of 7 nm (1530nm, 1537 nm), a wavelength-tuning range above 5.0 nm, and a 3-dB bandwidth of 6.4 GHz are successfully fabricated. The potential applications have been discussed also.
     4. Important progress has been achieved on GaAs/Si heteroepitaxy. High-quality GaAs epilayer is obtained by employing the technologies of the tilted Si substrate, optimization the low temperature Al(GaAs)As buffer layer and thermal cycle annealing. The FWHM of XRDω-2θ scans is only 192.3arcsec for a 1.2μm GaAs material grown on Si substrates. Transmission Electron Microscope (TEM) shows the density of threading dislocation in epilayers has been bended and joined. These results indicate the dislocation density has been reduced to 10~7cm~(-2) in the epilayer of 0.5μm away from the interface of GaAs/Si.
     5. A method of GaAs epilayer grown on mid-patterned Si subatrates has been demonstrated. The large area (700μm×800μm) crack-free GaAs/Si mesas with the thickness of 13μm have been realized, which are regrown on the patterned Si substrates covered by the pregrown 1-3μm GaAs layer. The crack-free characteristic is introduced by the release of thermal stress in the epilayers.
     6. The epilayers including 13μm GaAs-based GaAs/AlAs Fabry-Perot-filter and 5μm InP based p-i-n structure have been grown on Si substrates by employing the methods of mid-patterned Si substrate and the InP/GaAs low temperature buffer. Then the epilayers are fabricated into Si-based wavelength-selective photodetectors operating at the wavelength of 1495.5nm, with a spectral linewidth of 2.0nm and a dark current of 40.1nA.
引文
[1] Richard Soref, "The past, present, and future of silicon photonics", IEEE J. Sel. Topics Quantum Electron., vol.12, no.6, 2006, 1678-1687.
    [2] The Concept of MOCVD Reactors, Thomas Swan Scientific Equipment LTD.
    [3] Hui Huang, Xiaomin Ren, Xinyan Wang, et al, "Low-temperature InP/GaAs wafer bonding using sulfide-treated surface", Appl. Phys. Lett. 88, 2006,061104
    [4] Hui Huang, Xiaomin Ren, Wenjuan Wang, et al, "Low temperature InP/Si wafer bonding using boride treated surface"Appl. Phys. Lett. 90, 2007,161102
    [5] Cem Ozturk, Andrew Huntington, Atilla Aydinli, et al, "Filtering Characteristics of Hybrid Integrated Polymer and Compound Semiconductor Waveguides", Journal of Lightwave Technology, 20(8), Aug. 2002, 1530-1536.
    [6] Detlef Stoll, Patrick Leisching, Harald Bock, etc., "Metropolitan DWD: a Dynamically Configurable Ring for the KomNet Field Trial in Berlin", IEEE Communications Magazine, 39, Feb. 2001, 106-113.
    [7] Unlu M.S, Strite.S., "Resonant Cavity Enhance Photonic Device", J. Appl. Phys., 78, 1995, 607-639.
    [8] Xiaomin Ren, Joe C. Campbell, "A Novel Structure: One Mirror Inclined Three-Mirror Cavity High Performance Photodetector". Technical Proceedings: International Topic Meeting On Photoelectronics (ITMPE'97), Beijing, Oct., 1997, 81-84.
    [9] Hui Huang, Ruikang Zhang, Qi Wang, et al. "Wavelength-selective photodetector with integrated vertical taper structure". OFC 2002[C]. ThGG73 2002.
    [10] A. G. Dentai, R. Kuchibhotla, J. C. Campbell, et al. "High quantum efficiency, long wavelength InP/lnGaAs microcavity photodiode," Electron. Lett., vol. 27, 1991, 2125-2127.
    [11] A. Dodabalapur and T. Y. Chang, "Resonant-cavity InGaAlAs/lnGaAs InAlAs phototransistors with high gain for 1.3-1.6μm," Appl. Phys.Lett., vol. 60, 1992, 92S931.
    [12] M. J. Mondry, D. I. Babit, J. E. Bowers, et al, "Refractive indexes of (Al,GaIn)As epilayers on InP for optoelectronic applications," IEEE Photon. Technol. Lett., vol. 4, 1992,627-630.
    [1]Sun,Yan-Ting,Epitaxial Lateral Overgrowth of Indium Phosphide and Its Applications in Heteroepitaxy,Royal Institute of Technology,Sweden,2003.
    [2]杨少延,大失配异质外延超薄中间层柔性衬底研究,中国科学院半导体研究所,北京.2005.
    [3]Lichtenberger,H.;Muhlberger,M.,and Schaffler,F.,Ordering of Si0.55Ge0.45islands on vicinal Si(001)substrates:Interplay between kinetic step bunching and strain-driven island growth,Appl.Phys.Lett.,86,2005,131919-131923.
    [4]Gopalakrishnan,N.;Baskar,K.;Kawanami,H.,et al.,Effects of the low temperature buffer layer thickness on the growth of gaas on si by MBE,J.Cryst.Growth,250,2003,29-33.
    [5]Akasaki,I.;Amano,H.;Koide,et al.,Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates,J.Cryst.Growth,89,1989,209-4702.
    [6]Kuznia,J.N.;Khan,M.A.,and D.T.Olson,et al.,Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates,J.Appl.Phys.,73,1993,4700-4702.
    [7]Radhakrishnan,K.;Yuan,K.,and Hong,Wang,Characterization of InGaAs/InP single quantum well structure on GaAs substrate with metamorphic buffer grown by molecular beam epitaxy,J.Cryst.Growth,261,2004,16-21.
    [8]Liu,J.L.;Tong,S.;Luo,Y.H.,et al.,High-quality Ge films on Si substrates using Sb-surfactant-mediated graded SiGe buffers,Appl.Phys.Lett.,79,2001,3431-3436.
    [9]Goldman,R.S.;Kavanagh,K.L.,and H.H.Wieder,et al.,Correlation of buffer strain relaxation modes with transport properties of two-dimensional electron gases,J.Appl.Phys.,80,1996,6849-6854.
    [10]许振嘉,近代半导体材料的表面科学基础,北京,北京大学出版社,1999,387.
    [11]Kimura,Tatsuya;Kimura,Tadashi,and Eitaro Ishimura,et al.,Improvement of InP crystal quality grown on GaAs substrates and device applications,J.Cryst.Growth,107,1991,827-831.
    [12]Lo,Y.H.,"New approach to grow pseudomorphic structures over the criticalthickness",Appl.Phys.Lett.,59,1991,2311-2314
    [13] Maroudas, Dimitrios; Luis, A.; Zepeda-Ruiz, et al., "Kinetics of strain relaxation through misfit dislocation formation in the growth of epitaxial films on compliant substrates", Appl. Phys. Lett, 73, 1998, 753-755
    [14] Chua, C. L.; Hsu, W. Y.; Lin, C. H., et al., "Overcoming the pseudomorphic critical thickness limit using compliant substrates", Appl. Phys. Lett., 64, 1994, 3640-3642
    [15] Jones, A. M.; Jewell, J. L.; Mabon, J. C, et al., "Long-wavelength InGaAs quantum well grown without strain-induced warping on InGaAs compliant membranes above a GaAs substrate", Appl. Phys. Lett., 74, 1999, 1000-1002
    [16] Carter-Coman, C. and A.S. Brown, et al., "Strain-modulated epitaxy: Modification of growth kinetics via patterned, compliant substrates", J. Vac. Sci. Tech. B., 14, 1996,2170-2171
    [17] Carter-Coman, C; Brown, A.S., and R. Bicknell-Tassius, etc., "Strain-modulated epitaxy: A flexible approach to 3-D band structure engineering without surface patterning", Appl. Phys. Lett., 69, 1996, 257-259
    [18] Carter-Coman, C; Brown, A.S., and N.M. Jokerst, et al., "Strain accomodation in mismatched layers by molecular beam epitaxy: Introduction of a new compliant substrate technology", J. Electron. Mate., 25, 1996, 1044-1047
    [19] Ejeckam, F. E.; Seaford, M. L., and Y.-H. Lo, et al., H. Q. Hou, "Dislocation of a glassbonded compliant substrate", Appl. Phys. Lett., 71, 1997, 776-778
    [20] P.D.Moran; D.M.Hansen; R.J.Matyi, et al., "InGaAs heteroepitaxy on gaas compliant substrates: X-ray diffraction evidence of enhanced relaxation and improved structural quality", Appl. Phys. Lett., 75, 1999, 1559-1562
    [21] Hansen, D. M.; Moran, P. D.; Dunn, K. A., et al., "Development of a glass-bonded compliant substrate", J. Cryt. Growth, 195, 1998, 144-150
    [22] Powell, A. R.; Iyer, S. S., and LeGoues, F. K., "New approach to the growth of low dislocation relaxed SiGe material", Appl. Phys. Lett., 64, 1994, 1856-1858
    [23] Yang, Z.; Guarin, F.; Tao, I. W., et al., "Approach to Obtain High Quality GaN on Si and SiC-on-Insulator Compliant Substrate by Molecular-Beam Epitaxy", J. Vac. Sci. Technol.B, 13, 1995, 789-791
    [24] Steckl, A. J.; Devrajan, J.; Tran, C, et al., "Growth and characterization of GaN thin films on SiC SOI substrates", J. Electron. Mater., 26, 1997, 217-221
    [25] J.Cao; D.Pavlidis; A.Eisenbach, et al., "Photoluminescence properties of GaN grown on compliant silicon-on-insulator substrates", Appl. Phys. Lett., 71, 1997, 3880-3882
    [26]Z.Yang;J.Alperin;W.I.Wang,et al.,"In situ relaxed SilxGex epitaxial layers with low threading dislocation densities grown on compliant Si-on-Insulator substrates",J.Vac.Sci.Technol B,16,1998,1489-1491
    [27]M.L.Seaford;D.H.Tomich;K.G.Eyink,et al.,"Comparison of gaas on standard Si(511)and compliant SOI(511)",J.Electron.Mate.,29,2000,906-908
    [28]Matthews,J.W.and Blackeslee,A.E.,"Defects in epitaxial multilayers:misfit dislocation",J.Cryt.Growth,27,1974,118-125
    [29]L.S.Wang;X.L.Liu;Y.D.Zan,et al."Wurtzite GaN epitaxial growth on a Si(001)substrate using γ-A12O3 as an intermediate layer",Appl.Phys.Lett.72,109(1998)
    [30]Wang,D.;Hiroyama,Y.;Tamura,M.,et al."Growth of hexagonal GaN on Si(111)coated with a thin flat SiC buffer layer",Appl.Phys.Lett.77,1846(2000)
    [31]Park,C.I.;Kang,J.H.;Kim,K.C.,et al.,"Metal-organic chemical vapor deposition growth of GaN thin fihn on 3C-SiC/Si(111)substrate using various buffer layers",Thin Solid Films,401,2001,60-66
    [32]Nishimura,S.and Terashima,K.,"Growth of c-GaN on Si(100)',Materials Science and Engineering B,82,2001,25-26
    [33]Marchand,H.;Zhao,L.;Zhang,N.,et al.,"Metalorganic chemical vapor deposition of GaN on Si(111):Stress control and application to field-effect transistors",J.Appl.Phys.,89,2001,7846-7851
    [34]Y.F.Chen;S.K.Hong;H.J.Ko,et al.,"Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch",Appl.Phys.Lett.,78,2001,4402-4404
    [35]H.Kato;K.Miyamoto;Sano,M.,et al.,"Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness",Appl.Phys.Lett.,84,2004,4562-4564
    [36]Joyce,B.D.and Baldrey,J.A.,"Selective epitaxial deposition of silicon",Nature,195,1962,485-488
    [37]Nakamura,S.,"Universal variational functionals of electron-densities",in Proceedings of the second international co semiconductor,1997
    [38]Kato,Y.;Kitamura,S.,and Hiramatsu,K.,"Selective growth of wurtzite GaN and AlN on GaN and AlxGalixN on GaN/sapphire substrates bymetalorganic vapor phase epitaxy",J.Cryst.Growth,144,1994,133-140
    [39]Shaw,D.W.,"Selective growth of wurtzite GaN and AlN on GaN and AlxGal ixN on GaN/sapphire substrates by metalorganic vapor phase epitaxy",J.Electrochem.Soc,113,1996,904-908
    [40]Tausch,F.W.;A.G.Lapierre,"Selective growth ofwurtzite GaN and AlN on GaN and AlxGa1-xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy",J.Electrochem.Soc,112,1965,706-710
    [41]McClelland,R.W.;Bozler,C.O.,and Fan,J.C.C.,"Selective growth of wurtzite GaN and AlN on GaN and AIxGa1-xN on GaN/sapphire substrates bymetalorganic vapor phase epitaxy",Appl.Phys.Lett.,65,1980,904-908
    [42]Mao,Z.;McKeman,S;Carter,C.B.,et al.,"Defects in GaN pyramids grown on Si(lll)substrates by selective lateral overgrowth",MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS,91,1999,2259-2261
    [43]Sakai,Akira;Sunakawa,Haruo,and Usui,Akira,"Defect structure in selectively grown GaN films with low threading dislocation density",Appl.Phys.Lett.,91,1997,2259-2261
    [44]Zheleva,Tsvetanka S.;Ok-Hyun Nam,D.Bremser,Michael,and Davis,Robert F.,Dislocation density reduction via lateral epitaxy in selectively grown GaN structures,Appl.Phys.Lett.,71,1997,2472-2474
    [45]Deping Xiong,Xiaomin Ren,Qi Wang,etc."Epitaxial lateral overgrowth of InP/GaAs(100)heterostructures by metalorganic chemical vapor deposition",Microelectronics Journal,Vol.38,Issues 4-5,Aoril-Mav 2007,606-609
    [46]黎大兵,(In,A1)GaN材料的MOCVD牛长及其物性研究,中国科学院半导体研究所,北京,2004
    [47]D.KEITH BOWEN and BRIAN K.TANNER,"High Resolution X-ray Diffractometry and Topography"[M],1998
    [48]沈学础,半导体光学性质,北京,科学出版社,2001
    [49]腾敏康,正电子湮没谱学及其应用,北京,原子能出版社,2000
    [50]左演声,陈文哲,梁伟,材料现代分析方法,北京,北京工业大学出版社,2000
    [51]姜传海,程凡雄,吴建牛,测定薄膜厚度的基片X射线衍射法,上海交通大学学报,Vol.38 No.7,2004,1045-1047
    [52]刘恩科,朱秉牛,罗晋牛等 著,《半导体物理学》,西安交通大学出版社,1998:17-18,35-36,43-45,124-126,282-287.378-381
    [53]Horiba荧光光谱仪使用手册,J.Y公司,日本
    [1] M.K.Lee, D.S.Wuu, and H.H.Tung, Heteroepitaxial growth of InP on GaAs by low-pressure metalorganic chemical vapor deposition, J. Appl. Phys. 62(8), 1987,3209-3211.
    [2] Y.F.Chen, J.L.Shen, and I.M.Chang, Photoluminescence study of highly mismatched In_(0.53)Ga_(0.47)As epilayers grown on InP-coated GaAs substrates, J. Appl. Phys. 77, 1995, 1040-1042.
    [3] Heteroepitaxial growth of InP/In_(0.53)Ga_(0.47)As structures on GaAs (100) by gas-source molecular beam epitaxy, Appl. Phys. Lett. 82(21), 1993, 2708-2710.
    [4] M.A.Hafez, K.A.Elamrawi, H.E.Elsayed-Ali, Pulsed laser deposition of InP thin films on sapphire (100) and GaAs (100), Applied Surface Science 233, 2004, 43-50.
    [5] K.F.YARN, W.C.CHIEN, C.L.LIN, et al., Direct growth of high-quality InP layers on GaAs substrates by MOCVD, Active and Passive Elec. Comp., 26, 2003, 71-79.
    [6] K.Radhakrishnan, K. Yuan, Wang Hong, Characterization of InGaAs/InP single quantum well structure on GaAs substrate with metamorphic buffer grown by molecular beam epitaxy, Journal of Crystal Growth 261, 2004, 16-21.
    [7] Aiguang Ren, Xiaomin Ren, Qi Wang, et al., Heteroepitaxy of In_(0.53)Ga_(0.47)As on GaAs substrate by low pressure metalorganic chemical vapor deposition for the OEIC applications, Microelectronic Journal 37, 2006,700-704.
    [8] Y. Mihashi, K.Goto, E. Lshimura, et al., Long-wavelength receiver optoelectronic integrated circuit on 3-inch-diameter GaAs substrate grown by InP-on-GaAs heteroepitaxy, Jpn. J. Appl. Phys.,33, 1994, 2599-2591.
    [9] Jang, J.H., Cueva, G, Dumka, et al., Long-wavelength In0.53Ga0.47As metamorphic p-i-n photodiodes on GaAs substrates, IEEE Photonics Technology Letters, 13,2001, 151-153.
    [10] J.P.Hirth and Xiaoxin Feng, J. Appl. Phys. 67(7), 1989, 3343-3345.
    [11] Kimura, Tatsuya; Kimura, Tadashi, and Eitaro lshimura, et al., Improvement of InP crystal quality grown on GaAs substrates and device applications, J.Cryst.Growth, 107, 1991,827-831.
    [12]Y. Takano, T. Sasaki, Y. Nagaki, et al., Two-step growth of InP on GaAs substrates by metalorganic vapor phase epitaxy, J. Cryst. Growth, 169, 1996, 621-624.
    [13]A.Sacedo'n,F.Gonza'lez-Sanz,E.Calleja,et al.,Design of InGaAs linear graded buffer structures,Appl.Phys.Lett.66,1995,3334-3339.
    [14]M.Haupt,K.K o"hler,P.Ganser,et al,Growth of high quality Alo.48Ino.52As/Gao.47Ino.53As heterostructures using strain relaxed AlxGayIn1-xAs as buffer layers on GaAs,Appl.Phys.Lett.69,1996,412-415.
    [15]Norio Hayafuji,Tatsuya Kimura,Naohito Yoshida,et al.,Improvement of InP crystal quality on GaAs substrates by thermal cyclic annealing,Jpn.J.Appl.Phys.,28,1989,1721-1725.
    [16]Takumi Shibata,Hiroki Sone,Katsunori Yahashi,et al,Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth,J.Crystal Growth,189/190,1998,67-69.
    [17]Jaime A.Freitas,Jr.,Ok-Hyun Nam,Tsvetanka S.Zheleva,et al.,Optical and structural properties of lateral epitaxial overgrown GaN layers,J.Crystal Growth,189/190,1998,92-97.
    [18]Hidetada Matsushima,Masahito Yamaguchi,Kazumasa Hiramatsu,Sub-micron fine structure of GaN by metalorganic vapor phase epitaxy(MOVPE)and buried structure by epitaxial lateral overgrowth(ELO),J.Crystal Growth 189/190,1998,78-81.
    [19]J.Zhou,X.M.Ren,Q.Wang,Surface characterization of epitaxial lateral overgrowth of InP on InP/GaAs substrate by MOCVD,Microelectronic Journal,38,2007,255-258.
    [20]M.Tamura,A.Hashimoto,J.Kasai,et al.,Threading dislocation in GaAs on pre-patterned Si and in post-patterned GaAs on Si,J.Crystal Growth,147,1995,264-273.
    [21]H.Uchida,T.Soga,H.Nishikawa,et al.,Reduction of dislocation density by thermal annealing for GaAs/GaSb/Si heterostructure,J.Crystal Growth,150,1995,681-684.
    [22]E.Peiner,H.-H.Wehmann,H.Iber,et al.,High-quality In0.53Ga0.47As on exactly(001)-oriented Si grown by metal-organic vapor-phase epitaxy,J.Crystal Growth,172,1997,44-52.
    [23]杨少延,大失配异质外延超薄中间层柔性衬底研究,中国科学院半导体研究所,北京,2005.
    [24]任爱光,单片集成通信光电子器件中异质兼容问题的理论与实验研究[学位论文],北京邮电大学,北京,2006.
    [25]Y.Q.Wang,Z.L.Wang,et al.Interracial Roughening in Lattice Matched GaInP/GaAs heterostructures.Thin Solid Films,397,2001,162-165.
    [26]Q.Xie,J.E.Nostrand,J.L.Brown,et al.,Arsenic for antimony exchange on GaSb,its impacts on surface morphology and interface structure,J Appl Phys,86,1999,329-332.
    [27]于兴君,徐德治,应变层超晶格晶格常数公式的证明,辽宁师范大学学报,17,1994,350-352.
    [28]许振嘉,近代半导体材料的表面科学基础,北京,北京大学出版社,1999,387
    [29]Y.M.Kim,M.Dahlstrom,M.J.W.Rodwell,et al.,Thermal Properties of Metamorhic Buffer Materials for Growth of InP Double Heterojunction Bipolar Transistors on GaAs Substrates,IEEE transaction on electron devices,50,2003,1411-1413.
    [30]Swaminathan,V.and Macrander,A.T.,Material Aspects of GaAs and InP Based Structures,Prentice Hall,NJ,1991.
    [31]Hodson,D.P.;Wallis,R.H.;Davies,J.I."LOW-LEAKAGE InGaAs PHOTODIODES GROWN ON GaAs SUBSTRATES USING-A GRADED STRAINED-LAYER SUPERLATTICE",Electronics Letters,v 23 n 6,1987,273-275
    [32]Kimura,Tatsuya;Kimura,Tadashi,and Eitaro Ishimura,et al.,Improvement of InP crystal quality grown on GaAs substrates and device applications,J.Cryst.Growth,107,1991,827-831.
    [33]Mihashi Yutaka,Go Katsuhiko,Ishimura Eitaro,"Long-wavelength receiver optoelectronic integrated circuit on 3-inch-diameter GaAs substrate grown by InP-on-GaAs heteroepitaxy",Japanese Journal of Applied Physics,Part 1,v 33,n 5A,1994,2599-2604
    [1] M. S. Unlu, S. Strite. "Resonant cavity enhanced photonic devices". Journal of Appl. Phys., Vol.78, No.2, 1995, pp.607-639.
    [2] K. Kishino, M. S. Unlu, J. Chyi, et al. "Resonant cavity-enhanced (RCE) photodetectors". IEEE Journal of Quantum Electronics, Vol.27, No.8, 1991, pp.2025-2034.
    [3] T. Knodl, K. H. Choy, etal, "RCE photodetector based on VCSEL structure". IEEE Photonics Technology Letter, Vol. 11, No. 10, 1999, pp. 1289-1291.
    [4] Xiaomin Ren, J.c. Campbell. "Theory and simulations of tunable two-mirror and three-mirror resonant-cavity photodetectors with a built-in liquid-crystal layer". IEEE Journal of Quantμm Electronics, Vol.32, No.11, 1996, pp. 1903-1915.
    [5] Liu Kai, Huang Yongqing, Ren Xiaomin. "Theory and experiments of a three-cavity wavelength-selective photodetector". Applied Optics, Vol.39, No.24, 2000, pp.4263-4269.
    [6] Xiaomin Ren, Joe C. Campbell, "A Novel Structure: One Mirror Inclined Three-Mirror Cavity High Performance Photodetector". Technical Proceedings: International Topic Meeting On Photoelectronics (ITMPE'97), Beijing, Oct., 1997, pp.81-84.
    [7] Hui Huang, Ruikang Zhang, Qi Wang, et al. "Wavelength-selective photodetector with integrated vertical taper structure". OFC 2002[C]. ThGG73 2002.
    [8] W. Wang, X. Ren, H. Huang, et al. "Tunable Photodetector Based on GaAs/InP Wafer Bonding" IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 10, OCTOBER 2006, pp.827-829
    [9] H. Huang, Y. Huang, X. Wang, et al. "Long wavelength resonant cavity photodetector based on InP/Air-gap bragg reflectors," IEEE Photon. Technol. Lett., vol. 16, no. 1, Jan. 2004, pp. 245-247
    [10] Ruikang Zhang, Zhong Yuan, Xu Yingqiang et.al., "1.3μm GaInNAs/GaAs quantum well resonant cavity enhanced photodetector", ACTA PHOTONIC SINICA VOL.31 NO.3 2002 303-307
    [11]W. Idler, S. Bigo, Y. Frignac, et al, "Vestigial Side Band Demultiplexing for Ultra High Capacity (0.64 bit/s/Hz) Transmission of 128x40 Gb/s Channels", Optical Fiber Communication Conference (OFC), March 2001, Anaheim, California, MM3.
    [12] A.G.Dental, "High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode", Electronics Letters, 7th November 1991, vol.27, no.23, pp.2125-2126.
    [13]Hui Huang, Xingyan Wang, Xiaomin Ren, et al , "Selective wet etching of InGaAs/InGaAsP in Hcl/HF/CrO3 solution: Application to vertical taper structures in integrated optoelectronic devices", J.Vac.Sci.Technol.B 23(4), 2005, pp.1650-1653.
    [14]M. Zhang, D. N. Wang, H. Li, W. Jin, and M. S. Demokan. "Tunable Dual-Wavelength Picosecond Pulse Generation by the Use of Two Fabry-Perot Laser Diodes in an External Injection Seeding Scheme" IEEE Photon. Technol. Lett., VOL.14, NO. 1, JANUARY 2002, pp.92-94
    [15] S. D. Roh, Student, T. S. Yeoh, R. B. Swint, et al. "Dual-Wavelength InGaAs-GaAs Ridge Waveguide Distributed Bragg Reflector Lasers with Tunable Mode Separation" IEEE Photon. Technol. Lett., VOL. 12, NO. 10, OCTOBER 2000, pp. 1307-1309
    [16]Coppinger F., Yeh J., Singh J., Dagnall G., Chen L., Piehler D., "Dual-wavelength transmitter for enhanced video performance over a passive optical network"Optical Fiber Communications Conference, OFC 2003, vol.2 , March 2003, pp.734-735
    [17] Hai-Han Lu Shah-Jye Tzeng Wen-Shing Tsai Je-Wei Liaw Yu-Jie Ji. "Improvement of CSO/CTB performances employing up-converted and polarization modulation techniques" Communications, IEEE Transactions on Vol.53, Issue: 12, Dec. 2005, pp. 2124- 2128
    [18] Wood, T.H. Srivastava, A.K. Zyskind, J.L. Sulhoff, J.W. Wolf, C. "Two-wavelength WDM analog CATV transmission with low cross talk", Optical Fiber Communication. OFC 97, Feb 1997, 320-321
    [19] Murtaza, S.S. Tan, I.-H. Chelakara, R.V., et al., "High-efficiency, dual-wavelength, wafer-fused resonant-cavity photodetector operating at long wavelengths" IEEE Photon. Technol. Lett.,. Vol. 7, Issue 6, Jun 1995, pp.679-681
    [20] Bora M. Onat, M. SelimUnlu, "Polarization Sensing with Resonant Cavity Enhianced Photodetector" IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 2, NO. I, APRIL 1996 135-140
    [21 ] Francesco G. Delia Corte, Giuseppe Cocorullo, Mario Iodice, et al, "Temperature dependence of the thermo-optic coefficient of InP, GaAs,and SiC from room temperature to 600 K at the wavelength of 1.5μm", Applied Physics Letters, 77(11), 2000, 1614-1616
    [22] M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, "Widely and continuously Tunable Micromachined resonant cavity Detector with Wavelength Tracking",IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.8,NO.1,JANUARY 1996,98-100
    [1] Masafumi Yamaguchi, Akiio Yamamoto, Masami Tachikawa, et al., Defect reduction effects in GaAs on Si substrates by thermal annealing, Appl. Phys. Lett. 53(23), 1988, 2293-2295.
    [2] T.W.Kang, Y.D.Woo, T.W.Kim, Improvement of the crystallinity of GaAs epitaxial layers grown on Si substrates assisted by electron beam irradiation, Thin Solid Films 279, 1996,14-16.
    [3] Y.S.Chang, S.Naritsuka, T.Nishinaga, Optimization of growth condition for wide dislocation-free GaAs on Si substrate by microchannel epitaxy, J. Crystal Growth 192, 1998, 18-22.
    [4] Z.R.Zytkiewicz and J.Domagala, Thermal strain in GaAs layers grown by epitaxial lateral overgrowth on Si substrates, Appl. Phys. Lett. 75(18), 1999, 2749-2751.
    [5] J.Paslaski, H.Z.Chen, H.Morkoc, et al., High-speed GaAs p-i-n photodiodes grown on Si substrates by molecular beam epitaxy, Appl. Phys. Lett. 52(17), 1998, 1410-1412.
    [6] Michael E. Groenert, Christopher W.Leitz, Arthur J. Pitera, et al., Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers, J. Appl. Phys. 93, 2003, 362-367.
    [7] S.F.Fang, K.Adomi, S.Lyer, et al., Gallium arsenide and other compound semiconductors on silicon, J. Appl. Phys., 68, 1990, R31-R58.
    [8] H. Kroemer, Suppression of antiphase disorder in GaAs growth on relaxed GeSi buffers by metal-organic chemical vapor deposition, J. Cryst. Growth, 81, 1987, 193-197.
    [9] H. Kroemer, Sublattice allocation and antiphase domain suppression in polar-on-nonpolar nucleation, J. Vac. Sci. Techn., B5, 1987, 1150-1154.
    [10]R.C.Henderson, J. Electrochem, Soc, Silicon Cleaning with Hydrogen Peroxide Solutions: A High-Energy Electron Diffraction and Auger Electron Spectroscopy Study, 119, 1972,772-775.
    [11] Mitsuo Kawabe, Toshio Ueda and Hidetoshi Takasugi, Initial Stage and Domain Structure of GaAs Grown on Si(100) by Molecular Beam Epitaxy, Jpn. J. Appl. Phys., 26, 1987, L114-L116.
    [12]Tamura M., Yodo T., Saitoh T., "Rearrangement of misfit dislocations in GaAs on Si by post-growth annealing" Journal of Crystal Growth,v 150,n 1-4 pt 1,May 1,1995,654-660
    [13]Takagi Yasufumi "Reduction mechanism of threading dislocation density in GaAs epilayer grown on Si substrate by high-temperature annealing" Jpn.J.Appl.Phys.,Part 1,v33,1994,3368-3372
    [14]Yodo,Tokuo;Tamura,Masao "Effects of high-temperature annealing on the structural and crystalline qualities of GaAs heteroepitaxial layers grown on Si substrates using two-step and direct methods by molecular-beam epitaxy",Jpn.J.Appl.Phys.,Part 1,v 34,n 7A,Jul,1995,3457-3466
    [15]Chand Naresh,Chu S.N.G.,van der Ziel,"Effects of patterning and thermal annealing on the crystalline quality of GaAs grown on Si by MBE",Proceedings of SPIE - The International Society for Optical Engineering,v 1285,1990,184-201
    [16]YD Woo,HI Lee,TW Kang,TW Kim,"Improvement of the crystallinity of AIAs/GaAs superlattices grown on Si substrates by rapid thermal annealing",Thin Solid Films,v 264,n 1,Aug 1,1995,1-3
    [17]Sharan S.,Narayan J.,"Dislocation density reduction in GaAs epilayers on Si using strained layer superlattices",Journal of Electronic Materials,v 20,n 10,Oct,1991,779-784
    [18]Colombo D.,Grilli E.,Guzzi M.,Sanguinetti S.,Marchionna S.,Bonfanti M.,etc."Analysis of strain relaxation by microcracks in epitaxial GaAs grown on GeSi substrates" Journal of Applied Physics,v 101,n 10,2007,103519
    [19]Fitzgerald E.A.,Chand Naresh,"Epitaxial necking in GaAs grown on pre-patterned si substrates" Journal of Electronic Materials,v 20,n 10,Oct,1991,839-853
    [20]G.M.Metze,H.K.Choi,and B-Y.Tsaur "Metal-semiconductor field-effect transistors fabricated in GaAs layers grown directly on Si substrates by molecular beam epitaxy",Appl.Phys.Lett.45,1984,1107.
    [21]熊德平,“异质结半导体材料兼容的理论与实验研究”,[学位论文],北京邮电大学,北京,2007.
    [22]Alberts,Vivian,"Photoluminescence Study of GaAs Grown on(001)Si",Japanese Journal of Applied Physics,Volume 33,Issue 11,1994,6111
    [23]N.Ohtsuka,K.Kitahara,M.Ozeki and K.Kodama,"A new GaAs on Si structure using AIAs buffer layers,grown by atomic layer epitaxy",Journal of Crystal Growth,Volume 99,Issues 1-4,January 1990,346-351
    [24]T.Nishimura, K.Kadoiwa,N.Hayafuji,M.Miyashita, K.Mitsui,H.Kumabe,T.Murotani, "Surface morphology improvement of GaAs-on-Si using a two-reactor MOCVD system and an AlAs/GaAs low temperature buffer layer: an approach to crack-free GaAs-on-Si", Journal of Crystal Growth, 107, 1991, 468-472,.
    [25] N.Y.Jin-phillipp, F.Phillipp, T.Marschner, W.stolz, E.O.Gobel, "Transmission electron microscopy study on defect reduction in GaAs on Si heteroepitaxial layers grown by metalorganic vapor phase epitaxy", Journal of Crystal Growth, 158, 1996, 28-36,.
    [26] Yoshiki Naoi, S.Kurai, S.Sakai, T.Yang, Y.Shintani, "Stress distribution and dislocation dynamics in GaAs grown on Si by metalorganic chemical vapor deposition", Journal of Crystal Growth, 145, 1994, 321-325.
    [27] T.Yodo, M.Tamura, T.Saitoh, "Relationship between the optical and structural properties in GaAs heteroepitaxial layers grown on Si substrates", Journal of Crystal Growth, 141, 1994,331-342.
    [28] T.Marschner, W.Stolz, E.O.Gobel, F.Phillipp, M.Muller, and J.Lorberth, "Improvements in the heteroepitaxial growth of GaAs on Si by MOCVD", Materials Science and Engineering, B21, 1993, 266-269.
    [29] Masafumi Yamaguchi, Akio Yamamoto, Masami Tachikawa, Yoshio Itoh, Mitsuru Sugo, "Defect reduction effects in GaAs on Si substrates by thermal annealing", American Institute of Physics, 1988, 2293-2295.
    [30] K.Ismail, F..Legoues, N.H.Karam, J.Carter, Henry I.Smith, "High-quality GaAs on sawtooth-patterned Si substrates", American Institute of Physics, 1991, 2418-2420.
    [31] J.E.Ayer, L.J.Schowalter, and S.K.Ghandhi, "Post-growth thermal annealing of GaAs on Si(001) grown by organometallic vapor phase epitaxy", Journal of Crystal Growth, 125, 1992,329-335.
    [32] T.Nishioka, Y.Itoh, M.Sugo, A.Yamamoto, and M.Yamaguchi, "Threading dislocation density reduction in GaAs on Si", Japanese Journal of Applied Physics, 27, 1988, L2271-2273.
    [33]Mitsuru Sugo, Naoto Uchida, Akio Yamamoto, Takashi Nishioka, Massfumi Y amaguchi "Residual strains in heteroepitaxial III-V semiconductor films on Si(100) substrates", Journal of Applied Physics, 1989, 591-595.
    [34] Masafumi Yamaguchi, Masami Tachikawa, Yoshio Itoh, Mitsuru Sugo, "Thermal annealing effects of defect reduction in GaAs on Si substrates", American Institute of Physics, 1990,4518-4522.
    [35] V.K.Yang, M.Groenert, C.W.Leitz, A.J.Pitera, M.T.Currie, E.A.Fitzgerald, "Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates", Journal of Applied Physics, 93, 2003, 3859-3865.
    [36] V.Alberts, J.H.Neethling, and A.W.Leitch, "Correlation between structural, optical, and electrical properties of GaAs grown on Si", Journal of Applied Physics, 75, 1994, 7258-7265.
    [37] D.Colombo, E.Grilli, M.Guzzi, S.Marchionna, M.Bonfanti, "Analysis of strain relaxation by microcracks in epitaxial GaAs grown on Ge/Si substrates", Journal of Applied Physics, 101, 2007, 103519.
    [38] K.Woodbridge, P.Barnes, R.Murray, C.Roberts, GParry, "GaAs/AlGaAs pin MQW structures grown on patterned Si substrates", Journal of Crystal Growth, 127, 1993, 112-115.
    [39]Allen C.G., Beach J.D., Khandekar A.A., Dorr J.C., Veauvy C, etc. "Selective nucleation and growth of large grain polycrystalline GaAs" Materials Research Society Symposium Proceedings, v 870, Giant-Area Electronics on Nonconventional Substrates, 2005, 18-23
    [40] Cheng S.F.,Gao L., Woo R.L., Pangan A., Malouf G.,etc. "Selective area metalorganic vapor-phase epitaxy of gallium arsenide on silicon", Journal of Crystal Growth, v 310, n 3, Feb 1, 2008, 562-569
    [41]Lee, S.C.; Dawson, L.R.; Brueck, S.R.J.; Jiang, Y.-B "GaAs on Si(111)-crystal shape and strain relaxation in nanoscale patterned growth", Applied Physics Letters, v 87, n 2, Jul 11, 2005, 023101
    [42]Vanamu Ganesh, Datye Abhaya K., Dawson Ralph L., Zaidi Saleem H., "GaAs growth on micro and nano patterned Ge/ Si1-XGeX and Si surfaces", Materials Research Society Symposium Proceedings, v 862, Amorphous and Nanocrystalline Silicon Science and Technology 2005, 2005, 219-224
    [43]Charasse M.N., Bartenlian B., Hirtz J.P., Peugnet A., Chazelas J.,Amendola G., "Detailed structural analysis of GaAs grown on patterned Si", Journal of Electronic Materials, v 19, n 6, Jun, 1990, 567-573
    [44] Fitzgerald E.A., Chand Naresh, "Epitaxial necking in GaAs grown on pre-patterned si substrates", Journal of Electronic Materials, v 20, n 10, Oct, 1991, 839-853
    [45]Tamura M., Hashimoto A., Kasai J., Nishida A., "Threading dislocations in GaAs on pre-patterned Si and in post-patterned GaAs on Si", Journal of Crystal Growth, v 147, n3-4, Feb 1, 1995,264-273
    [46]Tang Y.,Rich D.H.,Lingunis E.H.,Haegel N.M.,"Polarized-cathodoluminescence study of stress for GaAs grown selectively on patterned Si(100)",Journal of Applied Physics,v 76,n 5,Sept 1,1994,3032-3040
    [47]Hashimoto A.,Fukunaga T.,Watanabe N.,"Optical properties of maskless selectively grown GaAs and AlxGal-xAs on V-grooved Si substrates",Journal of Crystal Growth,v 99,n 1-4 pt 1,Jan,1990,352-355
    [48]Egawa Takashi,Hasegawa Yoshiaki,Jimbo Takashi,Umeno Masayoshi,"Low-threshold CW operation at 300 K of all-MOCVD-grown MQW lasers on Si using post-growth patterning" Conference on Solid State Devices and Materials,1991,320-322
    [49]Yu Jinzhong,Li Cheng,Cheng Buwen,Wang Qiming,"Long-Wavelength SiGe/Si MQW Resonant-Cavity-Enhanced Photodiodes(RCE-PD)",Diffusion and Defect Data Pt.B:Solid State Phenomena,v 95-96,2004,p 255-260
    [50]Salvador,A.;Huang,F.;Sverdlov,B.;Botchkarev,A.E.;Morkoc,H."InP/InGaAs resonant cavity enhanced photodetector and light emitting diode with external mirrors on Si",Electronics Letters,v 30,n 18,Sept 1,1994,p 1527-1529
    [51]Mao,Rongwei Zuo,Yuhua;Li,Chuanbo;et al,"Fabrication of 1.55 μm Si-based resonant cavity enhanced photodetectors",Chinese Journal of Semiconductors,v 26,n 2,February,2005,p 271-275
    [52]Casalino,M.Sezione di Napoli);Sirleto,L.;Moretti,L.;Libertino,S.;Rendina,I."Silicon resonant cavity enhanced schottky photodetector at 1.55μm",2005 IEEE International Conference on Group Ⅳ Photonics,v 2005,p 143-145
    [53]Yu,J.;Kasper,E.;Oehme,M."1.55μm resonant cavity enhanced photodiode based on MBE grown Ge quantum dots",Thin Solid Films,v 508,n 1-2,Jun 5,2006,p 396-398
    [54]Dosunmu,Olufemi I.;Cannon,Douglas D.;et al,"High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation",IEEE Photonics Technology Letters,v 17,n 1,January,2005,p 175-177
    [55]Tetsuo Soga,Hironobu Nishikawa,Takashi Jimbo,et al,"Very low dislocation density GaAs on Si using superlattices grown by MOCVD",Journal of Crystal Growth,Volume 107,Issues 1-4,1 January 1991,479-482
    [56]Suhir E Predicted Thermally Induced Stress in,and the Bow of,a Circular Substrate/Thin-film Structure J.Appl.Phys.88,2000,2363
    [57]Saul R H Effect of a GaAs1-xPx Transition Zone on the Perfection of GaP Crystals Grown by Deposition onto GaAs Substrates J . Appl. Phys . 40, 1969, 3273
    [58]Hsueh C H Modeling of elastic deformation of. multilayers due to residual stresses and external bending J . Appl. Phys .91, 2002, 9652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700