水滑石负载钯纳米晶的制备及其在Suzuki偶联反应中催化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用离子交换-水热还原方法制备了水滑石负载不同形貌钯纳米晶催化剂,并对其在Suzuki偶联反应中的催化性能及机理进行了研究。
     钯作为贵金属催化剂,广泛应用于各种有机偶联反应,尤其对偶联反应具有较好的催化效率及选择性。水滑石(LDHs)是一种以天然矿物形式存在的典型的多功能阴离子层状粘土材料,而且水滑石表面积大,价廉。论文以镁铝硝酸根水滑石(MgAl-NO3LDH)为前体,采用离子交换法制备PdCl42-插层的LDH,进而通过调节还原反应的条件(时间、温度及比例),水热还原制备了水滑石负载的不同形貌的钯纳米晶催化剂。采用了XRD, FT-IR.元素分析表征了其物相与化学组成;采用TEM、HRTEM对其结构和形貌进行了详细研究。制得水滑石负载的立方体和棒状钯纳米晶催化剂,其中立方体状的钯纳米晶暴露的是(100)晶面,而对于棒状的钯纳米晶暴露的晶面主要是侧面的(100)晶面和顶端的(111)晶面。
     TEM观察表明,水滑石对于钯纳米晶具有良好的分散作用,是分散作用良好的载体,且水滑石具有一定碱性,为催化反应提供了碱性环境。初步研究了制备的水滑石负载的不同形貌的钯纳米晶在不同条件下对Suzuki偶联反应的催化性能,经过实验发现,制得的催化剂具有比较高的催化活性,而且该催化反应是一个多相催化反应。并采用X射线光电子能谱(XPS)对Suzuki偶联反应在钯纳米晶表面的的多相催化机理进行了初步探讨,并提出了可能的多相催化机理。
In this paper, hydrotalcite supported with different morphology of nanocrystalline palladium catalysts were prepared and their catalytic properties and mechanism for suzuki cross-coupling reaction were studied.
     Palladium, a precious metal catalyst, has been widely used as a variety of catalytic organic coupling reactions with good efficiency and selectivity. Layered double hydroxides (LDHs), a family of multifunctional lamellar clays, are existed as a form of natural minerals, moreover, the hydrotalcite surface area is big and moderately-priced. With Mg2Al-NO3LDH as a precursor, PdCl42--LDH has successfully synthesized by ion exchange method. On this basis, hydrotalcite supported nanocrystalline palladium catalyst was prepared by reduction reaction, with modulated matter ratio, reaction time and temperature. The supramolecular structure and chemical composition of the resulting materials were confirmed by XRD, FT-IR and elemental analysis. TEM and HRTEM were employed to study the detailed morphology. These have been obtained for hydrotalcite supported nanocubes and nanorods palladium catalyst. Load obtained hydrotalcite nanocube and nanorod palladium catalyst, in which the nanocube crystals of palladium is exposed (100) plane, while for nanorod crystal palladium is mainly exposed the crystal (100) face of side surface and (111) face of the top.
     TEM shows that hydrotalcites can disperse well for those supported nanocrystalline palladium, and can be acted as a good carrier for dispersion. Moreover, hydrotalcite can provide a basic alkaline environment for the catalytic reaction due to the alkaline property of hydrotalcite. In this thesis, preliminary study of the catalysis for Suzuki cross-coupling reaction under different reaction state was investigated. Furthermore, heterogeneous catalytic mechanism was discussed for the Suzuki coupling reaction at the surface of nanocrystalline palladium, determined by X-ray photoelectron spectroscopy (XPS). In the experiment showed that the catalyst prepared with a relatively high catalytic activity, and the catalytic reaction is a heterogeneous catalysis. And X-ray photoelectron spectroscopy (XPS) on the Suzuki coupling reaction at the surface of nanocrystalline palladium heterogeneous catalytic mechanism was also discussed, and possible mechanism was also raised.
引文
[1]Rives V. Layered double hydroxides:Present and Future,1st edition[M]. New York: Nova Science Publishers,2001
    [2][a]Miyata S, Kumura T, Hattori H, Tanabe K. Physicochemical propertyes and structure Of magnesia-alumina[J]. Nippon Kagaku Zasshi,1971,92:514-519 [b]Taylor H F W. Segregation and cation-ordering in sjogrenite and pyroaurite[J]. Miner. Mag.,1969,37:338-342
    [3]Reichle W T. Catalytic reactions by thermally activated, synthetic anionic clay minerals[J]. J. Catal.,1985,94:547-557
    [4]Stephen P S. Catalytic cross-coupling reactions in biaryl synthesis [J]. Tetrahedron, 1998,54(2):263-303.
    [5](1) Ir ina P B. Palladium catalyzed C-C and C-heteroatom bond formation reactions [J]. Pure and Appl Chem,1997, (4):471-476. (2)Kotha S, Lahiri K, Kashinath D. Recent applications of the suzuki-miyaura cross-coupling reaction in organic synthesis [J]. Tetrahedron,2002,58:9633-9695. (3)Hassan J, Sevignon M, Gozzi C, et al. Aryl-aryl bond formation one century after the discovery of the ullmann reaction [J]. Chem. Rev.,2002,102(5):1359-1469.
    [6]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:preparation, properties and application[J]. Catal.Today,1991,11:173-301
    [7]Carrado KA, Kostapapas A, Suib SL. Layered double hydroxides (LDHs)[J]. Solid State Ionics,1988,26:77-86
    [8]Velu S, Ramaswamy V, Sivasanker S. New hydrotalcite-like anionic containing Zr4+ in the layers[J]. Chem. Commun.,1997,21:2107-2108
    [9]冯拥军,李殿卿,李春喜.Cu-Ni-Mg-Al-CO3四元水滑石的合成及结构分析[J].化学学报,2003,61:78-83
    [10]Stecher H, Hermetter A, Faber K. Mandelate racemase assayed by polarimetry, Biotecbnology Tecbniques,1998,12,257-261
    [11]Bhattacharyya A, Hall D B. Novel oligovanadate-pillared hydrotalcite[J]. Appl. Clay. Sci.,1995,10,57-67
    [12]Bhattacharyya A, Hall D B. New triborate-pillared hydrotalcite[J]. Inorg. Chem.,1992, 31,3689-3670
    [13]Chibwe K, Jones W. Synthesis of polyoxometalate pillared layered double hydroxides via calcined precursors[J]. Chem. Mater.,1989,1,489-490
    [14]Ulibarri M A, Labajos F M, Rives V, Trujillano R, Kagunga W, Jones W, Comparative-study of the synthesis and properties of vanadate-exchanged layered double hydroxides[J], Inorg. Chem.,1994,33,2592-2599
    [15]Miyata S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner.,1983,31,305-312
    [16]Zhao Y, Li F, Zhang R. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J]. Chem. Mater.,2002,14:4286-4291
    [17]Fornasari G, Gazzzano M, Matteuzzi D, Trifro F, Vaccari A. Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides[J]. Applied Clay Science,1995,10:69-82
    [18]Han S H, Zhang C G, Hou W G, Sun D J, Wang G T. Study on the preparation and structure of positive sol composed of mixed metal hydroxide[J]. Colloid Polym. Sci., 1996,274,860-865
    [19]Shen J, Guang B, Tu M and Chen Y. Preparation and characterization of Fe-MgO catalysts obtained from hydrotalcite-like compounds[J]. Catalysis Today, 1996,30,77-82
    [20]Yun S K, Pinnavaia T J. Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides[J], Chem. Mater.,1995,7,348-354
    [21]段雪,矫庆泽.全返混液膜反应器及其在制备超细阴离子层状材料中的应用[F].CN Patent,00132145.5 (2000)
    [22]杜以波.插层化学和层柱化合物的结构与性能研究[D],北京化工大学硕士研究生学位论文,1997,5
    [23]Chisem I C, Jones W, Martin I, Martin C, Rives V. Probing the surface acidity of lithium aluminium and magnesium aluminium layered double hydroxides [J]. J. Mater. Chem., 1998,8:1917-1925
    [24]Mascolo G, Marino O. A new synthesis and characterization of magnesium aluminum hydroxides [J]. Mineral. Mag.,1980,43:619-621
    [25]Takahashi, Hideo, Okada. [P]. US Patent, Kyowa Chemical Industry Co. Ltd.,6,418, 661.2002
    [26]Li L, Luo Q S, Duan X. Clean route for the synthesis of hydrotalcites and their property of selective intercalation with benzenedicarboxylate anions [J]. J. Mater. Sci. Lett.,2002, 21:439-443
    [27]任玲玲,何静,Evans, D G,段雪.谷氨酸柱撑水滑石超分子结构层柱材料的插层组装[J].高等学校化学学报,2003,24:169-173
    [28]Ren, L L, He, J, Zhang S C, Evans D G, Duan X, Ma R Y. Immobilization of penicillin gacylase in layered double hydroxides pillared by glutamate ions [J]. Journal of Molecular Catalysis:B Enzymatic,2002,18:3-11
    [29]Raki L, Rancourt D G, Detellier C. Preparation, Characterization, and Mossbauer spectroscopy of organic anion intercalated pyroaurite-layered double hydroxides [J]. Chem. Mater.,1995,7:221-224
    [30]吕亮,吾国强,段雪,李峰,杜以波.水滑石的制备,表征及其在酯交换反应中的应用[J].精细石油化工,2001,1:9-12
    [31]Younan Xia, Yujie Xiong, Byung kwonLim, and Sara E. Skrabalak. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics[J]. Angew. Chem. Int. Ed.,2009,48:60-103
    [32]a).Hillier A C, Ward M D. Atomic force microscopy of the electrochemical nucleation and growth of molecular crystals. Science.1994,263:1261-1264; b) Zhang Z, Lagally M G Atomistic processes in the early stages of thin-film growth. Science,1997, 276:377-383; c) Bruce H., Giovannini M., Bromann K., Kern K., Self-organized growth of nanostructure arrays on strain-relief patterns. Nature,1998,394:451-453;d) Yau S.-T., Vekilov P.G. Quasi-planar nucleus structure in apoferritin crystallization. Nature, 2000,406:494-497.
    [33]LaMer V.K., Dinegar R.H. Theory, production, and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc.,1950,72:4847-4854
    [34]Michel C G, Bambrick W E, Ebel R H, Larsen G, Haller G L. Reducibility of rhenium in Pt-Re/Al2O3 reforming catalysts:a temperature programmed reduction-X-ray absorption near-edge structure study[J]. J. Catal.,1995,154 (2):222
    [35]Rezgui S, Jentoft R, Gates B C. Supported Pt and Re-Pt on alumina prepared by sol-gel synthesis with in situ water formation:role of rhenium. J. Catal.,1996,16(2):496-500
    [36]Lin L W, Liang D B, Wang Q X, Cai G Y. Research and development of catalytic processes for petroleum and natural gas conversions in the Dalian Institute of Chemical Physics[J], China. Catal. Today,1999,51 (1):59-72
    [37]刘振林,伏义路.制备方法对Pd催化剂上丙烯选择性还原NO反应性能的影响.催化学报,2001,22(1):62-66
    [38]Adelman B J, Sachtler W M H. The effect of zeolitic protons on NOx reduction over Pd/ZSM-5 catalysts[J]. Applied Catalysis, B:Environmental,1997,14(1-2):1-11
    [39]Barton D G, Soled S L, Meitzner G D, Fuentes GA, I gle2 sia E. Structural and catalytic characterization of solid acids based on zirconia modified by tungsten oxide[J]. J. Catal.,1999,181 (1):57-72
    [40]魏迎旭,王公慰,刘中民,孙承林,许磊,董振武.磷铝系列分子筛催化剂的制备、表征催化丁烷转化反应的性能[J].催化学报,2001,22(1):15-17
    [41]Verykios X E, Stein F P, Coughlin R W. Influence of metal crystallite size and morphology on selectivity and activity of ethylene oxidation catalyzed by supported silver[J]. J. Catal.,1980,66 (2):368-382
    [42]Cavani F, Trifir F, Vaccari A. Hydrotalcite-type anionic clays:Preparation, properties and applications[J]. Catal. Today,1991 (11):173-299
    [43]Rives V, Kannan S. Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+andAl3+[J]. J. Mater. Chem.,2000,10 (2):489-495
    [44]Basile F, Fornasari G, Gazzano M, etal. Synthesis and thermal evolution of hydr otalcite-type compounds containing noble metals[J]. Appl. Clay Sci.,2000,16 (3-4): 185-200
    [45]a) Halperin W P. Quantum size effects in metal particles. Rev. Mod. Phys.1986,58: 533-606; b) U. Kreibig, M. Vollmer,Optical Properties of MetalClusters, Springer, New York,1995
    [46]Xiong Y J, McLellan J M., Yin Y D, and Xia Y N. Synthesis of Palladium Icosahedra with Twinned Structure by Blocking Oxidative Etching with Citric Acid or Citrate Ions[J]. Angew. Chem. Int. Ed.2007,46,790-794
    [47]Xiong Y J, Chen J Y, Wiley B, Xia Y N, Aloni S, and Yin Y D. Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size [J]. J.Am.Chem.Soc.2005,127,7332-7333
    [48]Xiong Y J. Cai H G, Benjamin J. Wiley, Wang J G, Moon J. Kim, and Xia Y N. Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods[J]. J. Am. Chem. Soc.2007,129,3665-3675
    [49]Byungkwon L, Xiong Y J, Xia Y N. A Water-Based Synthesis of Octahedral, Decahedral, and Icosahedral Pd Nanocrystals[J]. Angew.Chem.Int.Ed.,2007,46: 9279-9282
    [50]Henglein A, Giersig M. Formation of colloidal silver nanoparticles. Capping action of Citrate[J]. J. Phys. Chem. B,1999,103:9533-9539
    [51]Huang X Q, Zheng N F. One-Pot,High-YieldSynthesisof5-FoldTwinnedPdNanowiresand Nanorods[J], J. Am. Chem. Soc.,2009,131:4602-4603
    [52]Xiong Y J, Cai H G, Wiley B J, Wang J G, Kim M J, and Xia Y N. Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods[J]. J. Am. Chem. Soc.2007, 129:3665-3675
    [53]Piao Y.Z, Jang Y.J, Shokouhimehr M, Lee I.S, Hyeon T. Facile Aqueous-Phase Synthesis of Uniform Palladium Nanoparticles of Various Shapes and Sizes[J]. Small,2007,2: 255-260
    [54]Xiong Y J, Washio I, Chen J Y, Cai H.G, Li Z.Y, Xia Y.N. Poly(vinylpyrroiidone):A Dual Functional Reductant and Stabili aer for the Facile Synthesis of Noble Metal Nanoplates in Aqueous Solutions[J]. Langmuir 2006,22:8563-8570
    [55]Xiong Y, McLellan J.M, Chen J, Yin Y, Li Z-Y, Xia Y. Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Pd and Their SPR/SERS Properties[J]. J. Am. Chem. Soc.,2005,127(48):17118-17127.
    [56]XiongY J, Chen J Y, Wiley B, Xia Y, Yin Y, Li Z-Y. Size-Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process[J]. Nano. Lett.,2005,5(7):1237-1242.
    [57]Berhault G, Bausach M, Bisson L, Becerra L, Thomazeau C, Uzio D. Seed-Mediated Synthesis of Pd Nanocrystals:Factors Influencing a Kinetic-or Thermodynamic-Controlled Growth Regime, J. Phys. Chem. C,2007,111(16):5915-5925.
    [58]Chang G, Oyata M, Hirao K. Facile synthesis of monodisperse palladium nanocubes and the characteristics of self-assembly [J]. Acta. Mater.,2007,55(10):3453-3456.
    [59]Niu W.X, Li Z-Y, Shi L.H, Liu X.Q, Li H.J, Han S, Chen J, and Xu G.B, Seed-Mediated Growth of Nearly Monodisperse Palladium Nanocubes with Controllable Sizes[J]. Crysta Growth & Design,2008,12:4440-4444
    [60]张祥征,李殿卿等.PdCl4配离子插层类水滑石的组装及其结构特征[J].无机化学学报,2004,20(3):267-272
    [61]Miyaura N, Yanagi T, Suzuki A. The Palladium-catalyzed cross-coupling reaction of Phenylboronie acid with haloarenes in the Presence of based [J]. Synth. Commun.,1981, 11:513-515
    [62]Francisco A, Irina P B, Migue Y. Nonconventional methodologies for transition metal cata-lyzed carbon carbon coupling:A critical over view. Part 2:The Suzuki reaction[J]. Tetrahedron,2008,64:3047-3101.
    [63]Miyaury N. Cross-coupling reaction of organoboron compounds via base-assisted transmetalation to palladium(Ⅱ) complexes[J]. Journal of Organometallic Chemistry, 2002,653:54-57.
    [64]Martin A R, Yang Y, Palladium-catalyzed cross-coupling reaetions of organoboronic acids with organic eleetrophiles [J]. Acta Chem. Scand.,1993,47(3):221-230.
    [65]Marck G, Villiger A, Bueheeker R. Aryl Couplings with Heterogeneous Palladium Catalysts[J]. Tetrahedron Lett.,1994,35(20):3277-3280
    [66]LeBlond C R, Andrews A T, Sun Y, Sowa J R Jr. Activation of Aryl Chlorides for Suzuki Cross-Coupling by Ligandless, Heterogeneous Palladium[J]. Org. Lett.,2001,3: 1555-1557.
    [67]Tagata T, Nishida M, Palladium Chareoal-Catalyzed Suzuki-Miyaura Coupling To Obtain Arylpyridines and Atylquinolines, J. Org. Chem.[J],2003,68(24):9412-9415
    [68]Villemin D, Caillot F. Microwave mediated palladium-catalyzed reactions on potassium fluoride/alumina without use of solvent[J]. Tetrahedron Lett.2001,42,639-642.
    [69]Kabalka G W, Pagni R M, eta. Solventless Suzuki Coupling Reaetionson Palladium-Doped KF/Al2O3[J], Org. Lett.,1999,1(9):1423-1425.
    [70]Stevens P D, Fan J D, Gao Y, etal. Superparamagnetic nanopartiele-supported catalysis of Suzuki cross-coupling reaetions[J], Org. Lett.,2005,7(11):2085-2088
    [71]Andrzej G, Jozef J, Trzeeiak A, etal. Palladium nanopartieles supported on alumina-based oxides as heterogeneous catalysts of the Suzuki-Miyaura reaetion[J], Journal of Catalysis,2008,254(2):121-130.
    [72]Corma A, Garcia H, Leyva A. Bifunctional palladium-basic zeolites as catalysts for the Suzuki reaction[J]. Appl. Catal. A:Gen.,2002,236:179-185.
    [73]Bulut H, Artok L, Yilmaz S. Tetrahedron Lett.,2003,44:289.
    [74]Artok L, Bulut H. Heterogeneous Suzuki reactions catalyzed by Pd(0)-Y zeolite[J]. Tetrahedron Lett.,2004,45(2):3881-3884.
    [75]Kosslick, H.; Mo'nnich, I.; Paetzold, E.; Fuhrmann, H.; Fricke, R; Muller, D.; Oehme, G. Suzuki reaction over palladium-complex loaded MCM-41 catalysts, Microporous Mesoporous Mater[J].2001,44-45:537-545.
    [76]Paetzold E,Oehme G, Fuhrmann H, Richter M, Eckelt R, Pohl, M M, Kosslick H. Comparison of mesoporous silica and alumina supports for palladium-catalyzed carbon-carbon coupling reactions:unexpected high acceleration by supported cetyltrimethylammonium bromide[J]. Microporous Mesoporous Mater.2001,44-45: 517-522.
    [77]Crudden C M, Sateesh M, Lewis R. Mercaptopropyl-Modified Mesoporous Silica:A Remarkable Support for the Preparation of a Reusable, Heterogeneous Palladium Catalyst for Coupling Reactions[J]. J. Am. Chem. Soc.,2005,127:10045-10050.
    [78]Bedford R B, Singh U G., Walton R I, Williams R T. Davis S A. Nanoparticulate palladium supported by covalently modified silicas:synthesis, characterization, and application as catalysts for the Suzuki coupling of aryl halides[J]. Chem. Mater.2005, 17(4):701-707.
    [79]Shimizu, K.-i.; Maruyama, R.; Komai, S.-i.; Kodama, T.; Kitayama, Y. Pd-sepiolite catalyst for Suzuki coupling reaction in water:Structural and catalytic investigations[J]. Catal.2004,227(1):202-209.
    [80]Choudary B.M., Madhi S, Chowdar N.S, Kantam M.L, and Sreedhar B, Layered double hydroxide sSupported nanopalladium catalyst for Heck-,Suzuki-, Sonogashira-, and Stille-Type coupling reactions of chloroarenes[J]. J. Am. Chem. Soc.,2002, 124:14127-14136
    [81]Kantam M L, Subhas M S, Roy S, Roy M. Layered double-hydroxide-supported nanopalladium:an efficient and reusable catalyst for suzukicoupling of aryl iodides and bromides at room temperature[J]. Synlett.2006,4,:633-635
    [82]Mora M, Jimenez-Sanchidridn C, Ruiz J R. Heterogeneous suzuki cross-coupling reactions over palladium/hydrotalcite catalysts[J]. Journal of Colloid and Interface Science,2006,302:568-575
    [83]Gniewek A, Anna M.Trzeciak, etc. Pd-PVP colloid as catalyst for Heck and carbonylation reactions:TEM and XPS studies[J]. Journal of Catalysis, 2005,229:332-343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700