镍催化Suzuki-Miyaura反应方法学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Aryl-aryl键的建立是目前有机合成中构建分子的最重要的手段之一。以过渡金属钯和镍为催化剂的Suzuki交叉偶联反应是构建aryl-aryl键最有效的方法之一。该反应具有底物选择性较广,反应条件温和,后处理容易等优点。与钯催化剂相比较,镍催化剂具有热稳定性好、催化效率高、价格低廉,适用范围广等特点。因此,以镍催化剂取代钯催化剂催化Suzuki交叉偶联反应具有重要的现实意义。
     本文研究了镍催化剂NiCl_2(dppp)催化下的溴代和氯代芳烃与芳基硼酸的Suzuki交叉偶联反应。实验发现,镍催化剂NiCl_2(dppp)能非常高效的催化溴代和氯代芳烃的Suzuki–Miyaura交叉偶联反应,催化剂用量少(仅为1%),且不需外加配体。
     同时,本文研究了双(2-氧代-3-恶唑烷基)次磷酰氯(BOP-Cl)作为活化试剂活化的酚类与芳基硼酸的Suzuki–Miyaura偶联反应。BOP-Cl活化的酚类在NiCl_2/dppp催化体系下能够顺利的与芳基硼酸发生Suzuki–Miyaura偶联反应,生成联苯类化合物。这是该类化合物第一次应用在Suzuki–Miyaura偶联反应上。
The establishment of the sp2sp2 C?C bond formation is the organic synthesis of molecules of building one of the most important instruments. The transition-metal-catalyzed cross-coupling is an exceedingly powerful tool for the sp2?sp2 C-C bond formation. The reaction selectivity wider with substrate, mild reaction conditions and post-processing easy, etc. Compared with the palladium catalyst, nickel catalyst has good thermal stability, high catalytic efficiency and low prices, applicability etc. Characteristics. Therefore, in nickel catalyst replace palladium catalyst Suzuki cross coupling reaction has the important practical significance.
     This paper studies that NiCl_2(dppp) catalyst is a highly active, universally applicable, cheap, and stable catalyst for Suzuki-Miyaura cross-coupling of aryl halides with a catalyst loading of lower than 1 mol %, in the absence of extra supporting ligands.
     At the same time, this paper have presented a new strategy for phenol activation by using BOP-Cl(Bis(2-oxo-3-oxazolidinyl) and have demonstrated for the first time that Suzuki–Miyaura couplings of the derived aryl BOPs can be an efficient and broadly applicable method for the synthesis of biaryls.
引文
[1] Miyaura N,Yamada, K,Suzuki A. Tetrahedron Lett.,1979,3437
    [2] (a)Miyaura N, Suzuki A. Chem. Rev.,1995,95(7): 2457–2483. (b)Suzuki A. [J]. J. Organomet. Chem.,1995–1998,1999,576:147–168. (c)Kotha S,Lahiri K,Kashinath D. Tetrahedron,2002,58:9633–9695. (d)Hassan J,Sevignon M,Gozzi C,et al. Chem. Rev.,2002,102(5):1359–1469.
    [3] Percec V,Bae J Y,Hill D H. J. Org. Chem.,1995,60(4):1060–1065.
    [4] Saito S,Sakai M,Miyaura N. Tetrahedron Lett.,1996,37(17):2993–2996.
    [5] Tang Z Y,Hu Q S. J. Org. Chem.,2006,71(5):2167–2169.
    [6] Saito S,Saori Oh–tani,Miyaura N. J. Org. Chem.,1997,62(23):8024–8030.
    [7] Indolese A F. Tetrahedron Lett.,1997,38(20):3513–3516.
    [8] Inada K,Miyaura N. Tetrahedron,2000,56:8657–8660.
    [9] Leadbeater N E,Resouly S M. Tetrahedron,1999,55:11889–11894.
    [10] Galland J C,Savignac M,Genet J P. Tetrahedron Lett.,1999,40:2323–2326.
    [11] Griffiths C,Leadbeater N E. Tetrahedron Lett.,1999,41:2487–2490.
    [12] Zim D,Monteiro A L. Tetrahedron Lett.,2002,43:4009–4011.
    [13] Kobayashi Y,Mizojiri R. Tetrahedron Lett.,1996,37(47):8531–8534.
    [14] Ueda M,Saitoh A,Saori,et al. Tetrahedron,1998,54:13079–13086
    [15] Zim D,Lando V R,Dupont J,et al. Org. Lett.,2001,3(19):3049–3051
    [16] Z.-Y. Tang, Q.-S. Hu, J. Am. Chem. Soc. 2004, 126, 3058
    [17] V. Percec, G. M. Golding, J. Smidrkal, O. Weichold, J. Org. Chem. 2004, 69, 3447-3452
    [18] M. Tobisu, T. Shimasaki, N. Chatani, Angew. Chem. 2008, 120, 4944; Angew. Chem., Int. Ed. 2008, 47, 4866.
    [19] K. W. Quasdorf, X. Tian, N. K. Garg, J. Am. Chem. Soc. 2008, 130, 14422
    [20] B.-T. Guan, Y. Wang, B.-J. Li, D.-G. Yu, Z.-J. Shi, J. Am. Chem. Soc. 2008, 130, 14468
    [21] K. W. Quasdorf, M. Riener, K. V. Petrova, N. K. Garg, J. Am. Chem. Soc. 2009, 131, 17748
    [22] A. Antoft-Finch, T. Blackburn, V. Snieckus, J. Am. Chem. Soc. 2009, 131, 17750
    [23] A. L. Hansen, J.-P. Ebran, T. M. G?gsig, T. Skrydstrup, J. Org. Chem. 2007, 72, 6464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700