若干皂甙和黄酮甙的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皂甙和黄酮甙广泛存在于天然产物中,它们是许多中草药的活性成分。利用化学合成方法建立活性天然产物类似物分子库,是筛选低毒、高效新型药物的有效手段之一。本论文完成了若干皂甙和黄酮甙的合成研究,着重于建立有效合成葡萄糖醛酸苷齐墩果烷型双糖链三萜皂甙(GOTCAB)和黄酮甙类化合物的新方法,以及解决OWS-1(缺A、B环)类似物关键步骤的合成,为筛选药物先导化合物奠定基础。
     本论文以齐墩果酸为原料,采用先选择性在28位羧基糖苷化反应,然后3位羟基糖苷化反应,最后氧化伯羟基为羧基的策略,分别以线性操作七步以28%总收率和线性操作九步以26%总收率合成了人参皂甙Ro和皂甙Ⅱ。利用PhSH/imidazole/NMP体系选择性地脱除了槲皮素衍生物4’-OH上的乙酰基,成功的制备了7-O-苄基柽柳黄素;经碱性条件下的相转移糖苷化技术首次合成了柽柳黄素3-O-新橙皮甙和异鼠李素3-O-新橙皮甙,同时发现文献报道的天然产物柽柳黄素3-O-新橙皮甙实际上为异鼠李素3-O-新橙皮甙。利用NaOH (aq.)代替K_2CO_3 (aq.)碱性体系,溴苷可以继续与受体槲皮素3位氧甙的3’-OH反应,建立了有效合成3,3’双糖链柽柳黄素和槲皮素氧甙的方法,为娑罗子黄酮甙A的全合成提供了技术支持。采用活性较高的Pd(OAc)_2-SPhos-K_3PO_4催化体系,利用Suzuki-Miyaura偶联反应,成功的在槲皮素的4’或3位接上了带有不同基团的芳香环,丰富了黄酮类化合物分子库。
     成功地构建了反式环和顺式环的OSW-1(缺A、B环)类似物,为这两个目标分子的全合成提供了关键技术。
Saponins and flavonoid glycosides have been found widely in natural products. They are the major biologically active ingredients in many chinese traditional herbs. Chemical synthesis of active analogous compounds is one of the useful strategies to screen out new low toxic and high effective medicine. In this thesis some saponins and flavonoid glycosides were synthesized with emphasis on establishing the effective synthetic routes of glucuronide oleanane-type triterpene carboxylic acid 3,28-bisdesmosides (GOTCAB) and flavnoid glycosides, and resolving the key synthetic steps of OSW-1 analogues (A-nor and B-nor). This serves as a basis for screening out lead medical compounds.
     In this thesis Ginsenoid Ro and saponin II were synthesized in linear seven steps (28% overall yield) and nine steps (26% overall yield) started from oleanolic acid. The key features of the synthesis are: attachment of the 28-glucosyl ester before assembly of the 3-O-sugar chain; elaboration of the glucoronide residue at a later stage via the TEMPO-mediated selective oxidation.
     7-O-Benzyl tamarixetin was produced successfully with PhSH/imidazole/NMP selective removal of the acetyl group on the 4’hydroxy of quercetin derivation. Tamarixetin and isorhamnetin 3-O-neohesperidoside were firstly synthesized under basic phase transfer catalysis (PTC) condition. The natural flavonol glycoside assigned as tamarixetin 3-O-neohesperidoside in the literature should be revised into isorhamnetin 3-O-neohesperidoside.
引文
1. a) 俞飚,金城 糖的化学和生物科学,21 世纪有机化学发展战略 杜灿屏等主编,化学工业出版社,2001,298-306;b) 叶新山 化学糖生物学——新兴的前沿研究领域,21 世纪有机化学发展战略 杜灿屏等主编,化学工业出版社,2001,307-316; c) 俞飚,惠永正 糖生物学——生物化学与生物医学交叉点的新前沿,科学前沿与未来 香山科学会议主编,中国环境科学出版社,2002,129-133.
    2. Thisbe K. Lindhorst Essentials of Carbohydrate Chemistry and Biochemistry (second, revised and updated edition) Wiley-Vch, 2003, 175-194.
    3. Beat Ernst, Gerald W. Hart, Pierre Sinay Carbohydrates in Chemistry and Biology (part II, Vol V) Wiley-Vch, 2000.
    4. Sharon, N.; Lis, H. Carbohydrates in Cell Recognition. Scientific American 1993, 268, 82-89.
    5. Austein, B. M.; Westwood, O. M. R. Protein Targeting and Secretion, Oxford, IRL Press, 1991, p85.
    6. Gagneux, P.; Varki, A. Evolutionary Considerations in Relating Oligosaccharide Diversity to Biological Function. Glycobiology 1999, 9, 747-755.
    7. a) Schnaar, R. L. Complex Carbohydrates in Drug Developnent. Adv. Pharmacol. 1992, 23, 35-84. b) Witczak, Z. J.; Nieforth, K. A. M. Carbohydrate in Drug Design Dekker Press, 1997; c) 李中军,蔡孟深 糖类化合物在药学中的应用,药物化学进展.
    8. Danishefsky, S. J.; Allen, J. R. From the Laboratory to the Clinic: ARetrospective on Fully Synthetic Carbohydrate-Based Anticancer Vaccines. Angew. Chem. Int. Ed. 2000, 39, 836-863.
    9. Petitou, M; Héault, J. P.; Bernat, A.; Driguez, P. A.; Duchaussoy, P.; Lormeau, J. C.; Herbert, J. M. Synthesis of Thrombin-Inhibiting Heparin Mimetcs Without side effects. Nature 1999, 398, 417-422.
    10. Kaplan, J.; Korty, B. D.; Axelsen, P. H.; Loll, P. J. The Role of Sugar Residues in Molecular Recognition by Vancomycin. J. Med. Chem. 2001, 44, 1837-1840.
    11. Ge, M.; Chen, Z.; Onishi, H.; Kohler, J.;Silver, L.; Kerns, R.; Fukuzawa, S.; Thompson, C.; Kahne, D. Vancomycin Derivatives That Inhibit Peptidoglycan Biosynthesis without Binding D-Ala-D-Ala. Sciene 1999, 284, 507-511.
    12. a) Hostettmann, K.; Marston, A. Saponins, Cambridge university press, 1995. b) 刘美正,郭忠武,惠永正 皂甙研究新进展 天然产物研究与开发 1997, 9, 81-85.
    13. 赵维民 皂甙,天然产物化学(第二版)徐任生主编,科学出版社,2004,410.
    14. Gubanov, I. A.; Libizov, N. J.; Gladkikh, A. S. Farmatsiya (Moscow) 1970, 19,
    23-31 (Chem. Abstr. 1970, 73, 95408). 15. a) Faulkner, D. J. Marine Natural Products: Metabolites of Marine Algae and Herbivorous Marine Molluscs. Natl. Prod. Rep. 1984, 1, 251-280. b) Faulkner, D. J. Marine Natural Products. Natl. Prod. Rep. 1995, 12, 223-269. c) 张剑波, 俞飚, 惠永正 呋喃甾烷型皂甙的研究进展 有机化学, 2000, 20, 663-688.
    16. Francis, G.; Kerem, Z.; Makkar, H.; Becker, K. The Biological action of Saponins in Animal Systems: A Review. British J. Nutrition 2002, 88, 587-605.
    17. a) 黄金城,杨其盖 近年来我国中草药甙类成分合成研究 天然产物研究与开发 1994,6,66-69. b) 刘美正,郭忠武,惠永正 皂甙研究-糖链的作用 有机化学 1997,17,307-318.
    18. Wu, J. Y.; Zhong, J. J. Production of Ginseng and Its Bioactive Components in Plant Cell Culture: Current Technological and Applied Aspects. J. Biotech. 1999, 68, 89-99.
    19. Matsuda, H.; Namba, K.; Fukuda, S.; Tani, T.; Kubo, M. Pharmacological Study on Panax Ginseng C. A. Meyer. III. Effects of Red Ginseng on Experimental Disseminated Intravascular Coagulation. (2). Effects of Ginsenosides on Blood Coagulative and Fibrinolytic Systems. Chem. Pharm. Bull. 1986, 34, 1153-1157.
    20. (a) Kubo, S.; Mimaki, Y.; Terao, M.; Sashida, Y.; Nikaido, T.; Ohmoto, T. Acylated Cholestane Glycosides From the Bulbs of Ornithogalum Saundersiae. Phytochemistry 1992, 31, 3969-3973. (b) Kuroda, M.; Mimaki, Y.; Sashida, Y.; Nikaido, T.; Ohmoto, T. Structure of a novel 22-homo-23-norcholestane trisaccharide from Ornithogalum saundersiae. Tetrahedron Lett. 1993, 34, 6073-6076.
    21. (a) Mimaki, Y.; Kuroda, M.; Kameyama, A.; Sashida, Y.; Hirano, T.; Oka, K.; Dobashi, A.; Koike, K.; Nikaido, T. A new rearranged cholestane glycoside from ornithogalum saundersiae bulbs exhibiting potent cytostatic activities on leukemia HL-60 and molt-4 cells. Bioorg. Med. Chem. Lett. 1996, 6, 2635-2638. (b) Mimaki, Y.; Kuroda, M.; Kameyama, A.; Sashida, Y.; Hirano, T.; Oka, K.; Maekawa, R.; Wada, T.; Sugita, K.; Beutler, Cholestane Glycosides with Potent Cytostatic Activities on Various Tumor Cells From Ornithogalum Saundersiae Bulls. J. A. Bioorg. Med. Chem. Lett. 1997, 7, 633-636. (c) Honda, H.; Mimaki, Y.; Sashida, Y.; Kogo, H. Influence of OSW-1 [3b, 16b, 17a-trihydroxycholest-5-en-22-one 16-O-(2-O-4-methoxybenzoyl-b-D-xylopyranosyl)-(1→3)-(2-O-acetyl-a-L-arabinopyranoside)], a steroidal saponin, on endothelium dependent relaxation caused by acetylcholine in rat aorta. Biol. Pharm. Bull. 1997, 20, 428-430.
    22. a) Ida, Y.; Satoh, Y.; Katoh, M. Achyranthosides A and B, novel cytotoxic saponins from Achyranthes fauriei root. Tetrahedron Lett. 1994, 35, 6887-6890. b) Ida, Y.; Satoh, Y.; Katsumata, M.; Nagasao, M.; Shoji, J. Achyranthosides C and D, novel glucuronide saponins from Achyranthes fauriei root. Chem. Pharm. Bull. 1995, 43, 896-898. c) Ida, Y.; Satoh, Y.; Katsumata, M. Two Novel Oleanolic acid Saponins Having a Sialyl Lewis X Mimetic Structure from Achyranthes fauriei Root. Bioorg. Med. Chem. Lett. 1998, 8, 2555-2558.
    23. Sears, P.; Wong, C. H. Carbohydrate mimetics: a new strategy for tackling the problem of carbohydrate-mediated biological recognition. Angew. Chem. Int. Ed. 1999, 38, 2301-2324.
    24. 地奥心血康成分分析,内部资料,1995.
    25. a) Mahato, S. B.; Sarkar, S. K.; Poddar, G. Triterpenoid saponins. Phytochemistry 1988, 27, 3037-3067. b) Chandel, R. S.; Rastogi, R. P. Triterpenoid saponins and sapogenins: 1973–1978. Phytochemstry 1980, 19, 1889-1908.
    26. Rouchi, A. M. C & E N, 1995, Sept. 11, 28-35.
    27. Hèléne Pellissier. The Glycosylation of Steroids. Tetrahedron 2004, 60, 5123-5162.
    28. Toshima, K.; Tatsuba, K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem. Rev. 1993, 93, 1503-1531.
    29. Nicolaou, K. C.; Mitchell, H. J. Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew. Chem. Int. Ed. 2001, 40, 1576-1624.
    30. Koenigs, W.; Knorr, E. Chem. Ber. 1901, 34, 957-981.
    31. Helen M. I. Osborn Carbonhydrate Academic press, 2003.
    32. Schmidt, R. R.; Michel, J. Facil Synthesis of α- and β-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides. Angew. Chem. Int. Ed. Engl. 1980, 19, 731-732.
    33. a) Yu, B.; Tao, H. C. Glycosyl trifluoroacetimidates. Part 1: Preparation and application as new glycosyl donors. Tetrahedron Lett. 2001, 42, 2405-2407. b) 陶厚朝,中科院上海有机化学研究所硕士毕业论文,2002.
    34. a) Yu, B.; Tao, H. C. Glycosyl Trifluoroacetimidates. 2. Synthesis of Dioscin and Xiebai Saponin I. J. Org. Chem. 2002, 67, 9099-9102. b) Cai, S. T.; Yu, B. Efficient Sialylation with Phenyltrifluoroacetimidates as Leaving Groups. Org. Lett. 2003, 5, 3827-3830.
    35. a) Ferrier, R. J.; Hay, R. W.; Vetheyiuccer, N. A potentially versatile synthesis of glycosides. Carbohydr. Res. 1973, 27, 55-61. b) Fraser-Reid, B.; Wu, Z.; Udodong, V. E.; Ottosson, H. Armed/disarmed effects in glycosyl donors: rationalization and sidetracking. J. Org. Chem. 1990, 55, 6068-6070. c) Garegg, P. J. Thioglycosides as glycosyl donors in oligosaccharide synthesis. Adv. Carbohydr. Chem. Biochem. 1997, 52, 179-205.
    36. Zhang, Z.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.; Wong, C. H. Programmable One-Pot Oligosaccharide Synthesis. J. Am. Chem. Soc. 1999,121,734-753.
    37. Boons, G. J. Strategies in Oligosaccharide Synthesis. Tetrahedron 1996, 52, 1095-1121.
    38. 俞飚,惠永正 甾体皂甙的化学合成,甾体化学进展 周维善,庄治平 主编,科学出版社,2002,231-250.
    39. Harborne, J. B.; Baxter, H. The Handbook of Natural Flavonoids; John Wiley & Sons: Chichester, 1999, Vol. 1 and 2.
    40. Harborne, J. B.; Willians, C. A. Advances in Flavonoid Research Since 1992. Phytochemistry, 2000, 55, 481-504.
    41. 孔德云 黄酮类化合物,天然产物化学(第二版)徐任生主编,科学出版社,2004,526.
    42. 姚新生 天然药物化学(第二版) 人民卫生出版社,2000, 191.
    43. a) Cao, X.; Tian, Y.; Zhang, T.; Li, X.; Ito, Y. Separation and purification of isoflavones from Pueraria lobata by high-speed counter-current chromatography. J. Chromatogr. A. 1999, 855, 709-713. b) Fang, Q. Some current study and research approaches relating to the use of plants in the traditional chinese medicine. J. Ethnopharmacol. 1980, 2, 57-63. c) Keung, W. M.; Vallee, B. L. Daidzin and Daidzein Suppress Free-Choice Ethanol Intake by Syrian Golden Hamsters. Pro. Natl. Acad. Sci. 1993, 90, 10008-10012. d) 攀小荣 时珍国医国药,2000,11,1037-1038.
    44. 彭向雷,王蕊,王悦,崔洪斌 大豆异黄酮研究进展 中国食品卫生杂志 1998,10,38-41.
    45. a) 于乐成,顾长海 水飞蓟素药理学效应研究进展 中国医院药学杂志 2001,21,493. b) 肖莉,靳淑敏,张丽霞,王永利,翟所迪,贾淑琴 水飞蓟素制剂及其应用进展 中国药物与临床 2005, 5, 205.
    46. Slobodan V. J.; Steen, S.; Mihajlo, T.; Budimir M.; Michael, G. S. Flavonoids as Antioxidants. J. Am. Chem. Soc. 1994, 116, 4846-4851.
    47. a) Marchand L. Cancer Preventive Effects of Flavonoids—a Review. Biomed Pharmacother 2002, 56, 296-301. b) Menichincheri, M.; Ballinari, D.; Bargiotti, A.; Bonomini L.; Ceccarelli, W.; D’Alessio, R.; Fretta, A.; Moll, J.; Polucci, P.; Soncini, C.; Tibolla, M.; Trosset, J.; Vanotti, E. Cetecholic Flavonoids Acting as Telomerase Inhibitors. J. Med. Chem. 2004, 47, 6466-6475. c) Kosmider, Beata.; Osiecka, Regina. Flavonoid Compounds: A Review of Anticancer Properties and Interactions with cis-Diamminedichloroplatinum (II). Drug Development Research 2004, 64, 200-211. d) Walle, Thomas. Absorption and Metabolism of Flavonoids. Free Rad. Biol. Med. 2004, 36, 829-837. e) Moon, Y. J., Wang, X. D., Morris, M. E. Dietary Flavonoids: Effects on Xenobiotic and Carcinogen Metabolism. Toxicology in Vitro 2006, 20, 187-210. For reviews see: f) Wang, H. Expert Opin. Investig. Drugs 2000, 9, 2103-2119. g) Lamson, D.; Bridnall, M. Altern. Med. Rev. 2000, 5, 196-208. i) Ren, W.; Qiao, Zh.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising Anticancer Agers. Medicinal Research Reviews 2003, 23, 519-534.
    48. Mahling, J. A., Schmidt, R. R. Aryl C-glycosides from O-glycosyltrichloroacetimidates and phenol derivatives with trimethylsilyl trifluoromethanesulfonate (TMSOTf) as the catalyst. Synthesis, 1993, 325-328.
    49. Furuta, T.; Kimura, T.; Kondo, S.; Mihara, H.; Wakimoto, T.; Nukaya, H.; Tsuji, K.; Tanaka, K. Concise total synthesis of flavone C-glycoside having potent anti-inflammatory activity. Tetrahedron 2004, 60, 9375-9379.
    50. Maloney, D. J.; Hecht, S. M. Synthesis of a Potent and Selective Inhibitor of p90 Rsk. Org. Lett. 2005, 7, 1097-1099.
    51. Lewis, P.; Kaltia, S.; W?h?l?, K. The Phase Transfer Catalysed Synthesis of Isoflavone-O-Glucosides. J. Chem. Soc. Perkin Trans. 1 1998, 2481.
    52. a) Alluis, B.; Dangles, O. Acylated Flavone Glucosides: Synthesis, Conformational Investiation, and Complexation Properties. Helv. Chim. Acta 1999, 82, 2201-2212. b) Alluis, B.; Dangles, O. Quercetin (=2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-Benzopyran-4-One) Glycosides and Sulfates: Chemical Synthesis Complexation, and Antioxidant Properties. Helv.Chim. Acta 2001, 84, 1133-1156.
    53. Bouktaib, M.; Atmani, A.; Rolando C. Regio- and Stereoselective Synthesis of the Major Metabolite of Quercetin, Quercetin-3-O-β-D-Glucuronide. Tetrahedron Lett. 2002, 43, 6263-6266.
    54. Chen, Zh. W.; Hu, Y. Zh.; Wu, H. H.; Jiang, H. D. Synthesis and Biological Evaluation of Flavonoids as Vasorelaxant Agents. Bioorg. Med. Chem. Lett. 2004, 14, 3949-3952.
    55. Nakatsuka, T.; Tomimori, Fukuda, Y.; Nukaya, H. First Total Synthesis of Structurally Unique Flavonoids and Their Strong Anti-inflammatory effect. Bioorg. Med. Chem. Lett. 2004, 14, 3201-3203.
    56. Hinsgaul, seminars in Cell Biology, 1991, 2, 319.
    57. Review for “Carbohydrate and Glycobiology”, Science 2001, 291, 2337-2378.
    1. 赵维民 皂甙,天然产物化学(第二版)徐任生主编,科学出版社,2004,410.
    2. a) 谢建明,中科院上海有机化学研究所硕士毕业论文,2000 年. b) Yu, B.; Xie, J. M.; Deng, Sh. J.; Hui, Y. Zh. First Synthesis of a Bidesmosidic Triterpene Saponin by a Highly Efficient Procedure. J. Am. Chem. Soc. 1999, 121, 12196-12197.
    3. 王华丽,中科院上海有机化学研究所博士毕业论文,2005 年.
    4. 杨志奇,中科院上海有机化学研究所博士毕业论文,2004 年.
    5. Kondo, N.; Marumoto, Y.; Shoji, I. Chem. Pharm. Bull. 1971, 19, 1103.
    6. Tanaka, O.; Kasai, R. Saponins of Ginseng and Related Plants. In Prog. Chem. Org. Nat. Prod.; Herz, W.; Grisebach, H.; Kirby, G. W.; Tamm, Ch., Eds.; Springer-Verlag: Wien, New York, 1984; Vol. 46, pp 1-76.
    7. a) Matsuda, H.; Namba, K.; Fukuda, S.; Tani, T.; Kubo, M. Pharmacological study on Panax ginseng C. A. Meyer. IV. Effects of red ginseng on experimental disseminated intravascular coagulation. (3). Effect of Ginsenoside-Ro on the blood coagulative and fibrinolytic system. Chem. Pharm. Bull. 1986, 34, 2100-2104. b) Matsuda, H.; Samukawa, K.; Kubo, M. Pharmacological study on Panax ginseng C. A. Meyer. Part XI. Anti-inflammatory activity in ginsenoside Ro. Planta Med. 1990, 56, 19-23. c) Matsuda, H.; Samukawa, K.; Kubo, M. Anti-hepatitis activity of ginsenoside Ro. Planta Med. 1991, 57, 523-526.
    8. Schmidt, R. R. Utility of glycosyl phosphites as glycosyl donors-fructofuranosyl and 2-deoxyhexopyranosyl phosphites in glycoside bond formation. Tetrahedron Lett. 1994, 35, 4763-4766.
    9. Bliard, C.; Massiot, G.; Nazabadioko, S. Glycosylation of Acids under Phase Transfer Conditions. Partial Synthesis of Saponins. Tetrahedron Lett. 1994, 35, 6107.
    10. a) Deng, S. J.; Yu, B.; Xie, J. M.; Hui, Y. Zh. Highly Efficient Glycosylation of Sapogenins. J. Org. Chem. 1999, 64, 7265. b) 邓绍江,中科院上海有机化学研究所博士毕业论文,1999.
    11. 朱向明,中科院上海有机化学研究所博士毕业论文,2001.
    12. Wang, P. F.; Kim, Y. J.; Mauricio, N. V.; Rohde, B. D.; Gin, D. Y. Synthesis of the Potent Immunostimulatory Adjuvant QS-21A. J, Am. Chem. Soc. 2005, 127, 3256-3257.
    13. Cheng, M. S., Wang, Q. L., Tian, Q., Song, H. Y., Liu, Y. X., Li, Q., Xu, X., Miao, H. D., Yao, X. S., Yang, Z. Tatal Synthesis of Methyl Protodioscin: A Potent Agent with Antitumor Activity. J. Org. Chem. 2003, 68, 3658-3662.
    14. Arasappan, A.; Fuchs, P. L. Regiospecific 4,6-Functionalizatin of Pyranosides via Dimethylboron Bromide-Mediated Cleavage of Phthalide Orthoesters. J, Am. Chem. Soc. 1995, 117, 177-183.
    15. Wada, T.; Ohkubo, A.; Mochizuki, A.; Sekine, M. 2-(Azidomethyl)benzoyl as a New Protecting Group in Nucleosides. Tetrahedron Lett. 2001, 42, 1069.
    16. Love, K. R.; Andrade, R. B.; Seeberger, P. H. Linear Synthesis of a Protected H-Type II Pentasaccharide Using Glycosyl Phosphate Building Blocks. J. Org. Chem. 2001, 66, 8165.
    17. Metha, S.; Jordan, K. L.; Weimar, T.; Kreis, U. C.; Batchelor, R. J.; Einstein, F. W. B.; Pinto, R. M. Synthesis of sulfur analogues of methyl and allyl kojibiosides and methyl isomaltoside and conformational analysis of the kojibiosides. Tetrahedron: Asymmetry 1994, 5, 2367-2396.
    18. a) Kim, S.; Chang, H.; Kim, W. J. Selective benzoylation of diols with 1-(benzoyloxy)benzotriazole. J. Org. Chem. 1985, 50, 1751-1752. b) Ogawa, T.; Matsui, M. Regioselective stannylation: Acylation of carbohydrates: coordination control. Tetrahedron 1981, 37, 2363-2369. c) Lu, X. A.; Chou, C. H.; Wang, C.C.; Hung, Sh, Ch. Regioselective Esterification of Various D-Glucopyranosides: Synthesis of a Fully Protected Disaccharide Unit of Hyaluronic Acid. Synlett 2003, 1364. d) Schelhaas, M.; Waldmann, H. Protecting Group Strategies in Organic Synthesis. Angew. Chem. Int. Ed. Engl. 1996, 35, 2056.
    19. Jiang, L.; Chan, T. H. Regioselective Acylation of Hexopyranosides withPivaloyl Chloride. J. Org. Chem. 1998, 63, 6035.
    20. Yu. B.; Zhang, J.; Lu, S.; Hui, Y. A novel and efficient deprotection of the allyl group at the anomeric oxygen of carbohydrates. Synlett 1998, 29-30.
    21. a) Yu, B.; Tao, H. C. Glycosyl trifluoroacetimidates. Part 1: Preparation and application as new glycosyl donors. Tetrahedron Lett. 2001, 42, 2405-2407. b) 陶厚朝,中科院上海有机化学研究所硕士毕业论文,2002.
    22. Byramova, N. E.; Ovchinnikov, M. V.; Bakinovskii, L. V.; Kochetkov, N. K. Selective removal of O-acetyl groups in the presence of O-benzoyl groups by acid-catalysed methanolysis. Carbohydr. Res. 1983, 124, C8-C11.
    23. a) 林峰,中科院上海有机化学研究所博士毕业论文,2004. b) Lin, F.; Peng, W.; Xu, W.; Han, X.; Yu, B. A facile preparation of uronates via selective oxidation with TEMPO/KBr/Ca(OCl)2 under aqueous conditions. Carbohydr. Res. 2004, 339, 1219-1223.
    24. de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis 1996, 1153-1174.
    25. Karst, N.; Jacquinet, J. C. Stereocontrolled Total Synthesis of Shark Cartilage Chondroitin Sulfate D-Related Tetra- and Hexasaccharide Methyl Glycosides. Eur. J. Org. Chem. 2002, 815-825.
    26. Xiao, K.; Yi, Y. H.; Wang, Z. Z.; Tang, H. F.; Li, Y. Q.; Lin, H. W. A Cytotoxic Triterpene Saponin from the Root Bark of Aralic dasyphylla. J. Nat. Prod. 1999, 62, 1030-1032.
    27. Huan, V. D.; Yamamura, S.; Ohtani, K.; Kasai, R.; Yamasaki, K.; Nham, N. T.; Chou, H. M. Oleanane saponins from Polyscias fruticosa. Phytochemistry 1998, 47, 451-457.
    28. Zeng, Y.; Ning, J.; Kong, F. Z. Pure α-linked Products Can Be Obtained in High Yields in Glycosylation with Glucosyl Trichloroacetimidate Donors With A C2 Ester Capable of Neighboring Group Participation. Tetrahedron Lett. 2002, 43, 3729-3733.
    1. 鲍延铮,王庆伦,廖志辉 槲皮素的研究近况 江西中医学院学报 1998,10,91-92.
    2. Ader, P.; Wessmann, A.; Wolffram, S. Bioavailability and Metabolism of the Flavonol Quercetin in the Pig. Free Rad. Biol. Med. 2000, 28, 1056-1067.
    3. O’leary, K.; Day, A.; Needs, P.; Sly, W.; O’Brien, N.; Williamson, G. Flavonoid Glucuronides Are Substrates for Human Liver β-Glucuronidase. FEBS Lett. 2001, 503, 103-106.
    4. a) 李明,中科院大连化学物理研究所博士毕业论文,2003. b) Li, M.; Han, X.; Yu, B., Synthesis of Quercetin 3-O-(2’’-galloyl)-α-L-arabinopyranoside, Tetrahedron Lett. 2002, 43, 9467-9470.
    5. Du, Y.; Wei, G.; Linhardt, R. The First Total Synthesis of Calabricoside A. Tetrahedron Lett. 2003, 44, 6887-6890.
    6. Harborne, J. B., Baxter, H., The Handbook of Natural Flavonoids; John Wiley & Sons: Chichester, 1999, Vol. 1 and 2.
    7. da Sliva, B.; Bernardo, R.; Parente, J. Flavonol glycosides from Costus spicatus. Phytochemistry 2000, 53, 87-92.
    8. Jurd, L. The Selective Alkylation of Polyphenols. II. Methylation of 7-, 4’-, and 3’-Hydroxyl Groups in Flavonols. J. Org. Chem. 1962, 27, 1294-1297.
    9. Bouktaib, M.; Lebrun, S.; Atmani, A.; Rolando, C. Hemisynthesis of All the O-monomethylated Analogues of Quercetin Including the Major Metabolites, Through Selective Protection of Phenolic Functions. Tetrahedron 2002, 58, 10001-10009.
    10. a) Chakraborti, A. K.; Nayak, M. K.; Sharma, L. Selective Deprotection of Aryl Acetates, Benzoates, Pivalates, and Tosylates under Nonhydrolytic and Virtually Neutral Conditions. J. Org. Chem. 1999, 64, 8027-8030; b) Chakraborti, A. K.; Nayak, M. K.; Sharma, L. Influence of Hydrogen Bonding in the Activation of Nucleophiles: PhSH-(Catalytic) KF in N-Methyl-2-pyrrolidone as an Efficient Protocol for Selective Cleavage of Alkyl/Aryl Esters and Aryl Alkyl Ethers under Nonhydrolytic and Neutral Conditions. J. Org. Chem. 2002, 67, 2541-2547; c) Chakraborti, A. K.; Nayak, M. K.; Sharma, L. Demand-Based Thiolate Anion Generation under Virtually Neutral Conditions: Influence of Steric and Electronic Factors on Chemo- and Regioselective Cleavage of Aryl Alkyl Ethers. J. Org. Chem. 2002, 67, 6404-6414.
    11. Li, M.; Han, X.; Yu, B., Facile Synthesis of Flavonoid 7-O-Glycosides, J. Org. Chem. 2003, 68, 6842-6845.
    12. a) Jurd, L. Plant Polyphenols. V. Selective Alkylation of the 7-Hydroxyl Group in Polyhydroxyflavones. J, Am. Chem. Soc. 1958, 80, 5531-5536. b) Vermes, B.; Farkas, L.; Nógrádi, M. In Topics in Flavonoid Chemistry and Biochemistry; Farkas, L., Gábor, M., Kállay, F., Eds.; Elsevier: Amsterdam, 1975, pp 162-170.
    13. Zou, Ch.; Hou, Sh.; Shi, Y.; Lei, P.; Liang, X. The Synthesis of Gracillin and Dioscin: Two Typical Representatives of Spirostanol Glycosides. Carbohydr. Res. 2003, 338, 721-727.
    14. Brennan, S.; Finan, P. A. J. Chem. Soc., Sect. C 1970, 1742-1744.
    15. Yu, H.; Ensley, H. An Efficient Method for the Preparation of Glycosides with a Free C-2 Hydroxyl Group from Thioglycosides. Tetrahedron Lett. 2003, 44, 9363-9366.
    16. Du, Y.; Wei, G.; Linhardt, R. Total Synthesis of Quercetin 3-Sophorotrioside. J. Org. Chem. 2004, 69, 2206-2209.
    17. a) Mabry, T. J.; Markham, K. R.; Thomas, M. B. The Systematic Identification of Flavonoids; Springer: Heidelberg, 1970; b) Rao, C. P.; Hanumaiah, T.; Vemuri, V. S.; Rao, K. O. J. Flavonol 3-glycosides from the leaves of Flemingia stricta. Phytochemistry 1983, 22, 621-622. c) Ahmed, A. A. Flavonoids of Asteriscus graveolens. J. Nat. Prod. 1991, 54, 1092-1093; d) Elsayed, N. H.; Abu-Dooh, A. M.; El-Khrisy, E. A. M.; Mabry, T. J. Flavonoids of Cassia italica. Phytochemistry 1992, 31, 2187. e) Xiong, Q.; Shi, D.; Mizuno, M. Flavonol glucosides in pericarps of Zanthoxylum bungeanum. Phytochemistry 1995, 39, 723-725.
    18. N?rb?k, R.; Kondo, T. Flavonol glycosides from flower of Crocus speciosus and C. antalyensis. Phytochemistry 1999, 51, 1113-1119.
    19. a) Woo, W.; Choi, J.; Kang, S. Tocotrienols from Iryanthera grandis. Phytochemistry 1983, 22, 2881-2882. b) Dandapani, M.; Nagarajan, S. Isorhamnetin 3-O-Neohesperidoside from Cuscuta reflexa. Indian J. Chem. 1989, 28 B, 606-607. c) Vidal-Ollivier, E.; Elias, R.; Faure, F.; Babadjamian, A.; Crespin, F.; Balansard, G.; Boudon, G. Flavonol Glycosides from Calendula officinalis Flowers. Planta Med. 1989, 55, 73-74.
    20. 尉芹,马希汉,杨秀萍,张强 西北林学院学报 2003,18,126-129.
    21. Wei, F.; Ma, Sh.; Ma, L.; But, P.; Lin, R.; Khan, I. Antiviral Flavonoids from the Seeds of Aesculus chinensis. J. Nat. Prod. 2004, 67, 650-653.
    22. 李川,中科院上海有机化学研究所硕士毕业论文,1998 年.
    23. 祝存生,中科院上海有机化学研究所转博工作汇报,2005.
    24. Erlund, I. Review of the Flavonoids Quercetin, Hesperetin, and Naringenin. Dietary Sources, Bioactivities, Bioavailability, and Epidemiology. Nutrition Research 2004, 24, 851-874.
    25. Daskiewies, J.; Depeint, F.; Viornery, L.; Bayet, C.; Geraldine, C.; Comte, G.; Gee, J.; Johnson, I.; Ndjoko, K.; Hostettmann, K.; Barron, D. Effects of Flavonoids on Cell Proliferation and Caspase Activation in a Human Colonic Cell Line HT29: An SAR Study. J. Med. Chem. 2005, 48, 2790-2804.
    26. Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett. 1979, 20, 3437-3440.
    27. a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457-2483. b) Kotha, S.; Lahiri, K.; Kashinath, D. Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 2002, 58, 9633-9695. c) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev. 2002, 102, 1359-1469.
    28. Huang, X.; Tang, E.; Xu, W.; Cao, J. Lewis Acid Catalyzed Solid-Phase Synthesis of Flavonoids Using Selenium-Bound Resin. J. Comb, Chem. 2005,7, 802-805.
    29. Zembower, D.; Zhang, H. Total Synthesis of Robustaflavone, a Potential Anti-Hepatitis B Agent. J. Org. Chem. 1998, 63, 9300-9305.
    30. a) Zheng, X.; Cao, J.; Meng, W.; Qing, F. Synthesis and Anticancer Effect of B-Ring Trifluoromethylated Flavonoids. Bioorg. Med. Chem. Lett. 2003, 13, 3423-3427. b) Zheng, X.; Meng, W.; Qing, F. Synthesis of gem-difluoromethylenated biflavonoid via the Suzuki coupling reaction. Tetrahedron Lett. 2004, 45, 8083-8085.
    31. Ding, K.; Wang, S. M., Efficient Synthesis of Isoflavone Analogues via a Suzuki Coupling Reaction, Tetrahedron Lett. 2005, 46, 3707-3709.
    32. Stille, J. K.; Echavarren, A. M., Palladium-catalyzed coupling of aryl triflates with organostannanes, J. Am. Chem. Soc. 1987, 109, 5478-5486.
    33. Frantz, D. E.; Weaver, D. G.; Carey, J. P.; Kress, M. H.; Dolling, U. H. Practical Synthesis Of Aryl Triflates Under Aqueous Conditions. Org. Lett. 2002, 4, 4717.
    34. Bengtson, A.; Hallberg, A.; Larhed, M. Fast Synthesis of Aryl Triflates with Controlled Microwave Heating. Org. Lett. 2002, 4, 1231-1234.
    35. Kozikowski, A. P.; Tückmantel, W.; George, C. Studies in Polyphenol Chemistry and Bioactivity. 2. Establishment of Interflavan Linkage Regio- and Stereochemistry by Oxidative Degradation of an O-Alkylated Derivative of Procyanidin B2 to (R)-(-)-2,4-Diphenylbutyric Acid. J. Org. Chem. 2000, 65, 5371-5381.
    36. 李化军,栾新慧,赵毅民. 3-O-甲基槲皮素的合成 有机化学 2004,24,1619-1621.
    37. a) Nising, C. F.; Schmid, U. K.; Nieger, M.; Br?se, S. A New Protocol for theOne-Pot Synthesis of Symmetrical Biaryls. J. Org. Chem. 2004, 69, 6830-6833. b) Takagi, T.; Takahashi, T.; Ishiyama, T.; Miyaura, N. Palladium-Catalyzed Cross-Coupling Reaction of Bis(pinacolato)diboron with 1-Alkenyl Halides or Triflates: Convenient Synthesis of Unsymmetrical 1,3-Dienes via the Borylation-Coupling Sequence. J, Am. Chem. Soc. 2002, 124, 8001-8006.
    38. Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. Synthesis of Arylboroates via the Palladium (0) Catalyzed Cross-Coupling Reaction of Tetra(alkoxo)diborons with Aryl Triflates. Tetrahedron Lett. 1997, 38, 3447-3450.
    39. Walker, Sh.; Barder, T.; Martinelli, J.; Buchwald, S. A Rationally Designed Universal Catalyst for Suzuki-Miyaura Coupling Process. Angew. Chem. Int, Ed. 2004, 43, 1871-1876.
    40. a) Barder, T.; Walker, Sh.; Martinelli, J.; Buchwald, S. Catalysts for Suzuki-Miyaura Coupling Processs: Scope and Studies of the Effect of Ligand Structure. J. Am. Chem. Soc. 2005, 127, 4685-4696. b) Christmann, U.; Vilar, R. MonoligatedPalladium Species as Catalysts in Cross-Coupling Reactions. Angew. Chem. Int. Ed. 2005, 44, 366-374.
    1. (a) Kubo, S.; Mimaki, Y.; Terao, M.; Sashida, Y.; Nikaido, T.; Ohmoto, T. Acylated Cholestane Glycosides From the Bulbs of Ornithogalum Saundersiae. Phytochemistry 1992, 31, 3969-3973. (b) Kuroda, M.; Mimaki, Y.; Sashida, Y.; Nikaido, T.; Ohmoto, T. Structure of a novel 22-homo-23-norcholestane trisaccharide from Ornithogalum saundersiae. Tetrahedron Lett. 1993, 34, 6073-6076.
    2. Rouchi, A. M. C & EN, 1995, Sept. 11, 28-35.
    3. Waller, G. R.; Ed. Yamasaki, In Adcances in Experimental Medicine and Biology, Plenum Press, NewYork, 1996, Vol.404.
    4. Guo, C. X.; Fuchs, P. L. The First Synthesis of the Aglcone of the Potent Anti-tumor Steroidal Saponin OSW-1. Tetrahetron Lett. 1998, 39, 1099-1102.
    5. Deng, S. J.; Yu, B.; Lou Y.; Hui, Y. Z. First Total Synthesis of An Exceptionally Potent Antitumor Saponin OSW-1. J. Org. Chem. 1999, 64, 202-208.
    6. a) Xu, Q. H.; Peng, X. W.; Tian, W. S. A New Strategy for Synthesizing the Steroids with Side Chains from Steroidal Sapogenins: Synthesis of the Aglcone of OSW-1 by Using the Intact Skeleton of Disgenin. Tetrahedron Lett. 2003, 44, 9375-9378. b) Morzicky, J. W.; Wojtkielewicz, A. Synthesis of A Cholestane Glycoside OSW-1 with Potent Cytoststic Activity. Carbohydr. Res. 2002, 337, 1269-1274. c) Yu, W. S.; Jin, Z. D. A New Srtategy for the Stereoselective Introduction of Steroid Side Chain via α-Alkoxy Vinyl Cuprates: Total Synthesis of A Highly Potent Antitumor Natural Product OSW-1. J. Am. Chem. Soc. 2001, 123, 3369-3370. d) Yu, W. S.; Jin, Z. D. Total Synthesis of the Anticancer Natural Product OSW-1. J. Am. Chem. Soc. 2002, 124, 6576-6583.
    7. Morzicky, J. W.; Wojtkielewicz, A. Synthesis of a Highly Potent Antitumor Saponin OSW-1 and Its Analogues. Phytochemistry Reviews 2005, 4, 259-277.
    8. Guo, C.-X.; Lacour, T. G.; Fuchs, P. L. On the Relationship of OSW-1 to the Cephalostains. Bioorg. Med. Chem. Lett. 1999, 9, 419-424.
    9. a) Ma, X. Q.; Yu, B.; Hui, Y. Z.; Miao, Z. H.; Ding, J. Synthesis of OSW-1 Analogues ans a Dimer and Their Antitumor Activities. Bioorg. Med. Chem. Lett. 2001, 11, 2153-2156. b) Ma, X. Q.; Yu, B.; Hui, Y. Z.; Xiao, D.; Ding, J. Synthesis of Glycosides Bearing the Disaccharide Moiety of OSW-1 or Its 1→4-linked Analgue and Their Antitumor Activities. Carbohydr. Res. 2000, 329, 495-505. c) Ma, X. Q.; Yu, B.; Hui, Y. Z.; Miao, Z. H.; Ding, J. Synthesis of Steroidal Glycosides Bearing the Disaccharide Moiety of OSW-1 and their Antitumor Activities. Carbohydr. Res. 2001, 334, 159-164. d) 马兴泉,中科院上海有机化学研究所博士学位论文,2001 年.
    10. a) Deng, L. H.; Wu, H.; Yu, B.;Jiang, M. R.; Wu, J. R. Synthesis of OSW-1 Analogs With Modified Side Chains and Their Antitumor Activities. Bioorg. Med. Chem. Lett. 2004, 14, 2781-2785. b) 邓乐华,中科院上海有机化学研究所博士学位论文,2004 年.
    11. Morzicky, J. W.; Wojtkielewicz, A.; Wolczyński, S. Synthesis of analogues of a potent antitumor sapoin OSW-1. Bioorg. Med. Chem. Lett. 2004, 14, 3323-3326.
    12. a) Shi, B. F.; Wu, H.; Yu, B.; Wu, J. R. 23-Oxa-Analogues of OSW-1: Efficient Synthesis and Extremely Potent Antitumor Activity. Angew. Chem. Int, Ed. 2004, 43, 4324-4327. b) Shi, B. F.; Tang, P. P.; Hu, X. Y.; Liu, J. O.; Yu, B. OSW Saponins: Facil Synthesis Toward a New Type of Structures with Potent Antitumor Activities. J. Org. Chem. 2005, 70, 10354-10367.
    13. Matsuya, Y.; Masuda, S.; Ohsawa, N.; Adam, S.; Tschamber, T.; Eustache, J.; Kamoshita, K.; Sukenaga, Y.; Nemoto, H. Synthesis and Antitumor Activity of the Estrane Analogue of OSW-1. Eur. J. Org. Chem. 2005, 803-808.
    14. a) Matsuya, Y.; Itoh, T.; Nemoto, H. Total Synthesis of A-Nor B-Aromatic OSW-1 Aglycone: A Highly Effective Approach to Optically Active trans-4,5-Benzhydrindane. Eur. J. Org. Chem. 2003, 2221-2224. b) Matsuya, Y.; Masuda, S.; Murai, T. A Practical Asymmetric Synthesis of trans-4,5-Benzhydrindan-1-ones as a Precursor of A-Nor B-Aromatic Steroidal Compounds. J. Org. Chem. 2005, 70, 6898-6903.
    15. a) Hajos, Z. G; Parrish, D. R. Asymmetric Synthesis of Bicyclic Intermediates of Natural Product Chemistry. J. Org. Chem. 1974, 39, 1615-1621. b) Hajos, Z. G; Parrish, D. R. (+)-(7as)-7a-Methyl-2,3,7,7a-Tetrahydro-1 H-Indene-1,5-(6 H)-Dione. Org. Syn. Coll Vol. 7, 1990, 363-368.
    16. a) List, B.; Hoang, L.; Martin, H. J. New Mechanistic Studies on The Proline-Catalyzed Aldol Reaction. Proc. Natl. Am. Soc. 2004, 101, 5839-5842. b) Cheong, P.; Houk, K. Origins and predictions of stereoselectivity in intramolecular aldol reactions catalyzed by proline derivatives. Synthesis 2005, 1533-1537.
    17. Jankowski, P.; Marczak, S.; Wicha, J. Methods for the Construction of trans-Hydrindane Rings and Tneir Origins in Steroid Chemistry. Vitamin D Total Synthesis. Tetrahedron 1998, 54, 12071-12150.
    18. a) Crabtree, R.; Davis, M. Ocurrence and Origin of a Pronounced Directing Effect of a Hydroxyl Group in Hydrogenation with [Ir(cod)P-c-Hx3(Py)]PF6 Organometallics 1983, 2, 681-682. b) Crabtree, R.; Davis, M. Directing Effects in Homogeneous Hydrogenation with [Ir(cod)(Pcy3)(Py)]PF6. J. Org. Chem. 1986, 51, 2655-2661. Review sees: c) Brown, J. M. Directed Homogeneous Hydrogenation. Angew. Chem. Int. Ed. Engl. 1987, 26, 190-203.
    19. Stork, G.; Kahne, D. Stereocontrol in Homogenous Catalytic Hydrogenation via Hydroxyl Group Coordination. J. Am. Chem. Soc. 1983, 105, 1072-1073.
    20. Caine, D.; Kotian, P. Synthesis and Photochemical Rearragement of (1R,7aS)-1-(tert-Butyldiphenylsiloxy)-7a-methyl-5(7aH)-indanone. J. Org. Chem. 1992, 57, 6587-6593.
    21. Evans, D. A.; Morrissey, M. M. Rhodium (I)-Catalyzed Hydrogenation of Olefin. The Documentation of Hydroxyl-Directed Stereochemical Control in Cyclic and Acyclic Systems. J. Am. Chem. Soc. 1984, 106, 3866-3868.
    22. Corey, E. J.; Desai, M. C.; Engler, T. A. Total Synthesis of (±)-Retigeranic Acid. J. Am. Chem. Soc. 1985, 107, 4339-4341.
    23. Paquette, L.; Heidelbaugh, T. M. Studies Directed to the Synthesis of the Antifungal Antibiotic Aleurodiscal. Enantioselective Construction of an Advanced β-D-Xyloside Congener. Synthesis 1998, 495-508.
    24. a) Luche, J. L. Lanthanides in Organic Chemistry. 1. Selective 1,2 Reductions of Conjugated Ketones. J. Am. Chem. Soc. 1978, 100, 2226-2227. b) Gemal, A.; Luche, J. L. Luche, J. L. Lanthanides in Organic Chemistry. 6. The Reduction of α-Enones by Sodium Borohydride in the Presence of Lanthanoid Chlorides: Synthetic and Mechanistic Aspects. J. Am. Chem. Soc. 1981, 103, 5454-5459.
    25. Paquette, L.; Wang, T. Z.; Vo, Nha Huu Acess to Naturally Ocurring Cyclooctanoids by Two-Carbon Intercalation. Total Synthesis of (+)-Cerophlastal I J. Am. Chem. Soc. 1993, 115, 1676-1683.
    26. Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1981, 1-28.
    27. Gordon, H.; Freeman, S.; Hudlicky, T. Stability Reationships in Bicyclic Ketones. Synlett. 2005, 2911-2914.
    28. Micheli, R.; Hajos, Z.; Cohen, N.; Parrish, D.; Portland, L.; Sciamanna, W.; Scott, M.; Wehrli, P. Total Synthesis of Optically Active 19-Norteroids. (+)-Estr-4-ene-3,17-dione and (+)-13β-Ethylgon-4-ene-3,17-dione. J. Org. Chem. 1975, 40, 675-681.
    29. a) Schweiger, E.; Joullié, M.; Weisz, P. Synthesis of a C, D Ring Analog of 17-α-Hydroxyprogesterone. Tetrahedron Lett. 1997, 38, 6127-6130. b) Jiang, X.; Covey, D. Total Synthesis of ent-Cholesterolvia Steroid C,D-Ring Side-Chain Synthon. J. Org. Chem. 2002, 67, 4893-4900. c) Scaglione, J.; Rath, N.; Covey, D. First Synthesis of Enantiopure 1,6-Difunctionalized Dodecahydrobenz[f]indenes. J. Org. Chem. 2005, 70, 1089-1092.
    30. Augustine, R. L.; Migliorini, D. C.; Foscante, R. E.; Sodano, C. S.; Sisbarro, M. J. Catalytic Hydrogenation of α, β-Unsaturated Ketones. IV. The Effect of the Medium on Product Stereochemistry. J. Org. Chem. 1969, 34, 1075-1085.
    31. Practap, R.; Gupta, R.; Anand, N. Comparative Reactivity of Carbonyl Groups in 6β-Methyl-cis-Bicyclo<4,3,0>nona-3,7 Dione. Indian J. Chem. Sect. B 1983, 22, 731-734.
    32. Numazawa, M.; Nagaoka, M.; Osawa, Y. Stereospecific Synthesis of 16α-Hydroxy-17-Oxo Sreroids by Controlled Alkaline Hydrolysis of Corresponding 16-Bromo 17-Ketones and Its Reaction Mechanism. J. Org. Chem. 1982, 47, 4024-4029.
    33. Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. TetrapropylammoniumPerruthenate, Pr4N+RuO 4-, TPAP: A Catalytic Oxidant for Organic Synthesis . Synthesis, 1994, 639-666.
    34. Chen, B.; Zhou, P.; Davis, F.; Ciganek, E. α-Hydroxylation of Enolates and Silyl Enol Ethers. Organic Reactions 2003, 62, 1-337.
    35. Liu, A.; Carlson, K.; Katzenellenbogen, J. Synthesis of High Affinity Fluorine-Substituted Ligands for the Androgen Receptor. Potential Agents for Imaging Prostatic Cancer by Positron Emission Tomograohy. J. Med. Chem. 1992, 35, 2113-2129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700