DETA-NONOate对卒中后大鼠NADPH氧化酶介导的氧化应激的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过检测NO供体DETA-NONOate对大脑中动脉闭塞/再灌注(MCAO/再灌注)大鼠脑组织NADPH氧化酶活性的影响,探讨DETA-NONOate对缺血性脑卒中的治疗保护作用及其机制。方法:SD大鼠随机分为假手术组、MCAO/再灌注组和MCAO/再灌注+DETA-NONOate干预组。线栓法建立大鼠MCAO/再灌注模型,缺血1h后拔出线栓,进入再灌注期。干预组大鼠在再灌注后10-15min内尾静脉注射DETA-NONOate (0.4mg/kg)。部分MCAO大鼠在再灌注期进行神经功能缺损评分,24小时后断颈法牺牲大鼠,TTC染色评价大鼠脑梗死体积。其余大鼠在再灌注4小时后提取脑组织标本,测定脑组织脂质过氧化产物MDA含量,脑组织NO水平,以及NADPH氧化酶活性,Western blot测定NADPH氧化酶各亚基(p22phox,p47phox, Nox2/gp91phox, Nox和Rac-1)的表达。结果:1)DETA-NONOate可以降低1hMCAO/24h再灌注大鼠脑梗死的体积(P<0.01),改善卒中后大鼠12h、24h的神经功能缺损症状(P<0.05);2)大鼠1hMCAO/4h再灌注后脑组织脂质过氧化产物MDA水平较假手术组升高(P<0.05),而经DETA-NONOate干预后脑组织MDA水平较对照组明显下降(P<0.05);3) 1hMCAO大鼠在再灌注初期静脉使用DETA-NONOate可以提高再灌注4h时脑组织NO水平(P<0.05);4)DETA-NONOate降低1hMCAO/4h再灌注大鼠脑组织NADPH氧化酶活性(P<0.01);5)DETA-NONOate使1hMCAO/4h再灌注大鼠脑组织NADPH氧化酶亚基p22phox, p47phox和Rac-1表达下降(P<0.05)。结论:NO供体DETA-NONOate可以改善缺血性卒中大鼠的神经功能缺损症状,抑制大鼠脑组织NADPH氧化酶活性及表达,对抗缺血性卒中的氧化应激效应,从而对脑组织缺血及继发的再灌注损伤发挥神经保护作用。
Objective:To determine the effect of NO donor DETA-NONOate on stroke rats after experimental MCAO and reperfusion injury, especially focus on the mechanisms concerning NADPH oxidase. Methods:A total of approximately 65 male Sprague-Dawley rats were used in this study. The animals were freely divided into three groups:(i) sham-operated group; (ii) control group:ischemia (60min) and reperfusion group (4h or 24h); (iii) ischemia (60min) and reperfusion (4h or 24h) with DETA-NONOate-treated group. Right MCA was occluded with a 4.0 monofilament nylon suture for an hour and then the nylon monofilament was withdrawn at the end of ischemic period for the beginning of reperfusion. DETA-NONOate-treated animals were treated with effective doses (0.4mg/kg) of NO donors DETA-NONOate in 250μl saline. The solution was slowly infused by tail vein at the time of reperfusion in 10-15 min. We evaluated the neuroprotective effect and antioxidant property of DETA-NONOate in rats after MCAO/reperfusion by ischemic infarct volume, neurological function score, MDA level, NO level, NADPH oxidase activities and the expressions of NADPH oxidase subunits (p22phox, p47phox, gp91phox, Nox4 and Rac-1). Results:1) DETA-NONOate improved neurological function by decreasing brain infarction volume and neurological function score in 60min MCAO/24h reperfusion rats compared to control group (P<0.05);2) The NO level of DETA-NONOate treated group was higher than control in 60min MCAO/4h reperfusion rats (P<0.05); 3) DETA-NONOate depressed MDA formation in brains of rats after 60min MACO and 4h reperfusion compared to control group (P <0.05); 4) NADPH oxidase activity and the expressions of NADPH oxidase subunit p22phox, p47phox, and Rac-1 in brains of 60min MCAO/4h reperfusion rats were significantly reduced by DETA-NONOate treatment compared to control (P<0.05). Conclusion:NO donor DETA-NONOate depressed the level of oxidative stress in the brains of MCAO/reperfusion rats by reducing the activity of NADPH oxidase, and thus played a protective role in ischemic stroke.
引文
[1]Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399-415,2003.
    [2]Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet 371:1612-1623, 2008.
    [3]American Heart Association:Heart Disease and Stroke Statistics-2005 Update Dallas, Texas:American Heart Association; 2005.
    [4]Rost NS, Wolf PA, Kase CS, Kelly-Hayes M, Silbershatz H, Massaro JM, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack:The Framingham Study. Stroke32:2575-2579,2001.
    [5]Babior BM:The NADPH oxidase of endothelial cells. IUBMB Life 50:267-269, 2000.
    [6]Babior BM. The leukocyte NADPH oxidase. Isr Med Assoc J 4:1023-1024,2002.
    [7]Babior BM, Lambeth JD, Nauseef W:The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342-344,2002.
    [8]Vignais PV. The superoxide-generating NADPH oxidase:structural aspects and activation mechanism. Cell Mol Life Sci 59:1428-1459,2002.
    [9]Kovacic P, Pozos RS, Somanathan R, Shangari N, O'Brien PJ. Mechanism of mitochondrial uncouplers, inhibitors, and toxins:focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 12:2601-2623,2005.
    [10]Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2:47-95,2002.
    [11]Valko M, Leibfritz D, Moncol J, Cronin MT, MazurM, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Bio 139:44-84,2007.
    [12]Chan, PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J.Cereb. Blood Flow Metab 21:2-14,2001.
    [13]Kirino, T. Delayed neuronal death. Neuropath.20:95-S97,2000.
    [14]Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med 46:1241-1249,2009.
    [15]Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci 84:705-712,2009.
    [16]Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, MakishimaM, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752-1761,2004.
    [17]Garcia-Lafuente A, Guillamon E, Villares A, Rostagno MA, Martinez JA. Flavonoids as anti-inflammatory agents:implications in cancer and cardiovascular disease. Inflamm Res 58:537-552,2009.
    [18]Martinez JA:Mitochondrial oxidative stress and inflammation:an slalom to obesity and insulin resistance. J Physiol Biochem 62:303-306,2006.
    [19]Karen B, KARL-HEINZ K. The NOX Family of ROS-Generating NADPH Oxidases:Physiology and Pathophysiology. Physiol Rev 87:245-313,2007.
    [20]Kamsler A, Segal M. Hydrogen peroxide as a diffusible signal molecule in synaptic plasticity. Mol Neurobiol 29:167-178,2004.
    [21]Thiels E, Klann E. Hippocampal memory and plasticity in superoxide dismutase mutant mice. Physiol Behav 77:601-605,2002.
    [22]Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I. Neuronal expression of the NADPH oxidase NOX4, its regulation in mouse experimental brain ischemia. Neuroscience 132:233-238,2005.
    [23]Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR, Davisson RL. Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res 91:1038-1045,2002.
    [24]Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252-2258,1997.
    [25]Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J. Role of ATI receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. Am J Physiol Heart Circ Physiol 286:H2442-H2451,2004.
    [26]Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090:182-189,2006.
    [27]Choi SH, Lee da Y, Kim SU, Jin BK. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo:role of microglial NADPH oxidase. J Neurosci 25:4082-4090,2005.
    [28]Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S, Carlson GA, Iadecola C. NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J Neurosci 25:1769-1777,2005.
    [29]Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S. Activation of NADPH oxidase in Alzheimer's disease brains. Biochem Biophys Res Commun 273: 5-9,2000.
    [30]Qin B, Cartier L, Dubois-Dauphin M, Li B, Serrander L, Krause KH. A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging 27:1577-1587,2005.
    [31]Wilkinson B, Koenigsknecht-Talboo J, Grommes C, Lee CY, Landreth G. Fibrillar beta-amyloid stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia. J Biol Chem 281:20842-50,2006.
    [32]Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. Chemokine receptors in the central nervous system:role in brain inflammation and neurodegenerative diseases. Brain Res 48:16-42,2005.
    [33]Van der Goes A, Brouwer J, Hoekstra K, Roos D, van den Berg TK, Dijkstra CD. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J Neuroimmunol 92:67-75,1998.
    [34]Hultqvist M, Olofsson P, Holmberg J, Backstrom BT, Tordsson J, Holmdahl R. Enhanced autoimmunity, arthritis, encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncfl gene. Proc Natl Acad Sci USA 101:12646-12651, 2004.
    [35]Van der Veen RC, Dietlin TA, Hofman FM, Pen L, Segal BH, Holland SM. Superoxide prevents nitric oxide-mediated suppression of helper T lymphocytes: decreased autoimmuneencephalomyelitis in nicotinamide adenine dinucleotide phosphate oxidase knockout mice. J Immunol 164:5177-5183,2000.
    [36]Simonyi, A., Wang, Q., Miller, R.L., Yusof, M., Shelat, P.B., Sun, A.Y.,Sun, G.Y. Polyphenols in cerebral ischemia:novel targets for neuroprotection. Mol. Neurobiol 31:135-147,2005.
    [37]Barbosa KBF, Bressan J, Zulet MA, Martinez JA. Influencia de ladieta sobre marcadores de estre's oxidativo en humanos(Spanish). An Sist Sanit Navar 31:259-280, 2008.
    [38]Selemidis S. Suppressing NADPH oxidase-dependent oxidative stress in the vasculature with nitric oxide donors. Clin Exp Pharmacol Physiol 35:1395-1401,2008.
    [39]Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, andhypertension:clinical implicationsandtherapeutic possibilities. Diabetes Care 31:170-180,2008.
    [40]Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci USA 102:9936-9941,2005.
    [41]Keijer J, van Schothorst EM. Adipose tissue failure and mitochondria as a possible target for improvement by bioactive food components. Curr Opin Lipidol 19:4-10, 2008.
    [42]Smith RA, Adlam VJ, Blaikie FH, Manas AR, Porteous CM, James AM, Ross MF, Logan A, Cocheme HM, Trnka J et al. Mitochondria-targeted antioxidants in the treatment of disease. Ann N Y Acad Sci 1147:105-111,2008.
    [43]Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR. NADPH oxidases in the vasculature:molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 120:254-291,2008.
    [44]Pacher P, Joseph S, Bechman, Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol Rev 87:315-424,2007;
    [45]Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc. Natl Acad. Sci. USA 93:9114-19,1996.
    [46]Yang Y, Loscalzo J. Regulation of tissue factor expression in human microvascular endothelial cells by nitric oxide. Circulation 101:2144-2148,2000.
    [47]Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, Stasch, Parker JD, Parker JO. Nitrate therapy for stable angina pectoris. N.Engl. J. Med.338:520-531, 1998.
    [48]Zeiher AM, Fisslthaler B, Schray-Utz B, Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ. Res.76:980-986,1995.
    [49]Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126-152,2005.
    [50]Bolanos JP, Almeida A. Roles of nitric oxide in brain hypoxiaischemia. Biochim Biophys Acta 1411:415-436,1999.
    [51]Moro MA, Almeida A, Bolanos JP, Lizasoain I. Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291-1304,2005.
    [52]Moro MA, Cardenas A, Hurtado O, Leza JC, Lizasoain I. Role of nitric oxide after brain ischaemia. Cell Calcium 36:265-275,2004.
    [53]ladecola C, Zhang F, Casey R, Clark HB, Ross ME. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27: 1373-1380,1996
    [54]Park SW, Huq MD, Hu X, Wei LN. Tyrosine nitration on p65:a novel mechanism to rapidly inactivate nuclear factor-kappaB. Mol Cell Proteomics 4:300-309,2005.
    [55]Zhang F, White JG, Iadecola C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia:evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J Cereb Blood Flow Metab 14:217-226,1994.
    [56]Endres M, Laufs U, Liao JK, Moskowitz MA. Targeting eNOS for stroke protection. Trends Neurosci 27:283-289,2004.
    [57]Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:8880-8885, 1998.
    [58]Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, Rebsamen MC, Hsieh CM, Chui DS, Thomas KL, Prorock AJ, Laubach VE, Moskowitz MA, French BA, Ley K, Liao JK. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 8:473-479,2002.
    [59]Van Reyk DM, King NJ, Dinauer MC, Hunt NH. The intracellular oxidation of 2,7-dichlorofluorescin in murine T lymphocytes. Free Radical Biol Med 30:82-88, 2001.
    [60]Mark W, Laura G, Claire G, Sean M, Philip MW. A systematic review of nitric oxide donors and L-arginine in experimental stroke;effects on infarct size and cerebral blood flow. Nitric Oxide 12:141-149,2005.
    [61]Murohara T, Scalia R, Lefer AM. Lysophosphatidylcholine promotes P-selectin expression in platelets and endothelial cells. Possible involvement of protein kinase C activation and its inhibition by nitric oxide donors. Circ. Res.78:780-789,1996.
    [62]Brown BG, Bolson E, Petersen RB, Pierce CD, Dodge HT. The mechanisms of nitroglycerin action:Stenosis vasodilatation as a major component of the drug response. Circulation 64:1089-97,1981.
    [63]Munzel T, Daiber A, Mulsch A. Explaining the phenomenon of nitrate tolerance. Circ. Res.97:618-628,2005.
    [64]Otto A, Fontaine J, Tschirhart E, Fontaine D, Berkenboom G. Rosuvastatin treatment protects against nitrate-induced oxidative stress in eNOS knockout mice: Implication of the NAD(P)H oxidase pathway. Br. J. Pharmacol.148:544-52,2006.
    [65]GISSI-3:Effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Gruppo italiano per lo studio della sopravvivenza nell'infarto miocardico. Lancet 343:1115-22, 1994.
    [66]ISIS4:A randomised factorial trial assessing early oral captopril oral mononitrate and intravenous magnesium sulphate in 57 patients with suspected acute myocardial infarction. ISIS-4 (Fourth International Study of Infarct Survival) collaborative group. Lancet 345:669-685,1995.
    [67]Kalinowski L, Dobrucki LW, Brovkovych V, Malinski T. Increased nitric oxide availability in endothelial cells contributes to the pleiotropic effect of cerivastatin. Circulation 105:933-938,2002.
    [68]Brovkovych V, Stolarczyk E, Oman J, Tomboulian P, Malinski T. Direct electrochemical measurement of nitric oxide in vascular endothelium. J. Pharm. Biomed. Anal.19:135-43,1999.
    [69]Duerrschmidt N, Stielow C, Muller G, Pagano PJ, Morawietz H. NOmediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J. Physiol.576:557-67,2006.
    [70]Jiang F, Roberts SJ, Datla S, Dusting GJ. NO modulates NADPH oxidase function via heme oxygenase-1 in human endothelial cells. Hypertension 48:950-957,2006.
    [71]Stavros Selemidis. Suppression NADPH oxidase-dependedt oxidative stress in the vasculature with nitric oxide donors. Clin. Expe. Pharma. Phys.35:1395-1401,2008.
    [72]Pleskova M, Beck KF, Behrens MH et al. Nitric oxide down-regulates the expression of the catalytic NADPH oxidase subunit Noxl in rat renal mesangial cells. FASEB J.20:139-141,2006.
    [73]Cui X. Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke. J Neurosci Res.87:86-95,2009.
    [74]Cui X. Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke.-Stem Cells 25:2777-2785,2007.
    [75]Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126-152,2005.
    [76]Szabo C. Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull 41:131-141,1996.
    [77]Bolanos JP, Almeida A. Roles of nitric oxide in brain hypoxiaischemia. Biochim Biophys Acta 1411:415-436,1999.
    [78]Moro MA, Almeida A, Bolanos JP, Lizasoain I. Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291-1304,2005.
    [79]Grandati M, Verrecchia C, Revaud ML, Allix M, Boulu RG, Plotkine M. Calcium-independent NO-synthase activity and nitrites/nitrates production in transient focal cerebral ischaemia in mice. Br J Pharmacol 122:625-630,1997.
    [80]Iadecola C, Xu X, Zhang F, el-Fakahany EE, Ross ME. Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab 15:52-59,1995.
    [81]Iadecola C, Zhang F, Casey R, Clark HB, Ross ME. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27: 1373-1380,1996.
    [82]Bidmon HJ, Wu J, Buchkremer-Ratzmann I, Mayer B, Witte OW, Zilles K. Transient changes in the presence of nitric oxide synthases and nitrotyrosine immunoreactivity after focal cortical lesions. Neuroscience 82:377-395,1998.
    [83]Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126-152,2005.
    [84]Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab 16:981-987,1996.
    [85]Salom JB, Orti M, Centeno JM, Torregrosa G, Alborch E. Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain Res 865:149-156,2000.
    [86]Zhang F, White JG, Iadecola C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia:evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J Cereb Blood Flow Metab 14:217-226,1994.
    [87]Endres M, Laufs U, Liao JK, Moskowitz MA. Targeting eNOS for stroke protection. Trends Neurosci 27:283-289,2004.
    [88]Willmot M, Gray L, Gibson C, Murphy S, Bath PM. A systematic review of nitric oxide donors and L-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide 12:141-149,2005.
    [89]Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:8880-8885, 1998.
    [90]Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier JC, Rebsamen MC, Hsieh CM, Chui DS, Thomas KL, Prorock AJ, Laubach VE, Moskowitz MA, French BA, Ley K, Liao JK. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 8:473-479,2002.
    [91]Sironi L, Cimino M, Guerrini U, Calvio AM, Lodetti B, Asdente M, Balduini W, Paoletti R, Tremoli E. Treatment with statins after induction of focal ischemia in rats reduces the extent of brain damage. Arterioscler Thromb Vase Biol 23:322-327,2003.
    [92]Willmot M, Gray L, Gibson C, Murphy S, Bath PM. A systematic review of nitric oxide donors and L-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide 12:141-149,2005.
    [93]Khan M, Jatana M, Elango C, Singh Paintlia A, Singh AK, Singh I. Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 15:114-124,2006.
    [94]Fabian RH, DeWitt DS, Kent TA. In vivo detection of superoxide anion production by the brain using a cytochrome c electrode. J Cereb Blood Flow Metab 15:242-247, 1995.
    [95]Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196-205,1998.
    [96]Fabian RH, DeWitt DS, Kent TA. In vivo detection of superoxide anion production by the brain using a cytochrome c electrode. J Cereb Blood Flow Metab 15:242-247, 1995.
    [97]Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165-170,1994.
    [98]Suzuki M, Tabuchi M, Ikeda M, Tomita T. Concurrent formation of peroxynitrite with the expression of inducible nitric oxide synthase in the brain during middle cerebral artery occlusion and reperfusion in rats. Brain Res 951:113-120,2002. stress-related pathologies.
    [1]Valko, M.; Leibfritz, D.; Moncol, J; Cronin, M. T. D.; Mazura, M; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39:44-84; 2007.
    [2]Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture:how should you do it and what do the results mean? Br. J. Pharmacol.142:231-255; 2004.
    [3]Andreyev, A. Y; Kushnareva, Y. E.; Starkov, A. A. Mitochondrial metabolism of reactive oxygen species. Biochem. (Mosc) 70:200-214; 2005.
    [4]Repnik, U.; Turk, B. Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion 10:662-669; 2010.
    [5]Kurz, T.; Eaton, J. W.; Brunk, U. T. Redox activity within the lysosomal compartment: implications for aging and apoptosis. Antioxid. Redox Sign.13:511-523; 2010.
    [6]Kovacic, P.; Pozos, R. S.; Somanathan, R.; Shangari, N.; O'Brien, P.J. Mechanism of mitochondrial uncouplers, inhibitors, and toxins:focus on electron transfer, free radicals, and structure-activity relationships. Curr. Med. Chem.12:2601-2623; 2005.
    [7]Radisky, D.C.; Kaplan, J. Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts. Biochem. J.336:201-205; 1998.
    [8]Kruszewski, M. Labile iron pool:the main determinant of cellular response to oxidative stress. Mutat. Res.531:81-92; 2003.
    [9]Tahara, E. B.; Navarete, F. D. T.; Kowaltowski, A. J. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic. Biol. Med. 46:1283-1297; 2009.
    [10]Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, Oxidative stress and cell death. Apoptosis 12:913-922; 2007.
    [11]Sanz, A.; Pamplona, R.; Barja, G. Is the mitochondrial free radical theory of aging intact? Antioxid. Redox Sign.8:582-599; 2006.
    [12]Willcox, B. J.; Curb, J. D.; Rodriguez, B. L. Antioxidants in cardiovascular health and disease: key lessons from epidemiologic studies. Am. J. Cardiol.101:75D-86D; 2008.
    [13]Starkov, A. A. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci.1147:37-52; 2008.
    [14]Hoffman, D. L.; Salter, J. D.; Brookes, P. S. Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension:implications for hypoxic cell signaling. Am. J. Physiol. Heart. Circ. Physiol.292:H101-H108; 2007.
    [15]Farquhar, M. G.; Palade, G. E. The Golgi apparatus:100 years of progress and controversy. Trends Cell Biol.8:2-10; 1998.
    [16]Mahon, K. P.; Potocky, T. B.; Blair, D.; Roy, M. D.; Stewart, K. M.; Chiles, T. C.; Kelley, S. O. Deconvolution of the cellular oxidative stress response with organelle-specific peptide conjugates. Chem, Biol.14:923-30; 2007.
    [17]Hicks, S. W.; Machamer, C. E. Golgi structure in stress sensing and apoptosis. Biochim. Biophys. Acta.1744:406-414; 2005.
    [18]Maag, R. S.; Hick, S. W.; Machamer, C. E. Death from within:apoptosis and the secretory pathway. Curr. Opin. Cell Biol.15:456-461; 2003.
    [19]Nakagomi, S.; Barsoum, M. J.; Bossy-Wetzel, E.; Sutterlin, C.; Malhotra, V.; Lipton, S. A. A Golgi fragmentation pathway in neurodegeneration. Neurobiol. Dis.29:221-231; 2008.
    [20]Fan, J.; Hu, Z.; Zeng, L.; Lu, W.; Tang, X.; Zhang, J.; Li, T. Golgi apparatus and neurodegenerative diseases. Int. J. Devl. Neuroscience.26:523-534; 2008.
    [21]Hu, Z.; Zeng, L.; Huang, Z.; Zhang, J.; Li, T. The study of Golgi apparatus in Alzheimer's disease. Neurochem. Res.32:1265-1277; 2007.
    [22]Berridge, M. J.; Bootman, M. D.; Lipp, P. Calcium-a life and death signal. Nature 395:645-648;1998.
    [23]Marin, J.; Encabo, A.; Briones, A.; Garcia-Cohen, E. C.; Alonso, M. J. Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle:calcium pumps. Life Sci.64:279-303; 1999.
    [24]Wang, H.; Joseph, J.A. Mechanism of hydrogen peroxide-induced calcium deregulation in PC 12 cells. Free Rad. Biol. Med.28:1222-1231; 2000.
    [25]Doan, T. N.; Gentry, D. L.; Taylor, A. A.; Elliott, S. J. Hydrogen peroxide activates agonist-sensitive Ca(2+)-flux pathways in canine venous endothelial cells. Biochem. J.297:209-215; 1994.
    [26]Joseph, J. A.; Strain, J. G.; Jimenez, N. D.; Fisher, D. Oxidant injury in PC 12 cells-a possible model of calcium "dysregulation" in aging:I. Selectivity of protection against oxidative stress. J. Neurochem.69:1252-1258; 1997.
    [27]Hajnoczky, G.; Csordas, G.; Das, S.; Garcia-Perez, C. M.; Saotome, R.; Sinha R. S.; Yi, M. Mitochondrial calcium signalling and cell death:Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553-560; 2006.
    [28]Zhivotovsky, B.; Gahm, A.; Orrenius, S. Two different proteases are involved in the proteolysis of lamin during apoptosis. Biochem. Biophys. Res. Commun.233:96-101; 1997.
    [29]Duchen, M. R. Mitochondria and calcium:from cell signalling to cell death. J. Physiol. 529:57-68; 2000.
    [30]Brookes, P. S.; Yoon, Y.; Robotham, J. L.; Anders, M. W.; Sheu, S. S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol.287:C817-C833; 2004.
    [31]Lynch, D. R.; Dawson, T. M. Secondary mechanisms in neuronal trauma. Curr. Opin. Neurol. 7:510-516; 1994.
    [32]Starkov, A. A.; Chinopoulos, C.; Fiskum, G. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257-264; 2004.
    [33]Scorrano, L.; Penzo, D.; Petronilli, V.; Pagano, F.; Bernardi, P. Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J. Biol. Chem.276:12035-12040; 2001.
    [34]Southall, T. D.; Terhzaz, S.; Cabrero, P.; Chintapalli, V. R.; Evans, J. M.; Dow, J. A.; Davies, S. A. Novel subcellular locations and functions for secretory pathway Ca2+/Mn2+-ATPases. Physiol. Genomics.26:35-45; 2006.
    [35]Vanoevelen, J.; Raeymaekers, L.; Dode, L.; Parys, J. B.; De Smedt, H.; Callewaert, G.; Wuytack, F.; Missiaen, L. Cytosolic Ca2+ signals depending on the functional state of the Golgi in HeLa cells. Cell Calcium 38:489-495; 2005.
    [36]Miseta, A; Fu, L; Kellermayer, R.; Buckley, J; Bedwell, D. M. The Golgi apparatus plays a significant role in the maintenance of Ca2+ homeostasis in the vps33D vacuolar biogenesis mutant of saccharomyces cerevisiae. J. Boil. Chem.274:5939-5947; 1999.
    [37]Pinton, P.; Pozzan, T.; Rizzuto, R. The Golgi apparatus is an inositol 1,4, 5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO.17:5298-5308; 1998.
    [38]Michelangeli, F.; Ogunbayo, O. A.; Wootton, L. L. A plethora of interacting organellar Ca2+ stores. Curr. Opin. Cell Biol.17:135-140; 2005.
    [39]Surra, A.; Wolff, D. Inositol 1,4,5-trisphosphate but not ryanodinereceptor agonists induces calcium release from rat liver Golgi apparatus membrane vesicles. J. Membr. Biol.177:243-249; 2000.
    [40]Missiaen, L; Raeymaekers, L.; Dode, L.; Vanoevelen, J.; VanBaelen, K.; Parys, J. B.; Callewaert, G.; DeSmedt, H;. Segaert, S.; Wuytack, F. SPCA1 pumps and Hailey-Hailey disease. Biochem. Biophys. Res. Commun.322:1204-1213; 2004.
    [41]Van Baelen, K.; Vanoevelen, J.; Callewaert, G.; Parys, J. B.; DeSmedt, H.; Raeymaekers, L.; Rizzuto, R.; Missiaen, L.; Wuytack, F. The contribution of the SPCA1 Ca2+ pump to the Ca2+ accumulation in the Golgi apparatus of HeLa cells assessed via RNA-mediated interference. Biochem. Biophys. Res. Commun.306:430-436; 2003.
    [42]Zima, A. V.; Blatter, L. A. Redox regulation of cardiac calcium channels and transporters. Cardiovasc. Res.71:310-321; 2006.
    [43]Joseph, S. K.; Nakao, S. K.; Sukumvanich, S. Reactivity of free thiol groups in type-I inositol trisphosphate receptors. Biochem. J.393:575-582; 2006.
    [44]Strayle, J.; Pozzan, T.; Rudolph, H. K. Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 mM and is mainly controlled by the secretory pathway pump Pmrl. EMBO J.18:4733-4743; 1999.
    [45]Durr, G.; Strayle, J.; Plemper, R.; Elbs, S.; Klee, K.; Catty, P.; Wolf, D. H.; Rudolph, H. K. The medial-Golgi ion pump Pmrl supplies the yeast secretory pathway with Ca+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol. Biol. Cell. 9:1149-1162; 1998.
    [46]Ramos-Castan, J.; Park, Y.; Liu, M.; Hauser, K.; Rudolph, H.; Shull, G. E.; Jonkman, M. F.; Mori, K.; Ikeda, S.; Ogawa, H.; Arvan. P. Deficiency of ATP2C1, a Golgi ion pump, induces secretory pathway defects in endoplasmic reticulum (ER)-associated degradation and sensitivity to ER stress. J. Biol. Chem.280:9467-9473; 2005.
    [47]Wootton, L. L.; Argent, C. C. H.; Wheatley, M.; Michelangeli, F. The expression, activity and localisation of the secretory pathway Ca2+ ATPase (SPCA1) in different mammalian tissues. Biochim. Biophys. Acta.1664:189-197; 2004.
    [48]Xiang, M.; Mohamalawari, D.; Rao, R. A novel isoform of the secretory pathway Ca2+/Mn2+ ATPase, hSPCA2, has unusual properties and is expressed in the brain. J. Biol. Chem. 280:11608-11614; 2005.
    [49]Wuytack, F.; Raeymaekers, L.; Missiaen, L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32:279-305; 2002.
    [50]Sorin, A.; Rosas, G.; Rao, R. PMR1, a Ca2+-ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane calcium pumps. J. Biol. Chem.272:9895-9901; 1997.
    [51]Okunade, G. W.; Miller, M. L.; Azhar, M.; Andringa, A.; Sanford, L. P.; Doetschman, T.; Prasad,V.; Shull,G. E. Loss of the Atp2cl secretory pathway Ca2+-ATPase (SPCA1) in mice causes golgi stress, apoptosis, and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J. Biol. Chem.282:26517-26527; 2007.
    [52]Pavh'kova', M.; Tatarkova', Z.; Sivon'ova', M. Alterations induced by ischemic preconditioning on secretory pathways Ca"+-ATPase (SPCA) gene expression and oxidative damage after global cerebral ischemia/reperfusion in rats. Cell Mol. Neurobiol.29:909-916; 2009.
    [53]Lehotsky, J.; Kaplan, P.; Matejovicova, M.; Murin, R.; Racay, P,; Raeymaekers, L. Ion transport systems as targets of free radicals during ischemia/reperfusion injury. Gen. Physiol. Biophys.21:31-3; 2002.
    [54]Uccelletti, D.; Farina, F.; Pinton, P.; Goffrini, P.; Mancini, P.; Talora, C.; Rizzuto, R.; Palleschi, C. The Golgi Ca2+-ATPase KIPmrlp function is required for oxidative stress response by controlling the expression of the heat shock element HSP60 in Kluyveromyces lactis. Mol Biol Cell. 16:4636-4647; 2005.
    [55]Farina, F.; Uccelletti, D.; Goffrini, P.; Butow, R. A.; Abeijon, C.; Palleschi, C. Alterations of O-glycosylation, cell wall, and mitochondrial metabolism in Kluyveromyces lactis cells defective in KlPmrlp, the Golgi Ca2+-ATPase. Biochem. Biophys. Res. Commun.318:1031-1038; 2004.
    [56]Ryu, J. H.; Lee, Y.; Han, S. K.; Kim, H. Y. The role of hydrogen peroxide produced by polychlorinated biphenyls in PMR1-deficient yeast cells. J. Biochem.134:137-142; 2003.
    [57]Lapinskas, P. J.; Cunningham, K. W.; Liu, X. F.; Fink, G. R.; Culotta, V. C. Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Mol. Cell. Biol. 15:1382-1388; 1995.
    [58]Murphy, C. T.; McCarroll, S. A.; Bargmann, C. I.; Fraser, A.; Kamath, R. S.; Ahringer, J.; Li, H.; Kenyon, C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature.424:277-283; 2003.
    [59]Cho, J. H.; Ko, M. K.; Singaravelu, G.; Ahnn, J. Caenorhabditis elegans PMR1, a P-type calcium ATPase, is important for calcium/manganese homeostasis and oxidative stress response, FEBS Letters.579:778-782; 2005.
    [60]Liu, X. F.; Elashvili, I.; Gralla, E. B.; Valentine, J. S.; Lapinskas, P.; Culotta, V. C. Yeast lacking superoxide dismutase:isolation of genetic suppressors. J. Biol. Chem.267:18298-18302; 1992.
    [61]Luk, E. E.; Culotta, V. C. Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J. Biol. Chem.276:47556-47562; 2001.
    [62]Archibald, F. S.; Fridovich, I. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J. Bacteriol.145:422-451; 1981.
    [63]Sanchez, R. J.; Srinivasan, C.; Munroe, W. H.; Wallace, M. A.; Martins, J.; Kao, T. Y.; Le, K.; Gralla, E. B.; Valentine, J. S. Exogenous manganous ion at millimolar levels rescues all known dioxygen-sensitive phenotypes of yeast lacking Cu,Zn-SOD. J. Biol. Inorg. Chem.10:913-923; 2005.
    [64]Chang, E. C.; Kosman, D. J. Intracellular Mn(Ⅱ)-associated superoxide scavenging activity protects Cu,Zn superoxide dismutase-deficient Saccharomyces cerevisiae against dioxygen stress. J. Biol. Chem.264:12172-12178; 1989.
    [65]Wuytack, F.; Raeymaekers, L.:Missiaen, L. PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store. Pflug. Arch.446:148-153,2003.
    [66]Zheng, W.; Ren, S.; Graziano, J. H. Manganese inhibits mitochondrial aconitase:a mechanism of manganese neurotoxicity. Brain Research 799:334-342; 1998.
    [67]Dobson, A. W., Erikson, K. M., Aschner, M. Manganese neurotoxicity. Ann. N.Y. Acad. Sci. 1012:115-128; 2004.
    [68]Gunter, T. E.; Gavin, C. E.; Aschner, M.; Gunter, K.K. Speciation of manganese in cells and mitochondria:a search for the proximal cause of manganese neurotoxicity. Neurotoxicology. 27:765-776; 2006.
    [69]Hazell, A.S.; Norenberg, M.D. Ammonia and manganese increase arginine uptake in cultured astrocytes. Neurochem. Res.23:869-873; 1998.
    [70]Spranger, M.; Schwab, S.; Desiderata, S.; Bonmann, E.; Krieger, D.; Fandrey, J. Manganese augments nitric oxide synthesis in murine astrocytes:A new pathogenetic mechanism in manganism? Exp.Neurol.149:277-283; 1998.
    [71]Milatovic, D.; Yin, Z.; Gupta, R. C.; Sydoryk, M.; Albrecht, J.; Aschner, J. L.; Aschner, M. Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol. Science.98:198-205; 2007.
    [72]Milatovic, D.; Zaja-Milatovic, S.; Gupta, R. C.; Yu, Y. Aschner, M. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol. Appl. Pharm.240:219-225; 2009.
    [73]Abramov, A. Y.; Canevari, L.; Duchen, M. R. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci.23:5088-5095; 2003.
    [74]Ferri, K. F.; Kroemer, G. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 3:255-263; 2001.
    [75]Kurz, T.; Terman, A.; Gustafsson, B.; Brunk, U. T. Lysosomes and oxidative stress in aging and apoptosis. Biochimica. Et. Biophysica. Acta.1780:1291-1303; 2008.
    [76]Mancini, M.; Machamer, C. E.; Roy, S.; Nicholson, D. W.; Thornberry, N. A.; Casciola-Rosen, L. A.; Rosen, A. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J. Cell Biol.149:603-612; 2000.
    [77]Zhivotovsky, B.; Samali, A.; Gahm, A.; Orrenius, S. Caspases:their intracellular localization and translocation during apoptosis, Cell Death Differ.6:644-651; 1999.
    [78]Robertson, J. D.; Enoksson, M.; Suomela, M.; Zhivotovsky, B.; Orrenius, S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J. Biol. Chem.277:29803-29809; 2002.
    [79]Bennett, M.; Macdonald, K.; Chan, S. W.; Luzio, J. P.; Simari, R.; Weissberg, P. Cell surface trafficking of Fas:a rapid mechanism of p53-mediated apoptosis. Science.282:290-293; 1998.
    [80]Bradley, J. R.; Thiru, S.; Pober, J. S. Disparate localization of 55-kd and 75-kd tumor necrosis factor receptors in human endothelial cells. Am. J. Pathol.146:27-32; 1995.
    [81]Gervais, F. G.; Singaraja, R.; Xanthoudakis, S.; Gutekunst, C. A.; Leavitt, B. R.; Metzler, M.; Hackam, A. S.; Tam, J.; Vaillancourt, J. P.; Houtzager, V.; Rasper, D. M.; Roy, S.; Hayden, M. R.; Nicholson, D. W. Recruitment and activation of caspase-8 by the Huntingtin-interacting proteinHip-1 and a novel partner Hippi. Nat. Cell Biol.4:95-110; 2002.
    [82]Hauser, H. P.; Bardroff, M.; Pyrowolakis, G.; Jentsch, S. A giant ubiquitin-conjugating enzyme related to 1AP apoptosis inhibitors. J. Cell Biol.141:1415-1422; 1998.
    [83]Gubser, C.; Bergamaschi, D.; Hollinshead, M.; Lu, X.; van Kuppeveld, F. J. M.; Smith, G. L. A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog.3:e17; 2007.
    [84]Maag, R. S.; Mancini, M.; Rosen, A.; Machamer, C. E. Caspase-resistant golgin-160 disrupts apoptosis induced by secretory pathway stress and ligation of death receptors. Mol. Biol. Cell. 16:3019-3027; 2005.
    [85]Gonatas, N. K.; Stieber, A.; Gonatas, J. O. Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J. Neurol. Sci.246:21-30; 2006.
    [86]Fujita, Y.; Ohama, E.; Takatama, M.; Al-Sarraj, S.; Okamoto, K. Fragmentation of Golgi apparatus of nigral neurons with a-synuclein-positive inclusions in patients with Parkinson's disease. Acta. Neuropathol.112:261-265; 2006.
    [87]Mourelatos, Z.; Hirano, A.; Rosenquist, A. C.; Gonatas, N. K. Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis (ALS). Clinical studies in ALS of Guam and experimental studies in deafferented neurons and in beta, beta'-iminodipropionitrile axonopathy. Am. J. Pathol.144:1288-1300; 1994.
    [88]Mourelatos, Z.; Gonatas, N. K.; Stieber, A.; Gurney, M. E.; Dal Canto, M C. The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc. Natl. Acad. Sci. USA. 93:5472-7; 1996.
    [89]Stieber, A.; Gonatas, J. O.; Gonatas, N. K. Aggregation of ubiquitin and a mutant ALS-linked SOD1 protein correlate with disease progression and fragmentation of the Golgi apparatus. J. Neurol. Sci.173:53-62; 2000.
    [90]Stieber, A.; Gonatas, J. O.; Moore, J. S.; Bantly, A.; Yim, H. S.; Yim, M. B.; Gonatas, N. K. Disruption of the structure of the Golgi apparatus and the function of the secretory pathway by mutants G93A and G85R of Cu, Zn superoxide dismutase (SOD1) of familial amyotrophic lateral sclerosis. J. Neurol. Sci.219:45-53; 2004.
    [91]Gosavi, N.; Lee, H-J.; Lee, J.S.; Patel, S.; Lee, S-J. Golgi fragmentation occurs in the cells with prefibrillar a-synuclein aggregates and precedes the formation of fibrillar inclusion. J. Biol. Chem. 277:48984-92; 2002.
    [92]Yoshiyama, Y.; Zhang, B.; Bruce, J.; Trojanowski, J. Q.; Lee, M-Y. V. Reduction of detyrosinated microtubules and Golgi fragmentation are linked to Tau-induced degeneration in astrocytes. J. Neurosci.23:10662-71; 2003.
    [93]Strosznajder, R.; Gadamski, R.; Walski, M. Inhibition of poly (ADP-ribose) polymerase activity protects hippocampal cells against morphological and ultrastructural alteration evoked by ischemia-reperfusion injury. Folia. Neuropathol.43:156-165; 2005.
    [94]Martin, L. J.; Brambrink, A. M.; Price, A. C.; Kaiser, A.; Agnew, D. M.; lchord, R. N.; Traystman, R. J. Neuronal death in newborn striatum after hypoxia-ischemia is necrosis and evolves with oxidative stress. Neurobiol. Dis.7:169-191; 2000.
    [95]Hu, Z; Zeng, L.; Xie, L.; Lu, W.; Zhang, Z.; Li, T.; Wang, X. Morphological alteration of Golgi apparatus and subcellular compartmentalization of TGF-β1 in Golgi apparatus in Gerbils following transient forebrain ischemia. Neurochem. Res.32:1927-1931; 2007.
    [96]Rafols, J. A.; Daya, A. M.; O. Neil, B. J.; Krause, G. S.; Neumar, R. W.; White, B. C. Global brain ischemia and reperfusion:Golgi apparatus ultrastructure in neurons selectively vulnerable to death. Acta. Neuropathol.90:17-30; 1995.
    [97]Cheung, F. W. K.; Li, C.; Che, C; Liu, B. P. L.; Wang, L.; Liu, W. Geoditin A Induces Oxidative Stress and Apoptosis on Human Colon HT29 Cells. Mar. Drugs.8:80-90; 2010.
    [98]Deng, H. X.; Hentati, A.; Tainer, J. A.; Iqbal, Z.; Cayabyab, A.; Hung, W. Y.; Getzof, E. D.; Hu. P.; Herzfeld, B.; Roos, R. P.; Warner, C.; Deng, G.; Soriano, E.; Smyth, C.; Parge, H. E.; Ahmed, A.; Roses, A. D.; Hallewell, R.A. Pericak-Vance, M. A.; Siddique, T. Amyotrophic lateral sclerosis and structural efects in Cu,Zn superoxide dismutase. Science 261:1047-1051; 1993.
    [99]Rosen, D. R.; Siddique, T.; Patterson, S.; Figlewicz, D. A.; Sa, P.; Hentati, A.; Donaldson, D.; Goto, J.; O'Reagan, J. P.; Deng, H. X.; Rahmani, Z.; Krizus, A.; McKenna-Yasek, D.; Cayabyab, A.; Gaston, S. M.; Berger, R.; Tanzi, R. E.; Halperin, J. J.; Herzfeldt, B.; Van den Bergh, R.; Hung, W. Y.; Bird, T.; Deng, G.; Mulder, D. W.; Smyth, C.; Laing, N. G.; Soriano, E.; Pericak-Vance, M. A.; Haines, J.; Rouleau, G. A.; Gusella, G. S.; Horvitz, H. R.; Brown, Jr. RH. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 362:59-62; 1993.
    [100]Gurney, M. E.; Pu, H.; Chiu, A. Y.; Chiu, D. C. M.; Dal Canto, M. C.; Polchow, C. Y.; Alexander, D. D.; Caliendo, J.; Hentati, A.; Kwon, Y. W.; Deng, H-X.; Chen, W.; Zhai, P.; Sufit, R. I.; Siddique, T. Motor neuron degeneration in mice that express a human Cu,Zn superoxide mutation. Science.264:1772-1775; 1994.
    [101]Tu, P. H.; Gurney, M.C.; Julien, J-P.; Lee, M-Y. V.; Trojanowski, J. Q. Oxidative stress, human SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease. Lab. Invest.76:441-456; 1997.
    [102]Beal, M. F.; Ferrante, R. J.; Browne, S. E.; Matthews, R. T.; Kowall, N. W.; Brown, R. H. Jr. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 42:644-654;1997.
    [103]Ferrante, R. J.; Browne, S. E.; Shinobu, L. A.; Bowling, A. C.; Baik, M. J.; MacGarvey, U.; Kowall, N. W.; Brown, R. H. Jr.; Beal, M. F. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem.69:2064-2074; 1997.
    [104]Wiedau-Pazos, M.; Goto, J.J.; Rabizadeh, S.; Gralla, E. B.; Roe, J.A.; Lee, M. K.; Valentine, J. S.; Bredesen, D. E. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science.271:515-78; 1996.
    [105]Yim, M. B.; Chock, P. B.; Stadman, E. R. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Proc. Natl.Acad. Sci. USA.87:5006-10; 1990.
    [106]Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Znsuperoxide dismutase mutant:an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natl. Acadn. Sci. USA. 93:5709-14; 1996.
    [107]Yim, H-S.; Kang, J-H.; Chock, P. B.; Stadtman, E. R.; Yim, M. B. A familial amyotrophic lateral sclerosis-associated A4V Cu, Zn-superoxide dismutase mutant has a lower Km for hydrogen peroxide. Correlation between clinical severity and the Km value. J. Biol. Chem.272:8861-3; 1997.
    [108]Bruijn, L. I.; Houseweart, M. K.; Kato, S.; Anderson, K. L.; Anderson, S. D.; Ohama, E.; Reaume, A. G.; Scott, R. W.; Cleveland, D. W. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science.281:1851-1854; 1998.
    [109]Liu, Y.; Xie, P.; Qiu, T.; Li, H-Y.; Li, G-Y.; Hao, L.; Xiong, Q. Microcystin extracts induce ultrastructural damage and biochemical disturbance in male rabbit testis. Environ. Toxicol.25:9-17; 2010.
    [110]Pavelka, M.; Ellinger, A. Early and late transformations occurring at organelles of the Golgi area under the influence of brefeldin A:An ultrastructural and lectin cytochemical study. J. Histochem. Cytochem.41:1031-1042; 1993.
    [111]Robbins, E.; Gonatas, N. K. The ultrastructure of a mammalian cell during the mitotic cycle. J. Cell Biol.21:429-463; 1964.
    [112]Warren, G. Membrane partitioning during cell division. Annu. Rev. Biochem.62:323-348; 1993.
    [113]Sutterlin, C.; Hsu, P.; Mallabiabarrena, A.; Malhotra, V. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell. 109:359-369; 2002.
    [114]Kreis, T.; Goodson, H.V.; Perez, F.; Ronnholm, R. Golgi apparatus-cytoskeleton interactions. In:Berger EG, Roth J, editors. The Golgi apparatus. Basel'Birkhauser.179-94; 1997.
    [115]Barr, F. A.; Egerer, J. Golgi positioning:are we looking at the right MAP? J. Cell Biol. 168:993-998; 2005.
    [116]Storrie, B.; Yang, W. Dynamics of the inter-phase mammalian Golgi complex as revealed through drugs producing reversible Golgi disassembly. Biochim. Biophys. Acta. Mol. Cell Res. 1404:127-137; 1998.
    [117]. Eilers, U.; Klumperman, J.; Hauri, H-P. Nocodazole, a microtubule-active drug, interferes with apical protein delivery in cultured intestinal epithelial cells (caco-2). J. Cell Biol.108:13-22; 1989.
    [118]Eiserich, J. P.; Este'vez, A. G.; Bamberg, T. V.; Ye, Y. Z.; Chumley, P. H.; Beckman, J. S.; Freeman, B. A.; Microtubule dysfunction by posttranslational nitrotyrosination of a-tubulin:A nitric oxide-dependent mechanism of cellular injury. Proc. Natl. Acad. Sci. USA.96:635-6370; 1999.
    [119]Tomimoto, H.; Yanagihara, T. Electron microscopic investigation of the cerebral cortex after cerebral ischemia and reperfusion in the gerbil. Brain. Res.598:87-97; 1992.
    [120]Tomimoto, H; Yanagihara, T. Immunoelectron microscopic study of tubulin and microtubule-associated proteins after transient cerebral ischemia in gerbils. Acta. Neuropathol. 84:394-399; 1992.
    [121]Mukherjee, S.; Chiu, R.; Leung, S. M.; Shields, D. Fragmentation of the Golgi apparatus:an early apoptotic event independent of the cytoskeleton. Traffic 8:369-378; 2007.
    [122]Chiu, R.; Novikov, L.; Mukherjee, S.; Shields, D. A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J. Cell Biol.159:637-648; 2002.
    [123]Lane, J. D.; Lucocq, J.; Pryde, J.; Barr, F. A.; Woodman, P. G.; Allan, V. J.; Lowe, M. Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J. Cell Biol.156:495-509; 2002.
    [124]Lowe, M.; Lane, J. D.; Woodman, P. G.; Allan, V. J. Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J. Cell Sci.117:1139-1150; 2004.
    [125]Walker, A.; Ward, C.; Sheldrake, T. A.; Dransfield,I.; Rossi, A. G.; Pryde, J. G.; Haslett, C. Golgi fragmentation during Fas-mediated apoptosis is associated with the rapid loss of GM130. Biochem. Biophys. Res. Commun.316:6-11; 2004.
    [126]Braga, M.; Hikim, A. P. S.; Datta, S.; Ferrini, M. G.; Brown, D.; Kovacheva, E. L.; Gonzalez-Cadavid, N. F.; Sinha-Hikim,I. Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 13:822-832; 2008.
    [127]Tamm, C.; Zhivotovsky, B.; Ceccatelli, S. Caspase-2 activation in neural stem cells undergoing oxidative stress-induced apoptosis, APOPTOSIS.13:354-363; 2008.
    [128]Kim, K. W.; Ha, K. Y.; Lee, J. S.; Rhyu, K. W. An, H. S.; Woo, Y. K. The apoptotic effects of oxidative stress and antiapoptotic effects of caspase inhibitors on rat notochordal cells. SPINE 32:2443-2448; 2007.
    [129]Marques, C. A.; Steiner, B.; Haass, C.; Muller, W. E.; Eckert, A. Increased caspase-2,-3 and-8 activation in PC 12 cells expressing Alzheimer mutations after exposure to oxidative stress. N-S. Arch. Pharmacol.365:85-85; 2002.
    [130]Hampton, M. B.; Fadeel, B.; Orrenius, S. Redox Regulation of the Caspases during Apoptosis. Ann. N. Y. Acad. Sci.854:328-335 (1998)
    [131]Hampton, M. B.; Orrenius, S. Dual regulation of caspase activity by hydrogen peroxide: Implications for apoptosis. FEBS Lett.414:552-556; 1997.
    [132]Kaufman, R. J. Stress signaling from the lumen of the endoplasmic reticulum:Coordination of gene transcriptional and translational controls. Genes Dev.13:1211-1233; 1999.
    [133]Yoneda, T.; Imaizumi, K.; Oono, K.; Yui, D.; Gomi, F.; Katayama, T.; Tohyama, M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276:13935-13940; 2001.
    [134]Rutkowski, D. T.; Kaufman, R. J. A trip to the ER:coping with stress. Trends Cell Biol. 14:20-28; 2004.
    [135]Dejeans, N.; Tajeddine, N.; Beck, R.; Verrax, J.; Tape, H.; Gailly, P.; Calderon, P. B. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells. Biochem. Pharmacol.79:1221-1230; 2010.
    [136]Chen, L.; Gao, X. Neuronal apoptosis induced by endoplasmic reticulum stress. Neurochem. Res.27:891-898; 2002.
    [137]Graves, T. K.; Patel, S.; Dannies, P. S.; Hinkle, P. M. Misfolded growth hormone causes fragmentation of the Golgi apparatus and disrupts endoplasmic reticulum-to-Golgi traffic. J. Cell Sci. 114:3685-94; 2001.
    [138]Matsuda, D.; Nakayama, Y.; Horimoto, S.; Kuga, T.; Ikeda, K.; Kasahara, K.; Yamaguchi, N. Involvement of Golgi-associated Lyn tyrosine kinase in the translocation of annexin Ⅱ to the endoplasmic reticulum under oxidative stress. Exp. Cell Res.312:1205-1217; 2006.
    [139]Liazoghli, D.; Perreault, S.; Micheva, K. D.; Desjardins, M.; Leclerc, N. Fragmentation of the Golgi apparatus induced by the overexpression of wild-type and mutant human Tau forms in neurons. Am. J. Pathol.166:1499-1514; 2005.
    [140]Merrill, A. H. Jr.; Jones, D. D. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim. Biophys. Acta.1044:1-12; 1990.
    [141]Futerman, A. H.; Stieger, B.; Hubbard, A. L.; Pagano, R. E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatu. J. Biol.Chem. 265:8650-8657; 1990.
    [142]Jeckel, D.; Karrenbauer, A.; Birk, R.; Schmidt, R. R.; Wieland, F. Sphingomyelin is synthesized in the cis Golgi. FEBS Lett.261:155-157; 1990.
    [143]Schweizer, A.; Clausen, H.; van Meer, G.; Hauri, H. P. Localization of O-glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum-Golgi intermediate compartment. J. Biol. Chem.269:4035^4041; 1994.
    [144]Tomiuk, S.; Zumbansen, M.; Stoffel, W. Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J. Biol. Chem.275:5710-5717; 2000.
    [145]Hanada, K..; Kumagai, K..; Yasuda, S.; Miura, Y.; Kawano, M.; Fukasawa, M.; Nishijima, M. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803-809; 2003.
    [146]Billis, W.; Fuks, Z.; Kolesnick, R. Signaling in and regulation of ionizing radiation-induced apoptosis in endothelial cells. Recent Prog. Horm. Res.53:85-92; 1998.
    [147]Goldkorn, T.; Balaban, N.; Shannon, M.; Chea, V.; Matsukuma, K.; Gilchrist, D.; Wang, H.; Chan, C. H2O2 acts on cellular membranes to generate ceramide signaling and initiate apoptosis in tracheobronchial epithelial cells. J. Cell Sci.111:3209-3220; 1998.
    [148]Takeda, Y.; Tashima, M.; Takahashi, A.; Uchiyama, T.; Okazaki, T. Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J. Biol. Chem.274:10654-10660; 1999.
    [149]Yoshimura, S.; Banno, Y.;Nakashima, S.; Hayashi, K.; Yamakawa, H.; Sawada, M.; Sakai, N.; Nozawa, Y. Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC12 cell death. J. Neurochem.73:675-683; 1999.
    [150]Hernandez, O. M.; Discher, D. J.; Bishopric, N. H.; Webster, K. A. Rapid activation of neutral sphingomyelinase by hypoxiareoxygenation of cardiac myocytes. Circ. Res.86:198-204; 2000.
    [151]. Cutler, R. G.; Kelly, J.; Storie, K.; Pedersen, W. A.; Tammara, A.; Hatanpaa, K.; Troncoso, J. C.; Mattson, M. P. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101:2070-2075; 2004.
    [152]Lovell, M. A.; Ehmann, W. D.; Mattson, M. P.; Markesbery, W. R. Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer's disease. Neurobiol. Aging.18:457-461; 1997.
    [153]Denis, U.; Lecomte, M.; Paget, C.; Ruggiero, D.; Wiernsperger, N.; Lagarde, M. Advanced glycation end-products induce apoptosis of bovine retinal pericytes in culture:involvement of diacylglycerol/ceramide production and oxidative stress induction Free Radic. Biol. Med. 33:236-247; 2002.
    [154]Andrieu-Abadie, N.; Gouaze, V.; Salvayre, R.; Levade, T. Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic. Biol. Med.31:717-728; 2001.
    [155]Dbaibo, G. S.; Pushkareva, M. Y.; Rachid, R. A.; Alter, N.; Smyth, M. J.; Obeid, L. M.; Hannun, Y. A. p53-dependent ceramide response to genotoxic stress. J. Clin. Invest.102:329-339; 1998.
    [156]Yoshimura, S.; Banno, Y.; Nakashima, S.; Hayashi, K.; Yamakawa, H.; Sawada, M.; Sakai, N.; Nozawa, Y.; Vitamin, E. Regulates SMase activity, GSH levels, and inhibits neuronal death in stroke-prone spontaneously hypertensive rats during hypoxia and reoxygenation. J. Neurochem. 73:675-683; 1999.
    [157]Zhou, Y.; Atkins, J. B.; Rompani, S. B.; Bancescu, D. L.; Petersen, P.; Tang, H.; Zou, K.; Stewart, S. B.; Zhong, W. The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis. Cell 129:163-178; 2007.
    [158]Wilden,P. A.; Pessin, J. E.; Biochem, J. Differential sensitivity of the insulin-receptor kinase to thiol and oxidizing agents in the absence and presence of insulin. Biochem J.245:325-331; 1987.
    [159]Roder, J. C.; Helfand, S. L.; Werkmeister, J.; McGarry, R.; Beaumont, T. J.; Duwe, A. Oxygen intermediates are triggered early in the cytolytic pathway of human NK cells. Nature 298:569-572; 1982.
    [160]Rpshchupkin, D. I.; Berzhitskaia, V. V.; Murina, M. A. Difference in inhibitory actions of products of the myeloperoxidase- catalyzed reaction on initial aggregation of activated platelets. Biofizika 43:323-328; 1998.
    [161]Gaut, J. P.; Byun, J.; Tran, H. D.; Lauber, W. M.; Carroll, J. A.; Hotchkiss, R. S.; Belaaouaj, A.; Heinecke, J. W. Myeloperoxidase produces nitrating oxidants in vivo. Clin. Invest. 109:1311-1319; 2002.
    [162]Kubo, S.; Kitami, T.; Noda, S.:Shimura, H.; Uchiyama, Y.; Asakawa, S.; Minoshima, S.; Shimizu, N.; Mizuno, Y.; Hattori, N. Parkin is associated with cellular vesicles. J. Neurochem. 78:42-54; 2001.
    [163]Hyun, D. H.; Lee, M.; Hattori, N.; Kubo, S.; Mizuno, Y.; Halliwell, B.; Jenner, P. Effect of Wild-type or Mutant Parkin on Oxidative Damage, Nitric Oxide, Antioxidant Defenses, and the Proteasome. J. Biol. Chem.277:28572-28577; 2002
    [164]Palacino, J. J.; Sagi, D.; Goldberg, M. S.; Krauss, S.; Motz, C.; Wacker, M.; Klose, J.; Shen, J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279:18614-22; 2004.
    [165]Emster, L.; Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta.1271:195-204; 1995.
    [166]Crane, F. L.; Morre, D. J. Evidence for coenzyme Q function in Golgi membranes. In:Folkers, K..; Yamamura, Y. eds. Biomedical and clinical aspects of coenzyme Q. Amsterdam:Elsevier; 1977: 3-14.
    [167]Frei, B.; Kim, M. C.; Ames, B. N. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA 87:4879-4883; 1990.
    [168]Kontush, A.; Huhner, C.; Finckh, B.; Kohlschutter, A.; and Beisiegel, U. Antioxidative activity of ubiquinol-10 at physiologic concentrations in human low density lipoprotein. Biochim. Biophys. Acta.1258:177-187; 1995.
    [169]Seballe, B; Poole, R. K. Ubiquinone limits oxidative stress in Escherichia coli. Microbiol. 145:1817-1830; 1999.
    [170]Do, T. Q.; Schultz, J. R.; Clarke, C. F. Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA 93:7534-7539; 1996.
    [171]Suzuki, K.; Okada, K.; Kamiya, Y.; Zhu, X-F.; Nakagawa, T.; Kawamukai, M.; and Matsuda, H. Analysis of the decaprenyl diphosphate synthase (dps) gene in fission yeast suggests a role of ubiquinone as an antioxidant. J. Biochem.121:49-505; 1997.
    [172]Lillig, C.H.; Berndt, C.; Holmgren, A. Glutaredoxin systems. Biochim. Biophys. Acta-Gen. Sub.1780:1304-1317; 2008.
    [173]Holmgren, A.; Johansson, C.; Berndt, C.; Lonn, M E.; Hudemann, C.; Lillig, C. H. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans.33:1375-1377; 2005.
    [174]Mesecke, N.; Spang, A.; Deponte, M.; Herrmann, J. M. A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance. Mol. Biol. Cell.19:2673-2680; 2008.
    [175]Farquhar, G.; Palade, G. The Golgi apparatus (complex):from artifact to center stage. J. Cell Biol.91:77-103; 1981.
    [176]Mogelsvang, S.; Marsh, B. J.; Ladinsky, M. S.; Howell, K. E. Predicting function from structure:3D structure studies of the mammalian Golgi complex. Traffic 5:338-345; 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700