IL-17诱导炎性因子及iNOS表达参与宿主抗衣原体免疫保护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     针对IL-17对某些细胞因子/趋化性细胞因子及一氧化氮合成酶(inducible nitric oxide synthase, iNOS)表达的调节,探讨IL-17在小鼠沙眼衣原体肺炎菌株(Chlamydia muridarum, Cm)呼吸道感染中的作用及机制。
     方法:
     BALB/c小鼠鼻腔吸入1×103 IFU Cm,建立小鼠Cm呼吸道感染模型。于感染后不同天数处死小鼠。利用RT-PCR及EL ISA技术检测小鼠肺组织IL-17mRNA及蛋白的表达,并利用细胞内细胞因子染色技术检测小鼠脾脏IL-17+ CD4+T细胞即Th17细胞百分率,确定IL-17及Th17在小鼠衣原体肺感染中的产生及诱导。利用抗鼠IL-17单克隆抗体鼻腔吸入中和Cm感染小鼠内源性IL-17,以抗鼠IL-17单克隆抗体独特型(IgG2a)作为对照。通过检测小鼠体重变化、肺组织衣原体生长及病理学改变,确定IL-17在衣原体肺感染中的保护作用。对支气管肺泡灌洗液内炎症细胞进行染色及分类计数,确定IL-17对肺组织浸润的炎细胞类型的影响。最后,利用RT-PCR检测IL-17对肺组织及小鼠肺上皮细胞内细胞因子/趋化性细胞因子及iNOS表达的影响,探讨IL-17在小鼠衣原体肺感染中的保护作用机制。
     结果:
     Cm呼吸道感染可诱导小鼠肺组织IL-17产生及脾脏Th17细胞扩增。与给予独特型抗体IgG2a的对照组比较,IL-17中和小鼠显示严重的疾病状态,主要包括:明显的体重降低、肺组织衣原体持续大量生长及更为严重的肺组织病理学改变。IL-17中和小鼠支气管肺泡灌洗液中性粒细胞(PMN)百分率及绝对数量显著下降,而淋巴及单核细胞百分率及绝对数量升高。IL-17中和小鼠肺组织与PMN趋化作用相关的因子,MIP-2及IL-6 mRNA表达显著下降,而T细胞趋化因子RANTES表达上调;体外实验显示,IL-17可协同TNF-a显著上调小鼠肺上皮细胞(TC-1) MIP-2及IL-6表达,但下调TNF-a诱导的RANTES表达。此外,IL-17可显著上调小鼠肺组织及TC-1细胞iNOS表达,并增强细胞内NO产生,参与细胞内抗衣原体反应。
     结论:
     衣原体呼吸道感染可诱导小鼠体内IL-17产生及Th17细胞扩增。IL-17在衣原体呼吸道感染中发挥重要保护作用。其作用机制包括:IL-17调节细胞因子/趋化性细胞因子在小鼠肺组织,尤其是肺上皮细胞内的表达,诱导不同类型炎细胞在肺组织浸润,参与炎性应答的调节;其次,IL-17通过增强衣原体感染小鼠肺组织及肺上皮细胞iNOS表达及NO产生,直接参与细胞内衣原体抑制。
Objective:
     To investigate the role and mechanism of IL-17 during Chlamydia muridarum (Cm) infection.
     Methods:
     BALB/c mice were inoculated intranasally with 1×103 inclusion-forming units (IFUs) of Cm to induce the chlamydia pneumonitis. The mice were killed at the different days following infection. In order to determine the production of IL-17 and Th17 expansion, RT-PCR was used to detect the mRNA expression of IL-17 in the lung, and intracellular cytokine staining was used to detect the expansion of IL-17+ CD4+ T (Th17+). Anti-mouse IL-17 mAb was used to neutralize endogenous IL-17 following Cm infection. To evaluate the role of IL-17 during infection, the body weight change, the growth of organisms and histopathology in the lung were monitored and detected. A differential cell count in bronchoalveolar lavage (BAL) fluids was used to initially evaluate the changes of types of infiltrated inflammatory cells influenced by IL-17. Finally, RT-PCR was used to detect the expression of cytokine/chemokines and iNOS in the lung and the mouse pulmonary epithelial cell line (TC-1), to investigate the role mechanism of IL-17 during chlamydial infection.
     Results:
     Intranasal infection with 1×103 IFU in mice significantly induced IL-17 production in the lung and Th17 expansion in spleen cells. IL-17-neutralized mice exhibited a more severe state of disease, including greater body weight loss, higher organism growth, and much more severe pathological changes in the lung compared with IgG2a-treated mice. The percentage of neutrophils in the IL-17-neutralized mice was significantly lower than IgG2a-treated mice in BAL cells (p<0.001), and the percentages of lymphocyte and monocyte were relatively higher in the IL-17-neutralized mice than IgG2a-treated mice (p<0.01). Compared with IgG2a-treated mice, the expression of MIP-2 and IL-6 in the lung of IL-17-neutralized mice significantly decreased, however, the expression of RANTES significantly increased. IL-17 significantly increased TNF-a-induced MIP-2 and IL-6 expression in pulmonary epithelial cells but repressed RANTES expression. The expression of iNOS in the lung of IL-17-neutralized mice was significantly lower than that of IgG2a-treated mice. IL-17 potently induced IFN-γmediated iNOS expression in un-infected and Cm-infected pulmonary epithelial cells, and significantly increased IFN-γmediated intracellular Cm inhibition.
     Conclusion:
     Chlamydial lung infection can induce IL-17 production and Th17 expansion. IL-17 contributes to immune protection against chlamydial lung infection. The mechanisms include that IL-17 affects types of infiltrated inflammatory cells through regulating corresponding cytokine/chemokine expression, and IL-17 directly participates in inhibition on intracellular Cm, partially through enhancing iNOS expression and NO production in the lung of mice following chlamydial infection.
引文
[1]Schachter J, Hook EW, McCormack WM, et al. Ability of the digene hybrid capture Ⅱ test to identify Chlamydia trachomatis and Neisseria gonorrhoeae in cervical specimens [J]. J Clin Microbiol,1999,37(4):3668-71.
    [2]Laga, M., A. Manoka, M. Kivuvu, et al. Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women:results from a cohort study [J]. AIDS (Phila.),1993,7(8):95-102.
    [3]Ho, J.L., S. He, et al. Neutrophils from human immunodeficiency virus (HIV)-seronegative donors induce HIV replication from HIVinfected patients' mononuclear cells and cell lines:an in vitro model of HIV transmission facilitated by Chlamydia trachomatis [J]. J. Exp. Med,1995,181(6):1493-1505.
    [4]Barteneva N, Theodor I, Peterson EM, et al. Role of Neutrophils in Controlling Early Stages of a Chlamydia trachomatis Infection[J]. Infect Immun,1996, 64(8):4830-3.
    [5]Buendia AJ, De Oca RM, Navarro JA, et al. Role of polymorphonuclear neutrophils in a murine model of Chlamydia psittaci-induced abortion[J]. Infect Immun,1999,67(3):2110-6.
    [6]Scapini P, Lapinet-Vera JA, Gasperini S, et al. The neutrophil as a cellular source of chemokines[J]. Immunol Rev,2000,177(2):195-203.
    [7]Cassatella MA, Meda L, Gasperini S, et al. Interleukin-12 production by human polymorphonuclear leukocytes[J]. Eur. J.Immunol,1995,25(1):1-5.
    [8]Bank U, Ansorge S. More than destructive:neutrophil-derived serine proteases in cytokine bioactivity control [J]. J Leukoc Biol,2001,69(3):197-206.
    [9]Murphey C, Murthy AK, Meier PA, et al. The protective efficacy of chlamydial protease-like activity factor vaccination is dependent upon CD4+ T cells [J]. Cell Immunol,2006,242(2):110-7.
    [10]Igietseme JU. The molecular mechanism of T-cell control of Chlamydia in mice: role of nitric oxide [J]. Immunology,1996,87(5):1-8.
    [11]Li W, Murthy AK, Guentzel MN, et al. Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genita Chlamydia muridarum infection[J]. J Immunol,2008,180(1):3375-82.
    [12]Rodriguez N, Lang R, Wantia N, et al. Induction of iNOS by Chlamydophila pneumoniae requires MyD88-dependent activation of JNK [J]. J Leukoc Biol, 2008,84(7):1585-93.
    [13]Ramsey KH, Miranpuri GS, Sigar IM, et al. Chlamydia trachomatis persistence in the female mouse genital tract:inducible nitric oxide synthase and infection outcome [J]. Infect Immun,2001,69(6):5131-7.
    [14]Hassanain HH, Chon SY, Gupta SL. Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-gamma and -alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor [J]. J Biol Chem,1993,268(7): 5077-84.
    [15]Roshick C, Wood H, Caldwell HD, et al. Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells [J]. Infect Immun,2006,74(6):225-38.
    [16]Oppenheim JJ, Zachariae CO, Mukaida N, et al. Properties of the novel proinflammatory supergene "intercrine" cytokine family[J]. Annu Rev Immunol, 1991,9(4):617-48.
    [17]Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines [J]. Adv Immunol,1994,55(2):97-179.
    [18]Rollins BJ. Chemokines [J]. Blood,1997,90(8):909-928.
    [19]Taub DD, Oppenheim JJ. Chemokines, inflammation and the immune system. Ther [J]. Immunol,1994, 1(7):229-237.
    [20]Fossiez, F., O. Djossou, P. Chomarat, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines [J]. J. Exp. Med, 1996,183(6):2593-2603.
    [21]Spriggs, M. K. Interleukin-17 and its receptor [J]. J. Clin. Immunol,1997,17(6): 366-369.
    [22]Yao, Z., S. L. Painter, W. C. Fanslow. Human IL-17:a novel cytokine derived from T cells[J]. J. Immunol,1995,155(3):5483-5486.
    [23]Stark, M. A., Y. Huo, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17[J]. Immunity,2005,22(4):285-294.2008, 38(6):699-706.
    [24]Moseley, T. A., D. R. Haudenschild, et al. Interleukin-17 family and IL-17 receptors [J]. Cytokine Growth Factor Rev,2003,14(3):155-174.
    [25]Jovanovic, D. V., J. A. Di Battista, J. Martel-Pelletier, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-1 and TNF-a, by human macrophages [J]. J. Immunol,1998,160(7):3513-3521.
    [26]Laan, M., Z. H. Cui, H. Hoshino, et al. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways[J].J. Immunol,1999, 162(8):2347-2352.
    [27]Schwarzenberger, P., W. Huang, P. Ye, et al. Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis [J]. J. Immunol,2000,164(5):4783-4789.
    [28]Miljkovic D, Trajkovic V. Inducible nitric oxide synthase activation by interleukin-17[J]. Cytokine Growth Factor Rev,2004,15(9):21-32.
    [29]Ye, P., P. B. Garvey, P. Zhang. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection [J]. Am. J. Respir. Cell Mol.Biol,2001,25(6): 335-340.
    [30]Dubin, P. J., and J. K. Kolls. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice [J]. Am. J. Physiol,2007, 292(6):L519-L528.
    [31]Chung, D. R., D. L. Kasper, et al. CD4+ T cells mediate abscess formation in intraabdominal sepsis by an IL-17-dependent mechanism [J]. J. Immunol,2003, 170(8):1958-1963.
    [32]Umemura M, Yahagi A, Hamada S, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection[J]. J Immunol,2007,178(6):3786-96.
    [33]Matthew D, Hensley LL, Kawula TH, et al. Respiratory Francisella tularensis Live Vaccine Strain Infection Induces Th17 Cells and Prostaglandin E2, Which Inhibits Generation of Gamma Interferon-Positive T Cells [J]. Infect Immun,2008, 76(4):2651-9.
    [34]Bai H, Cheng J, Gao X, et al. IL-17/Thl7 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function [J]. J Immunol,2009,183(9):5886-95.
    [35]Ye, P., Garvey, P. B., Zhang, P. et al. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection [J]. Am. J.Respir. Cell Mol. Biol,2001, 25(4):335-343.
    [36]Witowski, J., K. Pawlaczyk, A. Breborowicz, et al. IL-17stimulates intraperitoneal neutrophil infiltration through the release of GRO chemokine from mesothelial cells [J]. J. Immunol,2000,165(3):5814.
    [37]Dubin, P.J.,and Kolls,J.k. IL-23 mediates inflammatory resposnse to mucoid Pserdomonas aeruginosa lung infection in mice [J]. Am.J.Physiol. Lung Cell.Mol.Physiol,2007,292(7):L519-L528.
    [38]Huang, W., Na, L., Fidel, et al. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice [J]. J. Infect. Dis,2004, 190(5):624-632.
    [39]Sieve, A. N., K. D. Meeks, et al. A novel IL-17-dependent mechanism of cross protection:respiratory infection with Mycoplasma protects against a secondary Listeria infection [J]. Eur. J. Immunol,2009,39(4):426-438.
    [40]Lubberts E., Koenders M. I., van den Berg W. B et al. The role of T cell interleukin-17 in conducting destructive arthritis:lesson form animals models [J]. Arthritis Res,2005,7(5):29-37.
    [41]Kotake S., Udagawa N., Takahashi N., et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis [J]. J. Clin. Invest,2005,103(7):1345-1352.
    [42]Lubberts E., Joosten L. A., Oppers B., et al. IL-1-independent role of IL-17 in synovial inflammation and joint destructio during collagen-induced arthritis [J]. J. Immunol.,2001,167(4):1004-1013.
    [43]Kidney JC, Proud D. Neutrophil transmigration across human airway epithelial monolayers:mechanisms and dependence on electrical resistance [J]. Am J Respir Cell Mol Biol,2000,23(5):389-95.
    [44]Miyamoto M, Prause O, Sjostrand M, et al. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways[J]. J Immunol,2003,170(4):4665-72.
    [45]Quinton LJ, Jones MR, Robson BE, et al. Alveolar Epithelial STAT3, IL-6 Family Cytokines, and Host Defense during Escherichia coli Pneumonia [J]. Am J Respir Cell Mol Biol.2008,38(6):699-706.
    [46]Buchholz KR, Stephens RS. The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection [J]. Infect Immun,2007,75(4): 5924-9.
    [47]Zhou X, Chen Q, Moore J. Critical role of the interleukin-17/interleukin-17 receptor axis in regulating host susceptibility to respiratory infection with Chlamydia species [J]. Infect Immun,2009,77(8):5059-70.
    [48]Barr EL, Ouburg S, Igietseme JU, et al. Host inflammatory response and development of complications of Chlamydia trachomatis genital infection in CCR5-deficient mice and subfertile women with the CCR5delta32 gene deletion[J]. J Microbiol Immunol Infect 2005,38(4):244-54.
    [49]Taguchi M, Sampath D, Koga T, et al. Patterns for RANTES secretion and intercellular adhesion molecule 1 expression mediate transepithelial T cell traffic based on analyses in vitro and in vivo[J]. J Exp Med,1998,187(6):1927-40.
    [50]Schall TJ, Bacon K, Toy KJ, et al. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES [J]. Nature,1990, 347(3):669-71.
    [51]Andoh A, Fujino S, Bamba S, et al. IL-17 selectively down-regulates TNF-alpha-induced RANTES gene expression in human colonic subepithelial myofibroblasts [J]. J Immunol,2002,169(9):1683-7.
    [52]Taguchi M, Sampath D, Koga T, et al. Patterns for RANTES secretion and intercellular adhesion molecule 1 expression mediate transepithelial T cell traffic based on analyses in vitro and in vivo[J]. J Exp Med,1998,187(6):1927-40.
    [53]Schnyder-Candrian S, Togbe D, Couillin I, et al. Interleukin-17 is a negative regulator of established allergic asthma[J]. J Exp Med,2006,203(7):2715-25.
    [54]Miljkovic D, Cvetkovic I, Momcilovic M, et al. Interleukin-17 stimulates inducible nitric oxide synthase-dependent toxicity in mouse beta cells [J]. Cell Mol Life Sci,2005,62(6):2658-68.
    [55]Igietseme JU. The molecular mechanism of T-cell control of Chlamydia in mice: role of nitric oxide [J]. Immunology,1996; 87(1):1-8.
    [56]Peterson EM, Fennie CW, Czarniecki CW. The anti-chlamydial and anti-proliferative activities of recombinant murine interferon-gamma are not dependent on tryptophan concentrations [J]. J Immunol,1985,135(8):4198-200.
    [57]van der Veen RC. Nitric oxide and T helper cell immunity [J]. Int Immunopharmacol,2001,1(9):1491-500.
    [58]MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage Fuction [J].Ann Rev Immunol,1997,15(8):323-50.
    [59]Bogdan C. Nitric oxide and the immune response [J].Nat Immunol,2001,2(5): 907-17.
    [60]Goro Matsuzaki, Masayuki Umemura. Interleukin-17 as an effector molecule of innate and acquired immunity against infections[J]. Microbiol. Immunol,2007, 51(12):1139-1147.
    [61]Nicholas A.Siciliano, Jason A. Skinner, et al. Bordetella bronchiseptica modulates macrophage phenotype leading to the inhibition of CD4+ Tcell proliferation and the initiation of a Th17 immune response[J]. J. Immunol., 2006,177:7131-7138.
    [62]Michael G. Kattah, Michael T. Wong, Matthew D. Yocu, et al. Cyokines Secreted in response to Toll-like receptor ligand stimulation modulated differentiation of human Th17 cells[J]. Arthritis rheumatism,2008, 58(6):1619-1629.
    [63]Michel. ML, Keller AC, Fujio M, et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia [J]. The journal of experimental medicine,2007,204(5):995-1001.
    [64]Shibata, K., H. Yamada, H. Hara, et al.Resident Vδ1+γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production[J]. J. Immunol.178(5):4466-4472.
    [1]Ferber IA, Brocke S, Taylor-Edwards C, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE) [J]. J Immunol,1996,1(3):5-7.
    [2]Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis [J]. J Immunol, 2006, 1(2):566-73.
    [3]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cellsregulates tissue inXammation by producing interleukin 17[J]. Nat Immunol,2005, 11 (3):1133-41.
    [4]Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inXammation[J]. J Exp Med,2005, 2(6):233-40.
    [5]Lock C, Hermans G, Pedotti R, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis [J]. Nat Med,2002,5(4):500-8.
    [6]Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors[J].Cytokine Growth Factor Rev,2003,2(7):155-74.
    [7]GaVen SL, Kramer JM, Yu JJ, et al. The IL-17 cytokine family[J]. Vitam Horm, 2006,74(8):255-82.
    [8]Moseley, T. A., D. R. Haudenschild, et al. Interleukin-17 family and IL-17 receptors [J]. Cytokine & growth factor reviews,2003,14(8):155-174.
    [9]Shen, F., S.L.Gaffen.Structure-function relationships in the IL-17 receptor: Implications for signal transduction and therapy [J]. Cytokine in press,2007, 2006,74(8):255-82.
    [10]Shen, F., M. J. Ruddy, P. Plamondon, et al. Cytokines link osteoblasts and inflammation:microarray analysis of interleukin-17- and TNFalpha-induced genes in bone cells [J]. Journal of leukocyte biology,2005,77(9):388-399.
    [11]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inXammation by producing interleukin 17[J]. Nat Immunol,2005, 11(6):1133-41.
    [12]Bettelli E, Carrier Y, Gao W, et al.Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells [J]. Nature 2006, 441(2):235-8.
    [13]Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-β induces development of the TH17 lineage [J]. Nature,2006,441(4):231-4.
    [14]Veldhoen M, Hocking RJ, Atkins CJ, et al.TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells [J].Immunity,2006,24(7):179-89.
    [15]Ivanov Ⅱ, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORyt directs the differentiation program of proinflammatory IL-17+ T helper cells [J].Cell,2006,126(2):1121-33.
    [16]Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells [J].Nature,2007,448(8):480-3.
    [17]Sudeepta Aggarwal, Nico Ghilardi, Ming-Hong Xie, et al. GurneyInterleukin-23 Promotes a Distinct CD4 T Cell Activation State Characterized by the Production of Interleukin-17[J].The journal of biological chemistry,2003, 223(1):1910-1914.
    [18]Bettelli, E., Y. Carrier, W. Gao, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature,2006, 441(8):235-238.
    [19]Mangan, P. R., L. E. Harrington, D. B. O'Quinn, et al. Transforming growth factor-β induces development of the TH17 lineage [J]. Nature,2006,441(7): 231-234.2006.
    [20]Veldhoen M, Hocking RJ, Atkins CJ, et al.TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells [J]. Immunity,2006,24(7):179-89.
    [21]Michael G. Kattah, Michael T. Wong, Matthew D. Yocum, et al. Cytokines Secreted in Response to Toll-like Receptor Ligand Stimulation Modulate Differentiation of Human Th17 Cells[J]. Arthritis Rheum,2008,58(6):1619-29.
    [22]Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17[J]. Nat.Immunol,2007,8(5):630-638
    [23]Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ eVector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol,2005,11(8):1123-32.
    [24]Hans j.p.m.koenen, Ruben 1 Smeets, paul M Vink, et al. Human CD25high Foxp3 Pos regulatory T-cells differentiate into IL-17 producing cells[J]. blood,2008,435 (8):245-254.
    [25]Hiroyasu Kidoya, Masayuki Umemura,Takaya Kawabe, et al. Fas Ligand Induces Cell-Autonomous IL-23 Production in Dendritic Cells, a Mechanism for Fas Ligand-Induced IL-17 Production [J]. J. Immunol,2005,175(7):8024-8031.
    [26]Lockhart, E., A. M. Green, J. L. Flynn. IL-17 production is dominated by γδT cells rather than CD4 T cells during Mycobacterium tuberculosis infection [J]. J. Immunol,2006,177(7):4662-4669.
    [27]Spriggs, M.K. Interleukin-17 and its receptor [J]. J. Clin. Immunol,1997,17(4): 366-369.
    [28]Greg Parsonage, Andrew Filer, Magdalena Bik, et al. granulocyte-macrophage colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblast activation by IL-17 and TNFalpha[J]. Arthritis Res Ther, 2008,10(2):R47.
    [29]Tetsuya Hirata, Yutaka Osuga, Kahori Hamasaki, et al. Interleukin (IL)-17A Stimulates IL-8 Secretion, Cyclooxygensase-2 Expression, and Cell Proliferation of Endometriotic Stromal Cells [J]. Endocrinology,2003,149(3):1260-1267.
    [30]Albanesi C, Cavani A, Girolomoni G, et al. IL-17 is produced by nickelspecific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes:synergistic or antagonist effects with IFN-gamma and TNF-alpha [J]. J Immunol,1999,162(6):494-502.
    [31]McAllister F, Henry A, Kreindler JL, et al. Role of IL-17A, IL-17F,and the IL-17 receptor in regulating growth-related oncogenealpha and granulocyte colony- stimulating factor in bronchial epithelium:implications for airway inflammation in cystic fibrosis[J]. J Immunol,2005,175(5):404-12.
    [32]Matthew A. Stark, Yuqing Huo, et al. Phagocytosis of Apoptotic Neutrophils Regulates Granulopoiesis via IL-23 and IL-17 [J]. Immunity,2001, 22(2):285-294.
    [33]Higgins SC, Jarnicki AG, Lavelle EC, et al. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis:role of IL-17-producing T cells[J].Immunity,2006,177(11):7980-9.
    [34]Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides [J]. J Exp Med,2006,203(5):2271-2281.
    [35]Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol,2007, 8(3):950-7.
    [36]Nograles KE, Zaba LC, Guttman-Yassky E, et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways [J]. British Journal of Dermatology,2008,203(5):1365-2133.
    [37]Inoue D, Numasaki M, Watanabe M, et al. IL-17A promotes the growth of airway epithelial cells through ERK-dependent signaling pathway [J]. Biochem Biophys Res Commun,2006,347(5):852-858.
    [38]Djordje Miljkovic, Vladimir Trajkovic. Inducible nitric oxide synthase activation by interleukin-17[J].Cytokine Growth Factor Rev,2004,15(1):21-32.
    [39]Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth [J]. Nature,2006,442(2):461-465.
    [40]Numasaki M, Fukushi J, Ono M, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood,2003,101:2620-2627.
    [41]Arici A, Seli E, Zeyneloglu HB, et al. Interleukin-8 induces proliferation of endometrial stromal cells:a potential autocrinegrowth factor[J]. J Clin Endocrinol Metab,1998,83(2):1201-1205.
    [42]Sato,K.,Suematsu,A.,Okamoto,K., et al.Th17 functions as an osteoclastogenic helper T cell subet that links T cell actimation and bond destruction[J]. J.Exp.Med.,2006,203(3):2673-2682.
    [43]Ye P, Garvey PB, Zhang P, et al. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection[J]. Am J Respir Cell Mol Biol.,2001, 25(3):335-40.
    [44]Peng Ye,Fred H. Rodriguez,Suzanne Kanaly, et al. Requirement of Interleukin 17 Receptor Signaling for Lung CXC Chemokine and Granulocyte Colony-stimulating Factor Expression,Neutrophil Recruitment, and Host Defense[J]. J. Exp. Med.2001,203(3):519-527.
    [45]Doo Ryeon Chung, Dennis L. Kasper, Ronald J. Panzo, et al. CD4+ T Cells Mediate Abscess Formation in Intra-abdominal Sepsis by an IL-17-Dependent Mechanism[J].J Immunol, 2003,170(4):1958-1963.
    [46]Witowski, J., K. Pawlaczyk, A. Breborowicz, et al. IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GRO chemokine from mesothelial cells [J]. J. Immunol,2000,165(2):5849-5814.
    [47]Dubin PJ, Kolls JK. IL-23 mediates inflammatory resposnse to mucoid Pserdomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol.2007,292(2):L519-28.
    [48]Yu JJ, Ruddy MJ, Wong GC, et al. An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals [J].2007,109(9):3794-802.
    [49]Shibata, K., H. Yamada, H. Hara, et al.Resident V81+y8 T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production[J]. J. Immunol.178(5):4466-4472.
    [50]Kotake S., Udagawa N., Takahashi N., et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis [J]. J. Clin. Invest,2005,103(7):1345-1352.
    [51]Higgins SC, Jarnicki AG, Lavelle EC, et al. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis:role of IL-17-producing T cells. J Immunol,2006,177(11):7980-9.
    [52]Fedele G, Nasso M, Spensieri F, Palazzo R, et al. Lipopolysaccharides from Bordetella pertussis and Bordetella parapertussis differently modulate human dendritic cell functions resulting in divergent prevalence of Th17-polarized responses[J]. J Immunol,2008,181(1):208-16.
    [53]Nicholas A. Siciliano, Jason A. Skinner, et al.Bordetella bronchiseptica Modulates Macrophage Phenotype Leading to the Inhibition of CD4+T Cell Proliferation and the Initiation of a Th17 Immune Response[J]. The Journal of Immunology,2006,177(3):7131-7138.
    [54]Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection [J].J Immunol.2006,177(7):4662-9.
    [55]Oppmann, B., R. Lesley, B. Blom, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12[J]. Immunity,2000,13(3):715-725.
    [56]Aggarwal, S., N. Ghilardi, M. H. Xie, et al. Gurney. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. J. Biol. Chem,2003,278(4):1910-1914.
    [57]Holscher, C., R. A. Atkinson, B. Arendse, et al. A protective and agonistic function of IL-12p40 in mycobacterial infection[J].J.Immunol,2001,167(4): 6957-6966.
    [58]Cooper, A. M., A. Kipnis, J. Turner, et al. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J. Immunol,2002,168(2): 1322-1327.
    [59]Khader, S. A., J. E. Pearl, K. Sakamoto, et al. IL-23 Compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN- responses if IL-12p70 is available [J]. J. Immunol,175(7):788-795.
    [60]Yao, Z., W. C. Fanslow, M. F. Seldin, et al. Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor [J]. Immunity,1995, 3(3):811-821.
    [61]Umemura M, Yahagi A, Hamada S, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection[J]. J Immunol,2007,178(6):3786-96.
    [62]Thomas J.Scriba, Barbara Kalsdorf, Deborah-Ann Abrahams, et al. specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response [J]. J Immunol,2008,180(3):1962-70.
    [63]Peng MY, Wang ZH, Yao CY, et al. Interleukin 17-producing gamma delta T cells increased in patients with active pulmonary tuberculosis.2008,5(3):203-8.
    [64]Satoru Hamada,Masayuki Umemura,Takeru Shiono, et al. IL-17A Produced by γδ T Cells Plays a Critical Role in Innate Immunity against Listeria monocytogenes Infection in the Liver[J]. J Immunol,2008,181 (3):3456-3463.
    [65]Fortier, A. H., T. Polsinelli, S. J. Green, et al. Activation of macrophages for destruction of Francisella tularensis:identification of cytokines, effector cells, and effector molecules[J]. Infect. Immun,1992,60(4):817-825.
    [66]Woolard MD, Hensley LL, Kawula TH, et al. Respiratory Francisella tularensis Live Vaccine Strain Infection Induces Th17 Cells and Prostaglandin E2, Which Inhibits Generation of Gamma Interferon-Positive T Cells [J]. Infect Immun, 2008,76(6):2651-9.
    [67]Huang, W., Na, L., Fidel, P.L., et al. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice[J]. Infect.Dis, 2004,190(2):624-631.
    [68]Kilian Eyerich, Stefanie Foersterl, Stephanie Rombold, et al. Patients with Chronic Mucocutaneous Candidiasis Exhibit Reduced Production of Th17-Associated Cytokines IL-17 and IL-22[J].2008,139(3):549-51.
    [69]Zelante T, De Luca A, Bonifazi p, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance.Eur J Immunol.2007, 37(10):2695-706.
    [70]Silvia Bozza, Teresa Zelante, Silvia Moretti, et al. Lack of Toll IL-1R8 Exacerbates Th17 Cell Responses in Fungal Infection [J]. The Journal of Immunology,2008,180(3):4022-4031.
    [71]LeibundGut-Landmann S, Gross O, Robinson MJ, et al. F.Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17 [J]. Nat Immunol,2007,8(6):549-51.
    [72]Sato K, Yang XL, Yudate T, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance [J].2006, 281(50):38854-66.
    [73]Rouvier, E., M. Luciani, M. Mattei, et al. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene[J]. J. Immunol,1993,150(4):5445-5456.
    [74]Fossiez, F.,O. Djossou, P. Chomarat, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines [J]. J. Exp. Med, 183(3):2593-2603.
    [75]Yao, Z., W. Fanslow, M. Seidin, et al. Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor [J]. Immunity,1995, 3(6):811-821.
    [76]Andrea knappe, Christian hiller, Henk niphuis, et al.The Interleukin-17 Gene of Herpesvirus Saimiri [J]. Journal of virology,1998,23(5):5797-5801.
    [77]Patera AC, Pesnicak L, Bertin J, et al. Interleukin 17 modulates the immune response to vaccinia virus infection[J]. Virology,2002,299(1):56-63.
    [78]Shunsuke Kohyama, Satoshi Ohno, Akihiro Isoda, et al. IL-23 Enhances Host Defense against Vaccinia Virus Infection Via a Mechanism Partly Involving IL-17[J].J. Immunol.,2007,179(5):3917-3925.
    [79]Smiley KL, McNeal MM, Basu M, et al.Association of gamma interferon and interleukin-17 production in intestinal CD4+ T cells with protection against rotavirus shedding in mice intranasally immunized with VP6 and the adjuvant LT(R192G)[J].J Virol,2007,81(8):3740-8.
    [80]Sheth, R., J. Anderson, T. Sato, et al. Rotavirus stimulates IL-8 secretion from cultured epithelial cells [J]. Virology,221(4):251-259.
    [81]McNeal MM, Stone SC, Basu M, et al. IFN-gamma is the only anti-rotavirus cytokine found after in vitro stimulation of memory CD4+ T cells from mice immunized with a chimeric VP6 protein [J].Viral Immunol,2007,20(4):571-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700