抗肿瘤注射液对信号转导分子Elk1活性的筛选及榄香烯抑瘤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤细胞的过度增殖或凋亡不足在肿瘤病理机制中起到重要的作用。转录因子Elk1属于ETS原癌基因家族成员之一,是原癌基因c-fos的调节因子,其磷酸化与原癌基因c-fos的转录激活密切相关,与细胞分化、增殖、凋亡和肿瘤发生发展相关,可能是恶性肿瘤发生发展的重要环节及细胞侵袭转移的调控通路。外界各种刺激经MAPK信号通路磷酸化Elk1,引起Elk1构象改变,从而增强其DNA结合活性,激活转录活性,上调生长分化相关基因,抑制凋亡相关基因,因而已成为肿瘤基因治疗中的一个新靶点。因此,探讨其相关调控机制,将有助于临床应用中医药对肿瘤的基因治疗。
     中医药在治疗肿瘤上有其特殊优势。单味中药和中药复方具有多种有效成分,奠定了中药多靶点、多环节、多部位效应的物质基础。因此,在中医理论指导下,结合分子生物学现代技术,深入研究恶性肿瘤中医药多靶点联合治疗的机制,将有希望成为肿瘤治疗和抗复发、转移的重要手段。本研究通过建立与细胞增殖调控关系最为密切的Elk1信号转导通路筛选平台,筛选目前临床上已经使用的四种抗肿瘤中药注射液(即艾迪注射液、康莱特注射液、华蟾素注射液、榄香烯注射液)对细胞增殖相关的信号转导通路靶分子Elk1的影响,并对筛选的结果用Western Blot实验进行二次验证,并进一步对榄香烯注射液抑制肿瘤细胞增殖、促进肿瘤细胞凋亡的作用和分子机理进行探讨。
     1目的
     建立与细胞增殖相关的Elk1信号转导通路筛选平台;筛选四种抗肿瘤中药注射液(即艾迪注射液、康莱特注射液、华蟾素注射液、榄香烯注射液)对细胞增殖相关的信号转导通路靶分子Elk1的影响;评价榄香烯注射液对肿瘤细胞增殖和凋亡的影响;探讨榄香烯注射液对肿瘤细胞增殖和凋亡影响的作用机理。
     2方法
     2.1以人宫颈癌HeLa细胞为模型,选取与细胞增殖调控关系最为密切的Elk1信号传导通路建立筛选平台。首先通过MTT法检测四种中药注射液对HeLa细胞的抑制作用,确定各自的IC50值;然后应用Elk1双萤光素酶报告系统进行筛选,并对筛选的结果用Western Blot实验进行二次验证,检测四种中药注射液对HeLa细胞磷酸化Elk1及其靶基因c-fos表达的影响。
     2.2以HeLa和HepG2细胞为模型,采用MTT法测定不同浓度的榄香烯注射液对细胞增殖的抑制作用,并确定IC50值;采用光学显微镜和荧光显微镜观察IC50浓度的榄香烯注射液对细胞形态的影响;采用流式细胞分析术,结合荧光染料FITC-Annexin-V和PI对细胞膜磷脂酰丝氨酸的外翻进行分析,观察IC50浓度的榄香烯注射液诱导肿瘤细胞凋亡的作用;采用流式细胞术,结合荧光染料PI对细胞中的DNA含量进行分析,观察IC50浓度的榄香烯注射液对肿瘤细胞增殖的抑制作用;采用Elk1双荧光素酶反式报告基因的筛选技术和Western Blot等技术,观察IC50浓度的榄香烯注射液对Elk1萤光素酶活性、磷酸化的Elk1及其靶基因c-fos的表达的影响,以及对MAPK通路激酶磷酸化、膜受体通路(Caspase-8)和线粒体通路(Caspase-9)活性的影响。
     3结果
     3.1抗肿瘤注射液对信号转导分子Elk1活性的筛选
     3.1.1成功建立与细胞增殖相关的Elk1信号转导通路筛选平台报告质粒pFA- Elk1编码GAL4dbd和Elk1的融合蛋白,pFR-luc编码萤火虫(Firefly)荧光素酶分子,其启动子区含有GAL4dbd的结合位点GAL4UAS,所以萤火虫荧光素酶活性可以反映细胞内转录因子Elk1的活性(磷酸化形式)。内对照质粒pRL-TK编码海肾(Renilla)荧光素酶分子,由TK启动子调控。实验中使用pcDB空载体作为阴性对照,pcDB-MEK1作为激活Elk1的阳性对照。实验结果显示阳性对照分子的活性与预期相符,验证了实验系统的可靠性。
     3.1.2四种中药注射液对HeLa细胞增殖的抑制作用艾迪注射液100μL/孔作用24h对HeLa细胞体外增殖有明显的抑制作用,求其IC50值为300.60mg·mL-1。康莱特注射液0.39~100μL/孔作用24h对HeLa细胞体外增殖无明显的抑制作用。华蟾素注射液6.25~100μL/孔作用24h对HeLa细胞体外增殖有一定抑制作用,求其IC50值为51.65mg·mL-1。榄香烯注射液1.56~100μL/孔作用24h对HeLa细胞体外增殖有明显的抑制作用,呈剂量依赖性,求其IC50值为0.08mg·mL-1。
     3.1.3四种中药注射液对HeLa细胞Elk1萤光素酶活性的影响IC50浓度的上述四种中药注射液处理24h后,通过Elk1双萤光素酶报告系统检测发现,与对照组比较,榄香烯处理组Elk1活性明显受到抑制,艾迪、华蟾素处理组Elk1活性有一定的下调,而康莱特处理组无抑制作用。
     3.1.4四种中药注射液对HeLa细胞磷酸化Elk1及其靶基因c-fos表达的影响磷酸化的Elk1及其靶基因c-fos在HeLa细胞中稳定高表达,以IC50浓度的上述四种中药注射液处理24h后,通过Western Blot检测发现,榄香烯处理组磷酸化的Elk1及其靶基因c-fos的表达明显下调,艾迪、华蟾素处理组磷酸化的Elk1有一定程度下调,c-fos的表达明显下调,而康莱特处理组无显著抑制作用。
     3.2榄香烯注射液对肿瘤细胞增殖和凋亡影响的作用机理研究
     3.2.1榄香烯注射液对HeLa细胞、HepG2细胞增殖的抑制作用在第一部分的中药注射液筛选中,结果提示榄香烯注射液1.56~100μL/孔作用24h对HeLa细胞体外增殖有明显的抑制作用,呈剂量依赖性,求其IC50值为0.08mg·mL-1。榄香烯注射液0.39~100μL/孔作用24h对HepG2细胞体外增殖有明显的抑制作用,求其IC50值为0.2mg·mL-1。阳性对照紫杉醇注射液0.39~100μL/孔作用24h对HeLa细胞体外增殖有明显的抑制作用,求其IC50值为0.42mg·mL-1。紫杉醇注射液0.39~100μL/孔作用24h对HepG2细胞体外增殖有明显的抑制作用,求其IC50值为0.9mg·mL-1。
     3.2.2光学显微镜和荧光显微镜观察
     HeLa细胞、HepG2细胞经IC50浓度的榄香烯分别作用24h后,经光学显微镜观察出现变小、变圆、皱缩、染色质凝集,并从培养皿脱落等现象,经荧光显微镜观察出现凋亡Ⅰ期的细胞核呈波纹状或呈折缝样,部分染色质出现浓缩状态,Ⅱa期细胞核的染色质高度凝聚、边缘化,Ⅱb期的细胞核裂解为碎块,产生凋亡小体,即死细胞数目增多。这些现象与阳性对照紫杉醇注射液引起的细胞改变相一致,是细胞凋亡的典型特征。而在空对照组细胞状态良好。
     3.2.3细胞膜磷脂酰丝氨酸外翻分析
     IC50浓度的榄香烯和紫杉醇注射液分别作用24h后,均可看到细胞FITC-Annexin-V荧光强度增加,说明细胞质膜的PS已经外翻;同时PI荧光强度也有所增加,提示细胞质膜的完整性受到损坏,说明除了凋亡外还存在其它形式的细胞死亡方式。
     3.2.4细胞周期分析
     无论是在HeLa细胞还是HepG2细胞,经IC50浓度的榄香烯和紫杉醇注射液分别作用24h后,与空对照相比,榄香烯注射液能阻滞细胞生长于S期和/或G2M期。阳性对照紫杉醇注射液能阻滞细胞生长于G1S期。
     3.2.5 Elk1信号通路的筛选
     与空白对照组相比,IC50浓度的榄香烯及紫杉醇注射液处理24h后可抑制Elk1荧光素酶报告活性;而且在PMA+I的刺激下,Elk1荧光素酶报告活性可被榄香烯及紫杉醇注射液抑制,说明二者均能影响HeLa和HepG2细胞Elk1转录活性。
     3.2.6 Western Blot检测磷酸化Elk1及其靶基因c-fos的表达
     以β-actin为内对照,与空对照比较,榄香烯注射液能抑制HeLa和HepG2细胞中磷酸化Elk1的水平以及c-fos的表达,而阳性对照紫杉醇注射液只能抑制HepG2细胞中磷酸化Elk1的水平以及c-fos的表达,对HeLa细胞中磷酸化Elk1的水平以及c-fos的表达无显著影响。
     3.2.7 MAPK通路激酶磷酸化的Western印迹分析
     用抗磷酸化ERK抗体和抗非磷酸化ERK抗体检测,与空对照组比较,除阳性对照紫杉醇组能显著抑制HeLa细胞和HepG2细胞中磷酸化ERK的水平以外,榄香烯组磷酸化ERK的水平均无明显差异。用抗磷酸化JNK抗体和抗非磷酸化JNK抗体检测,与空对照组比较,榄香烯及紫杉醇注射液均能显著抑制HeLa细胞和HepG2细胞中磷酸化JNK的水平,磷酸化JNK的比例显著降低。用抗磷酸化p38抗体和抗非磷酸化p38抗体检测,与空对照组比较,除阳性对照紫杉醇组能显著抑制HeLa细胞中磷酸化p38水平以外,其余各组磷酸化p38水平均无明显差异。
     3.2.8 Western印迹检测榄香烯对caspase活性的影响用抗caspase-8抗体和抗caspase-9抗体检测,与空对照组比较,在HepG2细胞中,榄香烯和紫杉醇组cleaved caspase-8和caspase-9的水平都有显著提高;在HeLa细胞中,榄香烯和紫杉醇组cleaved caspase-8的水平有显著提高,full length caspase-9的比例均明显降低,而cleaved caspase-9的水平无明显差异。
     4结论
     4.1成功建立了与细胞增殖相关的Elk1信号转导通路筛选平台。
     4.2四种中药注射液对肿瘤细胞具有选择性抑制作用,且呈剂量依赖性。榄香烯注射液对Hela细胞体外增殖有明显的抑制作用,艾迪、华蟾素注射液有一定程度的抑制作用,而康莱特注射液无明显抑制作用。
     4.3榄香烯、艾迪、华蟾素注射液抑制人宫颈癌HeLa细胞生长的可能机制之一是下调了Elk1转录活性、转录因子Elk1的磷酸化水平及其靶基因c-fos的表达。康莱特注射液对Elk1萤光素酶活性、磷酸化的Elk1及其靶基因c-fos的表达无显著抑制作用,提示是否还有其它的作用机制尚须进一步探讨。
     4.4榄香烯注射液能显著抑制HeLa和HepG2细胞增殖,且呈剂量依赖性,其IC50值分别为0.08mg·mL-1和0.2mg·mL-1;阻滞HeLa细胞于S期,HepG2细胞于S和G2M
     期;能诱导HeLa细胞出现早期凋亡现象,HepG2细胞出现早期和中晚期凋亡现象。
     4.5榄香烯注射液通过调控JNK MAPK通路,抑制Elk1转录活性,下调转录因子Elk1的磷酸化水平及其靶基因c-fos的表达,发挥抑制肿瘤细胞增殖的作用;通过调节膜受体通路(Caspase-8)和/或线粒体通路(Caspase-9),从而发挥促进肿瘤细胞凋亡的生物学功能。
     综上所述,本研究筛选了中药注射液对细胞增殖相关的信号传导通路靶分子Elk1的影响,发现榄香烯注射液的作用尤为显著。证实了榄香烯抑制肿瘤细胞增殖、促进肿瘤细胞凋亡的功能,其分子机理是通过调控JNK MAPK通路,抑制Elk1转录活性,下调转录因子Elk1的磷酸化水平及其靶基因c-fos的表达,调节膜受体通路(Caspase-8)和/或线粒体通路(Caspase-9),从而发挥抑制肿瘤细胞增殖、促进肿瘤细胞凋亡的生物学功能。这些工作为研究中药注射液的功能和分子机理的线索,并为临床用药提供参考,对于推动中医药抗肿瘤作用机制的深入研究具有十分重要的意义。
Dysfunction of proliferation and apoptosis in human cancer cells is most important during the pathogenesis of the cancer. The transcription factor Elk1 is one of the Ets family members, and identified as a regulator of proto-oncogene c-fos. Phosphorylation of Elk1 regulates the transcriptional activation of c-fos, which is related with cell differentiation, proliferation, apoptosis and oncogenesis. Phosphorylation of Elk1 also regulates the progression and metasis of cancer. Elk1 is phosphorylated by the extracellular stimulation through MAP kinases, which triggers the conformational change to enhanced DNA binding, stimulation of its transcriptional activation. Elk1 becomes a new molecular target in the cancer gene therapy. So, investigation of Elk1 regulational mechanism will be helpful to clinical application of TCM in cancer patients.
     TCM plays a special important role in cancer therapy. The simple medica and the compound recipe have many effective components, which is the material basis of TCM multiple target. So, under the principle of TCM theory, combining the modern molecular biology techniques, to investigate the mechanism of TCM multiple target is most important in cancer therapy. This experiment established the cell proliferation related Elk1 signal transduction pathway screening system based on dual-luciferase reporter assay to screen the clinical applied four kinds of TCM anti-tumor injections (such as AiDi injection, KangLaiTe injection, Cinobutacini injection and Elemene injection), and further investigated the effect and mechanism of Elemene injection on HeLa and HepG2 cells.
     1 Objective
     To establish the cell proliferation related Elk1 signal transduction pathway screening system based on dual-luciferase reporter assay; To screen the clinical applied four kinds of TCM anti-tumor injections (such as AiDi injection, KangLaiTe injection, Cinobutacini injection and Elemene injection) in Elk1 signaling pathway; To observe the effect of Elemene injection on HeLa and HepG2 cells; To investigate the mechanism of Elemene injection on HeLa and HepG2 cell proliferation and apoptosis.
     2 Methods
     2.1 In human cervical cancer HeLa cell,we established the cell proliferation related Elk1 signal transduction pathway screening system based on dual-luciferase reporter assay. MTT assay was used to identify the potential inhibitory activity of four kinds of TCM injections, and the individual 50 % inhibitory concentration (IC50) was decided. Elk1 screening system was applied to screen the effect of four kinds of TCM injections in Elk1 signaling pathway, which was evidenced by Western Blot analysis on expression of phospho-Elk-1 and its target gene c-fos.
     2.2 In human HeLa and HepG2 cell, MTT assay was used to observe the antiproliferation effect of Elemene injection, and the IC50 was decided. The light and fluorescent microscopy were used to observe the effect of Elemene injection on cell morphological changes. Cell cycle and apoptosis were analysized by flow cytometry. Elk1 screening system and Western Blot analysis were applied to investigate the effect of Elemene injection in Elk1 transcriptional activity, the expression of phospho-Elk-1 and its target gene c-fos, phosphorylation of MAP kinases, caspase-8 and caspase-9 activities.
     3 Results
     3.1 Screening of TCM anti-tumor injections inhibitor of Elk1 acticity
     3.1.1 Established the cell proliferation related Elk1 signal transduction pathway screening system successfully
     Reporter plasmid pFA- Elk1 encodes GAL4dbd and Elk1 fusion protein, pFR-luc encodes firefly luciferase, in which promoter there is GAL4dbd domain, so firefly luciferase activity can indicate the cell transcription factor Elk1 activity. The internal compared plasmid pRL-TK encodes Renilla luciferase, which is controlled by TK promoter. The pcDB was negative control, and pcDB-MEK1 was positive control. We found the result was in accordance with what we thought, so the Elk1 screening system is confidenced.
     3.1.2 Inhibitory activity of four kinds of TCM injections on HeLa cell proliferation
     AiDi injection 100μl/well for 24h inhibited the HeLa cell proliferation, and its IC50 is 300.60mg/ml。KangLaiTe injection 0.39~100μl/well for 24h can not inhibit the HeLa cell proliferation. Cinobutacini injection 6.25~100μl/well for 24h inhibited the HeLa cell proliferation, and its IC50 is 51.65mg/ml. Elemene injection 1.56~100μl/well for 24h inhibited the HeLa cell proliferation, and its IC50 is 0.08mg/ml.
     3.1.3 Effect of four kinds of TCM injections on Elk1 transcriptional activity After treatment of IC50 concentration four kinds of TCM injections respectively for 24h in HeLa cell, Elk1 transcriptional activity was obviously inhibited by the Elemene injection, as well as AiDi injection and Cinobutacini injection, while KangLaiTe injection had no inhibitory effect.
     3.1.4 Effect of four kinds of TCM injections on the expression of phospho-Elk-1 and its target gene c-fos
     The expression of phospho-Elk-1 and its target gene c-fos were high in HeLa cell. After treatment of IC50 concentration four kinds of TCM injections respectively for 24h in HeLa cell, the expression of phospho-Elk-1 and its target gene c-fos were down-regulated, as well as AiDi injection and Cinobutacini injection, while KangLaiTe injection had no obviously inhibitory effect.
     3.2 Investigation of the effect and mechanism of Elemene injection on proliferation and apoptosis
     3.2.1 The antiproliferation effect of Elemene injection on human HeLa and HepG2 cell
     The first part showed that Elemene injection 1.56~100μl/well for 24h inhibited the HeLa cell proliferation, and its IC50 is 0.08mg/ml. Elemene injection 0.39~100μl/ well for 24h inhibited the HepG2 cell proliferation, and its IC50 is 0.2mg/ml. The positive control Paclitaxel injection 0.39~100μl/well for 24h inhibited the HeLa cell proliferation, and its IC50 is 0.42mg/ml. Paclitaxel injection 0.39~100μl/well for 24h inhibited the HepG2 cell proliferation, and its IC50 is 0.9mg/ml。
     3.2.2 The light and fluorescent microscopy observation
     After treatment of IC50 concentration Elemene injection for 24h respectively in HeLa and HepG2 cell, there were some signs of classic apoptotic changes, such as cell shrinkage, marked rounding, condensation of chromatin at the nuclear periphery and eventually detached from the culture wells. Meanwhile, we used the fluorescent dye—DAPI to validate the effect on apoptosis. This result is in accordance with the light microscopy findings, identifying the elemene related to apoptosis.
     3.2.3 Apoptosis analysis by flow cytometry
     The exposure of phosphatidylserine on the cell membrane is readily detected by Annexin V staining. Thus PI and Annexin V-FITC double staining should detect late apoptosis/necrosis whereas single PI staining should detect dead cells. we detected PS surface exposure by FITC/annexin-V staining of cells 24 h after treatment of IC50 Elemene injection. Plasma membrane integrity was simultaneously assessed by PI dye exclusion using two-color fluorescence-activated cell sorting (FACS) analysis. In HeLa and HepG2 cells treated with the elemene and paclitaxel respectively, the proportion of Annexin-V- and/or PI-positive cells was evidently increased compared with mock cells. These findings indicated that these cells underwent both necrosis and apoptosis.
     3.2.4 Cell cycle analysis by flow cytometry
     In cell cycle analysis, the cells in S and G2/M phase represent the proliferating cells. After treatment of IC50 concentration Elemene injection for 24h respectively in HeLa and HepG2 cell, the percent of G2/M and S phase were decreased, which indicated there was a significant inhibitory effect on cell growth.
     3.2.5 Elk1 screening system
     In a dual-luciferase reporter assay system, the Elk-1 reporter activity was measured after incubation with the IC50 concentration Elemene injection for 24 h respectively in HeLa and HepG2 cell. Each experiment was performed in triplicate and each assay was repeated at least three times. We found that elemene down-regulated the Elk-1 transcriptional activity compared with the mock even if there is a stimulus (PMA+I).
     3.2.6 Western Blot analysis of the expression of phospho-Elk-1 and its target gene c-fos
     Compared to the untreated cells, phosph-Elk-1 and its target gene c-fos expression levels in HeLa and HepG2 cell were decreased by Elemene injection, in agreement with dual-luciferase assay results, as well as the positive control Paclitaxel injection in the HepG2 cell,while no inhibitory effect in HeLa cell.
     3.2.7 Western Blot analysis of MAP kinases phosphorylation
     Compared to the untreated cells, the treatment of elemene significantly decreased JNK activity, but did not influence activities of ERK and P38, compared to the untreated cells, which confirmed that elemene modulated JNK kinases activity, but not ERK or p38 MAPK.
     3.2.8 Western Blot analysis of caspase-8 and caspase-9 activities
     Compared to the untreated cells, the treatment of Elemene and Paclitaxel injection significantly increased cleaved caspase-8 and caspase-9 levels in HepG2 cell, while in HeLa cell significantly increased the cleaved caspase-8, decreased full length caspase-9 but did not influence the level of cleaved caspase-9.
     4 Conclusion
     4.1 Established the cell proliferation related Elk1 signal transduction pathway screening system successfully.
     4.2 Elemene injection can inhibit human cervix cancer HeLa cell proliferation, as well as AiDi and Cinobutacini injection, while KangLaiTe has no inhibition.
     4.3 Elemene, AiDi and Cinobutacini injection can inhibit human cervix cancer HeLa cell proliferation, which may be related with suppression of c-fos gene through inhibiting expression of phosphorated Elk1, while KangLaiTe has no inhibition.
     4.4 Elemene injection inhibited HeLa and HepG2 cell growth in dose-dependent manner, its IC50 is 0.08mg/ml and 0.2mg/ml respectively; blocked the HeLa cell cycle progression in S phase, HepG2 cell cycle progression in S and G2M phase; inducted the early apoptosis in HeLa cell, the early and middle late apoptosis in HepG2 cell.
     4.5 Elemene injection down-regulated Elk-1 transcriptional activity, decreased the phosphorylated Elk-1 and its target gene c-fos expression level through modulating the JNK MAPK pathway, leading the inhibition of cell proliferation; inducted the apoptosis through modulating the caspase-8 and caspase-9.
     To sum up, TCM anti-tumor injections (such as AiDi injection, Cinobutacini injection and Elemene injection) can inhibit the cell proliferation related Elk1 signal transduction pathway, especially the Elemene injection. Elemene injection has the effect of inhibition of cell proliferation and induction of apoptosis, and its molecular mechanism may be down-regulation of Elk-1 transcriptional activity and its target gene c-fos expression levels by by modulating the JNK pathway, and may be also modulation of caspase-8 and caspase-9.
引文
[1] Shaw PE, Schroter H, Nordheim A. The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell, 1989, 56:563-572.
    [2] Rao V. N., Huebner, K., Isobe, M., et al. Elk, tissue-specific ets-related genes on chromosomes X and 14 near translocation breakpoints. Science, 1989, 244:66-70.
    [3] Dalton S, Treisman R. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell, 1992, 68:597-612.
    [4] Jacobs D, Glossip D, Xing H, et al. Multiple docking sites on substrate recognition proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev, 1999, 13:163-175.
    [5] Yang S.H., Vickers E., Brehm A., et al. Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol Cell Biol, 2001, 21:2802-2814.
    [6] Janknecht R, Nordheim A. Elk-1 protein domains required for direct and SRF-assisted DNA-binding. Nucl Acids Res, 1992, 20:3317-3324.
    [7] Ling Y, Lakey JH, Roberts CE, et al. Molecular characterization of the B-box protein-protein interaction motif of the ETS-domain transcription factor Elk-1. EMBO J, 1997, 16:2431-2440.
    [8] Sharrocks AD. ERK2/p42 MAP kinase stimulates both autonomous and SRF-dependent DNA binding by Elk-1. FEBS Lett, 1995, 368:77–80.
    [9] Yates PR, Atherton GT, Deed RW, et al. helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF-ETS domain transcription factors. EMBO J, 1999, 18:968-976.
    [10] Yordy JS, Muise Helmericks RC. Signal transduction and the Ets family of transcription factors. Oncogene, 2000, 19:6503-6513.
    [11] Fantz DA, Jacobs D, Glossip D, et al. Docking sites on substrate proteins direct extracellular-signal regulated kinase (ERK) to phosphorylate specific residues. J Biol Chem, 2001, 276:27256-27265.
    [12] Sharrocks AD. Complexities in ETS-domain transcription factor function and regulation: lessons from the TCF (ternary complex factor) subfamily. The Colworth Medal Lecture. Biochem Soc Trans, 2002, 30:1-9.
    [13] Sgamboto, V., Vanhoutte, P., Pages, C., et al. In vivo expression and regulation of. Elk-1, a target of the extracellular-regulated kinase signaling. pathway, in the adult rat brain. J Neurosci, 1998, 18:214–226.
    [14] Vanhoutte P, Nissen JL, Brugg B, et al. Opposing roles of Elk-1 and its brain-specific isoform, short Elk-1, in nerve growth factorinduced PC12 differentiation. J Biol Chem, 2001, 276:5189-5196.
    [15] Vanhoutte, P., Barnier, J. V., Guibert, B., et al. Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol Cell Biol, 1999, 19:136–146.
    [16] Hipskind RA, Baccarini M, Nordheim A. Transient activation of RAF-1, MEK, and ERK2 coincides kinetically with ternary complex factor phosphorylation and immediate-early gene promoter activity in vivo.Mol Cell Biol, 1994, 14:6219–6231.
    [17] Hodge, C., Liao, J., Stofega, M., et al. Growth Hormone Stimulates Phosphorylation and Activation of Elk-1 and Expression of c-fos, egr-1, and junB through Activation of Extracellular Signal-regulated Kinases 1 and 2. J Biol Chem, 1998, 273:31327-31336.
    [18] Jaynes, J. B., and O ’ Farrell, P. H. Active repression of transcription by the engrailed homeodomain protein. EMBO J, 1991, 10:1427–1433.
    [19] Seth A, Watson DK. ETS transcription factors and their emerging roles in human cancer. Eur J Cancer, 2005, 41:2462-2478.
    [20] Hsu T, Trojanowska M, Watson DK. Ets proteins in biological control and cancer. J Cell Biochem, 2004, 91:896-903.
    [21] Dittmer J. The biology of the Ets1 proto-oncogene. Mol Cancer. 2003, 2:29.
    [22] Rieder G, Tessier A J, Qiao X T, Madison B, Gumucio D L, Merchant J L. Helicobacter-induced intestinal metaplasia in the stomach correlates with Elk-1 and serum response factor induction of villin. J Biol Chem, 2005, 280(6):4906-12.
    [23] Chen A G, Yu Z C, Yu X F, et al. Overexpression of Ets-like protein 1 in human esophageal squamous cell carcinoma. World J Gastroenterol, 2006, 12(48):7859-63.
    [24] Zhang Q, Adiseshaiah P, Kalvakolanu D V, et al. A Phosphatidylinositol 3-kinase-regulated Akt-independent signaling promotes cigarette smoke-induced FRA-1 expression. J Biol Chem, 2006, 281(15):10174-81.
    [25] Shi W, Wang H S, Pan Z, et al. Cloning of a mammalian elk potassium channel gene and EAG mRNA distribution in rat sympathetic ganglia. J Physiol, 1998, 511 ( Pt 3):675-82.
    [26] Groot M, Boxer L M, Thiel G. Nerve growth factor- and epidermal growth factor-regulated gene transcription in PC12 pheochromocytoma and INS-1 insulinoma cells. Eur J Cell Biol, 2000, 79(12):924-35.
    [27] Vanhoutte P, Nissen J L, Brugg B, et al. Opposing roles of Elk-1 and its brain-specific isoform, short Elk-1, in nerve growth factor-induced PC12 differentiation. J Biol Chem, 2001, 276(7): 5189-96.
    [28] Tresini M, Lorenzini A, Frisoni L, et al. Lack of Elk-1phosphorylation and dysregulation of the extracellular regulated kinase signaling pathway in senescent human fibroblast. Exp Cell Res, 2001, 269(2):287-300.
    [29] Lockman K, Hinson J S, Medlin M D, et al. Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J Biol Chem, 2004, 279(41):42422-30.
    [30] Zhou J, Hu G, Herring B P. Smooth muscle-specific genes are differentially sensitive to inhibition by Elk-1. Mol Cell Biol, 2005, 25(22):9874-85.
    [31] Knebel B, Avci H, Bullmann C, et al. Reduced phosphorylation of transcription factor Elk-1 in cultured fibroblasts of a patient with premature aging syndrome and insulin resistance. Exp Clin Endocrinol Diabetes, 2005, 113(2):94-101.
    [32] Pagano M, Draetta G. Cyclin A, cell cycle control and oncogenesis. Prog Growth Factor Res, 1991, 3(4):267-77.
    [33] Shah M A, Schwartz G K. Cyclin-dependent kinases as targets for cancer therapy. Cancer Chemother Biol Response Modif, 2003, 21: 145-70.
    [34] Zheng M H, Wood D J, Papadimitriou J M. What's new in the role of cytokines on osteoblast proliferation and differentiation? Pathol Res Pract, 1992, 188(8):1104-21.
    [35] Doree M, Galas S. The cyclin-dependent protein kinases and the control of cell division. FASEB J, 1994, 8(14):1114-21.
    [36] Soderqvist G. Effects of sex steroids on proliferation in normal mammary tissue. Ann Med, 1998, 30(6):511-24.
    [37] Takuwa N, Zhou W, Takuwa Y. Calcium, calmodulin and cell cycle progression. Cell Signal, 1995, 7(2):93-104.
    [38] Taud R. Liver regeneration 4: transcriptional control of liver regeneration. FASEB J, 1996, 10(4):413-27.
    [39] Weir E, Chen Q, DeFrances M C, et al. Rapid induction of mRNAs for liver regeneration factor and insulin-like growth factor binding protein-1 in primary cultures of rat hepatocytes by hepatocyte growth factor and epidermal growth factor. Hepatology, 1994, 20(4 Pt 1):955-60.
    [40] Kastan M B. Wild-type p53: tumors can't stand it. Cell, 2007, 128(5): 837-40.
    [41] Kerr, J. F., Wyllie, A. H., and Currie, A. R.. Apoptosis: a basicbiological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26:239–57.
    [42] Hacker, G.. The morphology of apoptosis. Cell Tissue Res, 2000, 301:5–17.
    [43] Kurosaka, K., Takahashi, M., Watanabe, N., et al.. Silent cleanup of very early apoptotic cells by macrophages. J Immunol, 2003, 171:4672–9.
    [44] Irene M. Ghobrial, Thomas E. Witzig and Alex A. Adjei. Targeting Apoptosis Pathways in Cancer Therapy.CA Cancer J Clin , 2005, 55:178-194.
    [45] Chicheportiche, Y., Bourdon, P. R., Xu, H., et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem, 1997, 272:32401–10.
    [46] Ashkenazi, A., and Dixit, V. M.. Death receptors: signaling and modulation. Science, 1998, 281:1305–8.
    [47] Peter, M. E., and Krammer, P. H.. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol, 1998, 10:545–51.
    [48] Suliman, A., Lam, A., Datta, R., et al.. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene, 2001, 20:2122–33.
    [49] Rubio-Moscardo, F., Blesa, D., Mestre, C., et al. Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood, 2005, 106:3214–22.
    [50] Ingo Schmitz, Sabine Kirchhoff, Peter H. Krammer. Regulation of death receptor-mediated apoptosis pathways. The International Journal of Biochemistry & Cell Biology, 2000, 32:1123–1136.
    [51] Jerry M. Adams. Ways of dying: multiple pathways to apoptosis. Genes & Dev, 2003, 17:2481-2495.
    [52] Garrido, C., Galluzzi, L., Brunet, M., et al. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ, 2006, 13:1423–33.
    [53] SUSAN ELMORE. Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 2007,35:495–516.
    [54] Slee, E. A., Adrain, C., and Martin, S. J. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem, 2001,276:7320–6.
    [55] Shi-Yong Sun, Numsen Hail, Jr., Reuben Lotan. Apoptosis as a Novel Target for Cancer Chemoprevention. J Natl Cancer Inst, 2004, 96:662–72.
    [56] UTE FISCHER AND KLAUS SCHULZE-OSTHOFF. New Approaches and Therapeutics Targeting Apoptosis in Disease. Pharmacol Rev,2005, 57:187–215.
    [57] Pasan Fernando,Lynn A. Megeney. Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J, 2007,21:8–17.
    [58] Nijhawan, D., Honarpour, N., and Wang, X.. Apoptosis in neural development and disease. Annu Rev Neurosci, 2000, 23:73–87.
    [59] Opferman, J. T., and Korsmeyer, S. J.. Apoptosis in the development and maintenance of the immune system. Nat Immunol, 2003, 4:410–5.
    [60] Greenhalgh, D. G.. The role of apoptosis inwound healing. Int J Biochem Cell Biol, 1998, 30:1019–30.
    [61] Tilly, J. L., Kowalski, K. I., Johnson, A. L., et al. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology, 1991, 129:2799–801.
    [1] 曾益新.《肿瘤学》. 人民卫生出版社,2003.
    [2] 刘复生.《中国肿瘤病理学分类》. 科学技术文献出版社,2001.
    [3] 贾英杰.中医药“立体疗法”治疗恶性肿瘤新理念.开卷有益:求医问药, 2007,(10):12-13.
    [4] 李 培 训 . 调 理 脾 胃 在 恶 性 肿 瘤 治 疗 中 的 作 用 . 中 国 中 医 急 症,2007,16(10):1226-1227.
    [5] McCann J, Ames BN. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc Natl Acad Sci U S A, 1976, 73(3):950-4.
    [6] Ames BN. Identifying environmental chemicals causing mutations and cancer. Science, 1979, 204(4393):587-93.
    [7] Ames BN, Magaw R, Gold LS. Ranking possible carcinogenic hazards. Science, 1987, 236(4799):271-80.
    [8] Ames BN. What are the major carcinogens in the etiology of human cancer? Environmental pollution, natural carcinogens, and the causes of human cancer: six errors. Important Adv Oncol, 1989,237-47.
    [9] Ames BN, Gold LS, Willett WC. The causes and prevention of cancer. Proc Natl Acad Sci U S A, 1995, 92(12):5258-65.
    [10] Katsusaburo Yamagiwa.CA Cancer J Clin, 1977, 27(3):172-3.
    [11] Henschen F. Yamagiwa's tar cancer and its historical significance. From Percival Pott to Katsusaburo Yamagiwa. Gann., 1968, 59 :447-51.
    [12] BERENBLUM I. A speculative review; the probable nature of promoting action and its significance in the understanding of the mechanism of carcinogenesis. Cancer Res, 1954, 14(7):471-7.
    [13] Berenblum I. A re-evaluation of the concept of cocarciongenesis. Prog Exp Tumor Res, 1969, 11:21-30.
    [14] Berenblum I. Established principles and unresolved problems in carcinogenesis. J Natl Cancer Inst, 1978, 60(4):723-6.
    [15] Berenblum I, Armuth V. Two independent aspects of tumor promotion. Biochim Biophys Acta, 1981, 651(1):51-63.
    [16] Stockwell S. Classics in oncology: Isaac Berenblum, M.D.CA Cancer J Clin, 1981,31(4):239-53.
    [17] Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A, 1971, 68(4):820-3.
    [18] Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer,2001, 1(2):157-62.
    [19] Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res, 1970, 13:1-27.
    [20] Burnet FM. Immunological surveillance in neoplasia. Transplant Rev, 1971, 7:3-25.
    [21] Lanier LL. A renaissance for the tumor immunosurveillance hypothesis. Nat Med, 2001, 7(11):1178-80.
    [22] Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol, 2002, 3(11):991-8.
    [23] Ochsenbein AF. Principles of tumor immunosurveillance and implications for immunotherapy. Cancer Gene Ther, 2002, 9(12):1043-55.
    [24] Boon T, van Baren N. Immunosurveillance against cancer and immunotherapy--synergy or antagonism? N Engl J Med, 2003, 348(3):252-4.
    [25] Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004, 21(2):137-48.
    [26] Qin Z, Blankenstein T. A cancer immunosurveillance controversy. Nat Immunol, 2004, 5(1):3-5.
    [27] Ichim CV. Revisiting immunosurveillance and immunostimulation: Implications for cancer immunotherapy. J Transl Med, 2005, 3(1):8.
    [28] Klein G, Klein E. Surveillance against tumors--is it mainly immunological? Immunol Lett, 2005, 100(1):29-33.
    [29] Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol, 2006, 6(10):715-27.
    [30] Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol, 2006, 90:1-50.
    [31] Prehn RT. An adaptive immune reaction may be necessary for cancer development. Theor Biol Med Model, 2006, 3(1):6.
    [32] Bishop JM. Molecular themes in oncogenesis. Cell, 1991, 64:235–248.
    [33] Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature, 1998, 396:643–649.
    [34] Mao L, Sidransky D. Cancer screening based on genetic alterations in human tumors. Cancer Res, 1994, 54: 1939s–1940s.
    [35] Sidransky D. Molecular markers in cancer: can we make better predictions? Int J Cancer, 1995, 64:1–2.
    [36] Renan MJ. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog, 1993, 7: 139–146.
    [37] Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis, 2000, 21:379–385.
    [38] Cohen AM, Minsky BD, Schilsky RL. Cancer of the colon. In: VT DeVita, S Hellman, SA Rosenberg (eds): Cancer: Principles and Practice of Oncology, 5th ed. Lippincott-Raven, Philadelphia, 1997, 1144–1197.
    [39] Weinberg RA. The action of oncogenes in the cytoplasm and nucleus. Science, 1985, 230(4727):770-6.
    [40] Land H, Chen AC, Morgenstern JP, Parada LF, Weinberg RA. Behavior of myc and ras oncogenes in transformation of rat embryo fibroblasts. Mol Cell Biol, 1986, 6:1917-25.
    [41] Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature, 1986, 323(6089):643-6.
    [42] Weinberg RA. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res, 1989, 49(14):3713-21.
    [43] Shigeta T, Takagi M, Delia D, Chessa L, Iwata S, Kanke Y, Asada M, Eguchi M, Mizutani S. Defective control of apoptosis and mitotic spindle checkpoint in heterozygous carriers of ATM mutations. Cancer Res, 1999, 59:2602–2607.
    [44] Lipkin SM, Wang V, Jacoby R, Banerjee-Basu S, Baxevanis AD, Lynch HT, Elliott RM, Collins FS. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet, 2000, 24:27–35.
    [45] Chang CL, Marra G, Chauhan DP, Ha HT, Chang DK, Ricciardiello L, Randolph A, Carethers JM, Boland CR. Oxidative stress inactivates the human DNA mismatch repair system. Am J Physiol Cell Physiol, 2002, 283:C148–154.
    [46] 孟 灵 源 . 中 医 药 治 疗 恶 性 肿 瘤 的 思 路 探 讨 . 中 医 药 管 理 杂志,2007,15(8):625-627.
    [47] 潘国凤,朱晓新,张晓东.肿瘤系统生物学的发展与中医药的现代化.中华中医药杂志,2007,22(10):698-701.
    [48] 徐振晔,郑展.试论中医阴阳平衡法治疗恶性肿瘤.上海中医药杂志,2007,41(4):37-39.
    [49] 苏婉,徐振晔.肿瘤靶向治疗与中药多靶点效应的研究进展.上海中医药杂志,2007,41(9):87-88.
    [50] Folkman, J.: Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 1971, 285:1182-1186.
    [51] 高勇,王杰军,许青,等.人参皂甙 Rg3 抑制肿瘤新生血管形成机制研究.肿瘤防治研究,2OOl,28(3):179—181.
    [52] 何芳,曾文铤,朱科伦.人参皂甙 Rg3 抑制肝癌移植瘤新血管形成的研究.河南科技大学学报,2005,23(4):245—247.
    [53] 李大鹏.康莱特注射液抗癌作用机理研究进展叫.中药新药与临床药理,2001,12(2):122.
    [54] 徐振晔,王中奇,朱晏伟,等.肺岩宁对晚期非小细胞肺癌生长转移和血清 VEGF 的影响.上海中医药大学学报,2003,3(17):18—22.
    [55] 陈刚,徐晓玉,严鹏科,等.川芎嗪和丹参对小鼠 Lewis 肺癌生长的抑制作用与抑制血管生成的关系.中草药,2004,35(3):296—299.
    [56] 刘鲁明,陈震,陈培丰.对活血化瘀中药治疗恶性肿瘤的思考.中医杂志,2007,48(9):776-779.
    [57] 黄孔威,傅乃武.赤芍对实验肿瘤生长和转移的影响及药理作用的研究.中华肿瘤杂志,1983,5(1):24-27.
    [58] 刘锦蓉,叶松柏.川芎嗪抗肿瘤转移作用及其机理.中国药理学与毒理学杂志,1993,7(2):149-152.
    [59] 李学汤,王永泉.傅乃武.几种活血化瘀药物对小鼠肝癌细胞形成肺转移影响的初步实验观察.中医杂志,1980,21(8):75-77.
    [60] 张培彤,裴迎霞,祁鑫,等.活血药对人肺癌细胞黏附和侵袭的影响.中国中西医结合杂志,1999,19(2):1O3-105.
    [61] 丁罡,宋明志,于尔辛.丹参、赤芍对大鼠 Walker256 癌肝转移影响机制的研究.中国癌症杂志,2001,11(4):364.
    [62] 甄 会 莲 , 余 谦 . 中 医 药 诱 导 肿 瘤 细 胞 凋 亡 研 究 概 况 . 甘 肃 中医,2007,20(9):58-60.
    [63] 李蒙,于建勋.单味中药诱导肿瘤细胞凋亡的实验研究现状及展望.中国中西医结合杂志,2001,21(1):74—76.
    [64] 邢建华,陈永芹,纪明霞,等.人参皂苷诱导直肠癌细胞凋亡的临床观察.中国中西医结合杂志,20O1,21(4):26 0-261.
    [65] 朱晏伟,高虹,姜维洁,等.五味活血化瘀中药对 SPC-A-1 细胞凋亡影响的研究.中医药学刊,2004,22(7):1268-1269.
    [66] 许艳华.有毒中药诱导肿瘤细胞凋亡的研究进展.实用中医药杂志,2005,2l(4):247.
    [67] 高洪泉,王英,杨春壮.苦参素诱导卵巢癌 H08910 细胞凋亡的初步研究.中医药学报,2004,32(2):52-5 5.
    [68] 陈宏,张振书,张亚历,等.姜黄素诱导 Lovo 细胞凋亡.中国中医基础医学杂志,1999,5(3):32-34.
    [69] 孙宏丹,贾莉,盂秀香,等.复方中药诱导 Burkitt’s 淋巴瘤 Raja 细胞凋亡作用的研究.白血病·淋巴瘤,2002,11(2):84-86.
    [70] 梁健,邓鑫,黄仁彬.胃宁方对人胃癌 SGC 一 7910 细胞增殖凋亡的影响叫,上海中医药杂志,2006,40(9):65-67.
    [71] 赵爱光,杨金坤,赵海磊,等.四君子汤诱导裸小鼠移植性人胃癌细胞凋亡的初步研究.癌症,2001,20(2):164.
    [72] 郑瑾,刘强,王宗仁,等.活血化瘀中药复方诱导 K562 细胞凋亡.第四军医大学学报,2003,24(5):427-429.
    [73] 陈锐深.现代中医肿瘤学. 人民卫生出版社,2003:235—285.
    [74] Kim NW,Piatyszck MA,Prowse KR,et a1.Specific association of human telomerase activity with immortal cells and cancer LIJ.Science,1994,266(5264):2011-2015.
    [75] 陈伟忠,曾欣,林勇,等.苦参碱对肝癌细胞 HepG2 增殖的影响及端粒酶活性调控的体外研究.肿瘤学杂志,2002,8(3):168-170.
    [76] 张莉萍,蒋纪恺,谭荣安,等.苦参碱对 K562 细胞株端粒酶活性和细胞周期的影响.中华肿瘤杂志,1998,20(5):328-329.
    [77] 宋利琼,张昌菊.莪术油联合干扰素对小鼠宫颈癌端粒酶活性和细胞凋亡的影响,上海中医药杂志,2006,40(71):68-69.
    [78] 唐发清,田道法,易红,等.益气解毒片对鼻咽癌细胞端粒酶和端粒酶 RNA抑制作用的实验研究.湖南中医学院学报,2000,20(1):15-17.
    [79] 花文峰, 蔡绍晖.β-榄香烯抗肿瘤作用的基础与临床研究.中药材,2006,29(1):93-97.
    [80] 王小晓, 瞿延晖.β-榄香烯诱导肿瘤细胞凋亡作用机制研究的探讨.湖南中医学院学报, 2005, 25(1):62-63.
    [81] 姚淑娟, 刘伯阳, 钟照华.榄香烯抗肝癌作用的实验研究.齐齐哈尔医学院学报, 2006, 27(3):257-258.
    [82] 姚淑娟, 刘伯阳, 吕丽艳.榄香烯提高肿瘤化疗药物疗效及抗免疫抑制作用的研究.中医药学刊, 2006, 24(3):456-457.
    [83] 徐英辉, 董斌, 罗其中等.榄香烯对大鼠胶质瘤 C6 细胞 Bcl-2 家族基因及蛋白表达的影响.中华医学杂志, 2005, 85(24):1700-1703.
    [84] 方仁杏, 汪波, 周蔚翔等.β-榄香烯对实验动物的抑瘤作用及机理研究. 中医药学刊, 2005, 23(6):1102-1103.
    [85] 余军军, 王子明, 车向明等.β-榄香烯介入治疗兔 VX2 肾移植癌的实验研究.中西医结合学报, 2006, 4(6):611-614.
    [86] 余军军, 王子明, 车向明等.β-榄香烯对兔 VX2 肾移植癌的放射增敏作用.中西医结合学报, 2006, 4(4):392-396.
    [87] 王小晓, 瞿延晖, 姚金成等.β-榄香烯诱导人胃癌 BAC823 细胞凋亡的实验研究.中南药学, 2005, 3(6):329-331.
    [88] 范钰, 张尤历, 李华.榄香烯乳对胃癌细胞人端粒酶反转录酶及其启动子的影响.江苏大学学报:医学版,2006,16(5):413-415.
    [89] 王利, 魏品康, 秦志丰.榄香烯对耐药胃癌细胞的逆转实验研究.成都中医药大学学报, 2005, 28(2):51-53.
    [90] 郝立宏, 赵瑾瑶, 丁艳芳.β-榄香烯逆转 K562/ADM 细胞 MDR 机制的探讨.中国肿瘤临床, 2005, 32(10):548-550.
    [91] 赵小瑜, 杨吉成, 盛伟华.榄香烯体外诱导急性白血病细胞凋亡的研究.苏州大学学报:医学版, 2005, 25(6):969-971.
    [92] 周洪语, 侯菊生, 邱永明等.榄香烯诱导神经胶质瘤细胞凋亡的实验研究.癌症, 2003, 22(9):959-963.
    [93] 陈春美, 杨卫忠, 王春华等.榄香烯对人脑胶质瘤 U251/ADM 耐药细胞株多药耐药性的逆转作用. 中华实验外科杂志, 2006, 23(4):601-603.
    [94] 杨卫忠, 陈春美, 石松生等.榄香烯抑制人脑胶质瘤 U251 细胞株 c-myc 癌基因表达及其影响细胞凋亡机制的研究.中国肿瘤临床, 2005, 32(13):763-766.
    [95] 马东礼, 侍庆.榄香烯诱导 HeLa 细胞凋亡的实验研究.上海第二医科大学学报, 2000, 20(6):484-487.
    [96] 于荣, 柳庆玲, 赵冬梅.榄香烯对人宫颈癌细胞 Hela 的体外抑瘤效应.滨州医学院学报, 2006, 29(2):106-107.
    [97] 肖立森, 朱为民.榄香烯经肝动脉介入治疗原发性肝癌的临床研究总结.中国肿瘤临床, 1996, 23(10):757-760.
    [98] 石晓兰, 范忠泽, 孙珏.中西药结合介入治疗老年非小细胞肺癌的临床研究.上海中医药杂志, 2006, 40(6):27-28.
    [99] 尹剑, 张波, 侯菊生等.局部应用榄香烯治疗颅内恶性肿瘤临床研究.医学研究通讯, 2004, 33(2):53-54.
    [100] 周洪语, 沈建康, 侯菊生等.榄香烯抗神经胶质瘤的临床研究.辽宁医学杂志, 2003, 17(4):189-191.
    [101] 杨卫忠, 陈春美, 石松生等.颈动脉灌注榄香烯配合手术治疗脑胶质瘤 37例疗效分析.福建医药杂志, 2006, 28(2):138-139.
    [102] 刘妙玲, 邹丽娟.榄香烯乳放射增敏治疗骨转移癌 60 例临床研究.中国肿瘤临床, 2001, 28(12):889-891.
    [1] Hsu T, Trojanowska M, Watson DK. Ets proteins in biological control and cancer. J Cell Biochem, 2004, 91(5):896-903.
    [2] Rao V N, Huebner K, Isobe M, ar-Rushdi A, Croce C M, Reddy E S. Elk, tissue-specific ets-related genes on chromosomes X and 14 near translocation breakpoints. Science, 1989, 244(4900): 66-70.
    [3] Papavassiliou A G. The role of regulated phosphorylation in the biological activity of transcription factors SRF and Elk-1/SAP-1.Anticancer Res, 1994, 14(5A): 1923-6.
    [4] Price M A, Hill C, Treisman R. Integration of growth factor signals at the c-fos serum response element. Philos Trans R Soc Lond B Biol Sci, 1996,351(1339): 551-9.
    [5] Dittmer J. The biology of the Ets1 proto-oncogene. Mol Cancer, 2003, 2: 29.
    [6] Rieder G, Tessier A J, Qiao X T, Madison B, Gumucio D L, Merchant J L. Helicobacter-induced intestinal metaplasia in the stomach correlates with Elk-1 and serum response factor induction of villin. J Biol Chem, 2005, 280(6): 4906-12.
    [7] Chen A G, Yu Z C, Yu X F, Cao W F, Ding F, Liu Z H. Overexpression of Ets-like protein 1 in human esophageal squamous cell carcinoma. World J Gastroenterol. 2006; 12(48): 7859-63.
    [8] Zhang Q, Adiseshaiah P, Kalvakolanu D V, Reddy S P. A Phosphatidylinositol 3-kinase-regulated Akt-independent signaling promotes cigarette smoke-induced FRA-1 expression. J Biol Chem, 2006, 281(15): 10174-81.
    [9] 潘国凤,朱晓新,张晓东.肿瘤系统生物学的发展与中医药的现代化.中华中医药杂志, 2007, 22(10):698-701.
    [10] 苏婉,徐振晔.肿瘤靶向治疗与中药多靶点效应的研究进展.上海中医药杂志, 2007, 41(9):87-88.
    [11] 武春晓,石太平,马大龙.细胞筛选平台在人类功能基因组研究中的应用.生物化学与生物物理进展, 2005, 32(11):1003-10.
    [12] 吕冰峰. 北京大学医学部博士学位论文. 2006.
    [13] Lorenz WW, McCann RO, Longiaru M, Cormier MJ. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A, 1991, 88 (10):4438-42.
    [14] 庄志明,徐雪香.榄香烯乳的药理作用与临床应用近展.海峡药学, 2001, 13(2):7-8.
    [15] 鲍依稀,罗春丽,汤为学等.榄香烯对人肺腺癌细胞 A549 作用机理的初步研究.中国肿瘤临床, 2002, 29(5):338-341.
    [16] 吴相呈,黄金华,周伟生.榄香烯乳的抑瘤作用及其不良反应的防治.中药新药与临床药理, 2004, 15(1):70-72.
    [17] 于荣,柳庆玲,赵冬梅.榄香烯对人宫颈癌细胞 Hela 的体外抑瘤效应.滨州医学院学报, 2006, 29(2):106-107.
    [18] 唐斓,曾凡波,王涛等.艾迪注射液抑制肿瘤细胞生长及诱导肿瘤细胞凋亡的研究.中国药师, 2006, 9(3):198-200.
    [19] 唐东平,韦长元,唐凯等.康莱特注射液对肝肿瘤细胞作用的实验研究.肿瘤研究与临床, 2001, 13(1):11-12.
    [20] 何志洁,蔡伟波,刘仁涛等.康莱特注射液对 Raji 细胞的增殖抑制与凋亡诱导作用.中国肿瘤临床, 2001, 28(8):593-594.
    [21] 朱晓燕,刘鲁明.华蟾素注射液及其活性成份抗肿瘤机制的研究进展.世界肿瘤杂志, 2006, 5(4):272-274.
    [22] Chai Y, Chipitsyna G, Cui J, Liao B, Liu S, Aysola K, Yezdani M, Reddy ES, Rao VN. c-Fos oncogene regulator Elk-1 interacts with BRCA1 splice variants BRCA1a/1b and enhances BRCA1a/1b-mediated growth suppression in breast cancer cells. Oncogene, 2001, 20(11):1357-1367.
    [23] Knebel B, Avci H, Bullmann C, Kotzka J, Muller-Wieland D. Reduced phosphorylation of transcription factor Elk-1 in cultured fibroblasts of a patient with premature aging syndrome and insulin resistance. Exp Clin Endocrinol Diabetes, 2005, 113(2):94-101.
    [24] Stinson J, Inoue T, Yates P, Clancy A, Norton JD, Sharrocks AD. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs. Nucleic Acids Res, 2003, 31(16):4717-4728.
    [25] Ho C K, Strauss J F 3rd. Activation of the control reporter plasmids pRL-TK and pRLSV40 by multiple GATA transcription factors can leadto aberrant normalization of transfection efficiency. BMC Biotechnol, 2004, 4: 10.
    [26] Matuszyk J, Ziolo E, Cebrat M, Kochel I, Strzadala L. Nurr1 affects pRL-TK but not phRG-B internal control plasmid in genetic reporter system. Biochem Biophys Res Commun, 2002, 294: 1036-1039.
    [27] Wang L, Gao X, Gao P, et al. Cell-based screening and validation of human novel genes associated with cell viability. J Biomol Screen, 2006, 11(4): 369-76.
    [28] 王俊杰,孙新臣,申文江等.康莱特注射液诱发肾癌细胞凋亡及 p53 、bcl - 2 表达的研究.中国肿瘤临床, 1999, 26(6):439-442.
    [29] 柴小姝,吴万垠,刘伟胜.消积饮联合华蟾素对小鼠 Lewis 肺癌细胞增殖抗原的影响.中国中医药杂志, 2004, 2(2):58-60.
    [30] 王鹏,吴军,杨秀伟等.华蟾毒精抑制 HeLa 细胞增殖作用机制的初步探讨.中国药理通讯, 2003, 20(3):31-32.
    [31] 钱军,秦叔逵,乐美兆等.榄香烯乳对 B16 细胞株的诱导分化作用.南京大学学报(自然科学), 1999, 35(2):230-235.
    [32] 范钰,林庚金,钱立平等.榄香烯乳对胃癌 SGCO7901 细胞株端粒酶活性及细胞凋亡的影响.复旦学报(医学科学版), 2001, 28(1):5-8.
    [33] 苏永华,尹西才,谢觉民等.三种蟾毒单体对 SMMC-7721、BEL-7402 人肝癌细胞生长的抑制作用.第二军医大学学报, 2OO4, 24(4):393-395.
    [34] Numazawa S, Inoue N, Nakura H, et al. A cardiotonic steroid bufalin-induced differentiation of THP-1 cells. Involvement of Na+/K+-ATPase inhibition in the early changes in proto-oncogene expression. Biochem Pharmacol, 1996, 52(2):321-329.
    [35] Kawazoe N, Aiuchi T, Masuda Y, et al. Induction of apoptosis by bufalin in human tumor cells is associated with a change of intracellular concentration of Na+ ions. J Biochem(Tokyo), 1999, 126(2):278-286.
    [36] Hashimoto S, Jing Y, Kawazoe N, et al. Bufalin reduces the level of topoisomerase Ⅱ in human leukemia cells and affects the cytotoxicity of anticancer drugs. Leuk Res, 1997, 21(9):875-883.
    [37] Watabe M, Nakajo S, Yoshida T, et al. Treatment of U937 cells with bufalin induces the translocation of casein kinase 2 and modulates the activity of topoisomerase Ⅱ prior to the induction of apoptosis. Cell Growth Differ, 1997, 8(8):871-879.
    [38] Masahiro K, Satoshi N, Yoshiiro T, et al. ERK signaling mediates the induction of inflammaatory cytokines by bufalin in human monocytic cellsAm. J. Physiol. Cell Physiol, 2000, 278:500-508.
    [39] 王小晓, 瞿延晖.β-榄香烯诱导肿瘤细胞凋亡作用机制研究的探讨.湖南中医学院学报, 2005, 25(1):62-63.
    [1] 潘国凤,朱晓新,张晓东.肿瘤系统生物学的发展与中医药的现代化.中 华中医药杂志,2007,22(10):698-701.
    [2] 苏婉,徐振晔.肿瘤靶向治疗与中药多靶点效应的研究进展.上海中医药杂志,2007,41(9):87-88.
    [3] 武春晓,石太平,马大龙.细胞筛选平台在人类功能基因组研究中的应用.生物化学与生物物理进展,2005,32(11):1003-10.
    [4] 吕冰峰.北京大学医学部博士学位论文.2006 年.
    [5] Lorenz WW, McCann RO, Longiaru M, Cormier MJ. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A, 1991, 88 (10):4438-42.
    [6] Hsu T, Trojanowska M, Watson DK. Ets proteins in biological control and cancer. J Cell Biochem, 2004, 91(5):896-903.
    [7] Rao V N, Huebner K, Isobe M, ar-Rushdi A, Croce C M, Reddy E S. Elk, tissue-specific ets-related genes on chromosomes X and 14 near translocation breakpoints. Science, 1989, 244(4900): 66-70.
    [8] Papavassiliou A G. The role of regulated phosphorylation in the biological activity of transcription factors SRF and Elk-1/SAP-1.Anticancer Res, 1994, 14(5A): 1923-6.
    [9] Price M A, Hill C, Treisman R. Integration of growth factor signals at the c-fos serum response element.Philos Trans R Soc Lond B Biol Sci, 1996, 351(1339): 551-9.
    [10] Dittmer J. The biology of the Ets1 proto-oncogene. Mol Cancer, 2003, 2: 29.
    [11] Rieder G, Tessier A J, Qiao X T, Madison B, Gumucio D L, Merchant J L. Helicobacter-induced intestinal metaplasia in the stomach correlates with Elk-1 and serum response factor induction of villin. J Biol Chem, 2005, 280(6): 4906-12.
    [12] Chen A G, Yu Z C, Yu X F, Cao W F, Ding F, Liu Z H. Overexpression of Ets-like protein 1 in human esophageal squamous cell carcinoma. World J Gastroenterol, 2006, 12(48): 7859-63.
    [13] Zhang Q, Adiseshaiah P, Kalvakolanu D V, Reddy S P. A Phosphatidylinositol 3-kinase-regulated Akt-independent signaling promotes cigarette smoke-induced FRA-1 expression. J Biol Chem, 2006, 281(15): 10174-81.
    [14] 庄志明,徐雪香.榄香烯乳的药理作用与临床应用近展.海峡药学,2001,13(2):7-8.
    [15] 鲍依稀,罗春丽,汤为学等.榄香烯对人肺腺癌细胞 A549 作用机理的初步研究.中国肿瘤临床,2002,29(5):338-341.
    [16] 吴相呈,黄金华,周伟生.榄香烯乳的抑瘤作用及其不良反应的防治.中药新药与临床药理,2004,15(1):70-72.
    [17] 于荣,柳庆玲,赵冬梅.榄香烯对人宫颈癌细胞 Hela 的体外抑瘤效应.滨州医学院学报,2006,29(2):106-107.
    [18] Wang G, Li X, Huang F, Zhao J, Ding H, Cunningham C et al. Antitumor effect of beta-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death. Cell Mol Life Sci, 2005, 62: 881-93.
    [19] Tao L, Zhou L, Zheng L, Yao M. Elemene displays anti-cancer ability on laryngeal cancer cells in vitro and in vivo. Cancer Chemother Pharmacol, 2006, 58: 24-34.
    [20] 花文峰, 蔡绍晖.β-榄香烯抗肿瘤作用的基础与临床研究.中药材,2006,29(1):93-97.
    [21] 王小晓, 瞿延晖.β-榄香烯诱导肿瘤细胞凋亡作用机制研究的探讨.湖南中医学院学报, 2005, 25(1):62-63.
    [22] 姚淑娟, 刘伯阳, 钟照华.榄香烯抗肝癌作用的实验研究.齐齐哈尔医学院学报, 2006, 27(3):257-258.
    [23] 姚淑娟, 刘伯阳, 吕丽艳.榄香烯提高肿瘤化疗药物疗效及抗免疫抑制作用的研究.中医药学刊, 2006, 24(3):456-457.
    [24] 徐英辉, 董斌, 罗其中等.榄香烯对大鼠胶质瘤 C6 细胞 Bcl-2 家族基因及蛋白表达的影响.中华医学杂志, 2005, 85(24):1700-1703.
    [25] 方仁杏, 汪波, 周蔚翔等.β-榄香烯对实验动物的抑瘤作用及机理研究. 中医药学刊, 2005, 23(6):1102-1103.
    [26] 余军军, 王子明, 车向明等.β-榄香烯介入治疗兔 VX2 肾移植癌的实验研究.中西医结合学报, 2006, 4(6):611-614.
    [27] 余军军, 王子明, 车向明等.β-榄香烯对兔 VX2 肾移植癌的放射增敏作用.中西医结合学报, 2006, 4(4):392-396.
    [28] 王小晓, 瞿延晖, 姚金成等.β-榄香烯诱导人胃癌 BAC823 细胞凋亡的实验研究.中南药学, 2005, 3(6):329-331.
    [29] 范钰, 张尤历, 李华.榄香烯乳对胃癌细胞人端粒酶反转录酶及其启动子的影响.江苏大学学报:医学版,2006,16(5):413-415.
    [30] 王利, 魏品康, 秦志丰.榄香烯对耐药胃癌细胞的逆转实验研究.成都中医药大学学报, 2005, 28(2):51-53.
    [31] 郝立宏, 赵瑾瑶, 丁艳芳.β-榄香烯逆转 K562/ADM 细胞 MDR 机制的探讨.中国肿瘤临床, 2005, 32(10):548-550.
    [32] 赵小瑜, 杨吉成, 盛伟华.榄香烯体外诱导急性白血病细胞凋亡的研究.苏州大学学报:医学版, 2005, 25(6):969-971.
    [33] 周洪语, 侯菊生, 邱永明等.榄香烯诱导神经胶质瘤细胞凋亡的实验研究.癌症, 2003, 22(9):959-963.
    [34] 陈春美, 杨卫忠, 王春华等.榄香烯对人脑胶质瘤 U251/ADM 耐药细胞株多药耐药性的逆转作用. 中华实验外科杂志, 2006, 23(4):601-603.
    [35] 杨卫忠, 陈春美, 石松生等.榄香烯抑制人脑胶质瘤 U251 细胞株 c-myc 癌基因表达及其影响细胞凋亡机制的研究.中国肿瘤临床, 2005, 32(13):763-766.
    [36] 马东礼, 侍庆.榄香烯诱导 HeLa 细胞凋亡的实验研究.上海第二医科大学学报, 2000, 20(6):484-487.
    [37] 萧珍,王迎进.紫杉醇注射液抗肿瘤作用的研究.西北大学学报(自然科学版),1997,27(2):175-178.
    [38] 魏 昌 华 , 姚 春 芳 , 恽 榴 红 . 新 型 抗 癌 药 — 紫 杉 醇 . 中 国 药 学 杂志,1996,31(5):259-263.
    [39] 吴云林,孙波,乔敏敏,等.特素对胃癌细胞体外增殖抑制的实验研究.肿瘤,2002,22(6):479-480.
    [40] Czene S, Testa E, Nygren J, Belyaev I, Harms-Ringdahl M. DNA fragmentation and morphological changes in apoptotic human lymphocytes. Biochem Biophys Res Commun, 2002, 294: 872-878.
    [41] Yordy JS, Muise Helmericks RC. Signal transduction and the Ets family of transcription factors. Oncogene, 2000, 19:6503-6513.
    [42] Quinn L, Deveraux and John C Reed. IAP family proteins-suppressors of apoptosis. Genes & Development, 1999, 13:239-252.
    [43] Ingo Schmitz, Sabine Kirchhoff and Peter H Krammer. Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol, 2000, 32:1123-1136.
    [44] Jerry M Adams. Ways of dying:multiple pathways to apoptosis. Genes & Development, 2003, 17:2481-2495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700