熔盐法合成钨、钼酸盐荧光材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土离子掺杂的无机荧光材料广泛应用于照明光源、显示设备、传感器、高能物理、生物医学等领域。本论文采用熔盐法合成了多种稀土离子掺杂的可被紫外光或蓝光有效激发的荧光材料,如发红光的AMoO_4: Eu~(3+), Li~+ ( A = Ca, Sr )、EuLiM_2O_8( W = Mo, W )、Y_2O_3:Eu~(3+),及发黄光的Y_3Al_5O_(12):Ce~(3+)(YAG:Ce)。通过XRD、SEM、激发光谱和发射光谱等手段,对样品物相、微观形貌及发光性能进行测试与表征,研究了熔盐种类、熔盐用量、反应温度和反应时间等实验参数对荧光粉的组成、形貌以及发光性能的影响。具体的研究结果如下:
     1.在熔盐环境中,成功地制备了八面体形状的AMoO_4:Eu~(3+), Li~+(A=Ca, Sr)和EuLiM_2O_8(M=Mo, W),纤维状的SrMoO_4:Eu~(3+), Li~+,棒状的EuLiM_2O_8(M=Mo, W),球形的Y_2O_3:Eu~(3+)和YAG:Ce~(3+)等多种形貌的荧光粉。
     2.八面体形状在800°C的氯化钠熔盐中制得,纤维状在900°C的氯化钾中合成,棒状在800°C的氯化钾熔盐中得到,球形的Y_2O_3:Eu~(3+)在1100°C的硫酸锂中制得。制备YAG:Ce~(3+)时,以磷酸钾为添加剂,以氯化钾为熔盐,在1200°C合成。随着温度的升高和熔盐用量的增加,钨钼酸盐荧光粉的形貌逐渐变成不规则片状。
     3.荧光性能测试表明,随着反应温度的升高,由于Eu~(3+)进入基质晶格的难度变大,Eu~(3+)的特征发射减弱,钼酸钙基质的本征发射增强,CaMoO_4:Eu~(3+), Li~+的发光强度下降。在EuLiM_2O_8荧光粉体系中,棒状比八面体状样品的发光强度要高。在Y_2O_3: Eu~(3+)体系中,硫酸盐熔盐比氯化物熔盐中所得样品的发光亮度明显高,硫酸锂熔盐中制得样品的发光亮度最高。对于YAG:Ce荧光粉,用氯化钠+氯化钾复合熔盐合成的样品由于形貌均匀,而且发光亮度比单一熔盐合成的样品亮度高。
Rare earth doped fluorescent materials are widely used in lighting, display devices, sensors, high-energy physics, biomedical and other fields. The red phosphors AMoO_4:Eu~(3+), Li~+(A=Ca, Sr), EuLiM_2O_8(W =Mo, W), Y_2O_3:Eu~(3+) and the yellow white LED phosphor Y_3Al_5O_(12):Ce~(3+)(YAG:Ce) synthesized by molten salt method can be effectively excited by ultraviolet light or blue light and emit fluorescence with high intensity.. The growth of fluorescent material crystals in molten salt can be controlled by adjusting the type and the amount of molten salts, reaction temperature and reaction time. The influence of experimental conditions on composition, morphology and luminescence properties of samples has been investigated by XRD, SEM, excitation and emission spectra. Specific conclusions are as follows:
     1. In molten salt environment, octahedral particles AMoO_4:Eu~(3+), Li~+(A=Ca, Sr) and EuLiM_2O_8(W=Mo, W), fibrous SrMoO_4:Eu~(3+), Li~+, rod EuLiM_2O_8(W=Mo, W), spherical Y_2O_3:Eu~(3+) and spherical YAG phosphors have been successfully synthesized.
     2. Octahedral shape of phosphor crystals have been obtained in NaCl at 800°C, fibrous and rod-like phosphor crystals have been prepared in KCl respectively at 900°C and 800°C. Spherical Y_2O_3:Eu~(3+) particles have been fabricated in Li_2SO_4 at 1100°C. Globular YAG:Ce~(3+) crystals have been obtained in KCl with K3PO4 as a additive at 1200°C. With the temperature and molten salt content increasing, the morphology of tungsten molybdate phosphors has changed to be irregular flakes.
     3. It is observed that the fluorescence intensity of CaMoO_4:Eu~(3+), Li~+ decreases with the increase of the reaction temperature. It is supposed that it is difficult for Eu~(3+) to enter the lattice of host CaMoO_4 at high temperature. Therefore, the characteristic emission of Eu~(3+) decreases whereas the intrinsic emission of molybdate calcium increases. In EuLiM_2O_8 phosphor system, the luminous intensity of rod-shaped samples is higher than that of octahedral samples. In Y_2O_3:Eu~(3+) system, the brightness of the samples obtained in sulfate is higher than that in chloride. The sample Y_2O_3:Eu~(3+) synthesized in Li_2SO_4 shows the highest brightness compared to those synthesized in other molten salts. As for the YAG:Ce phosphor, the sample with homogeneous morphology obtained in the complex molten salt of NaCl and KCl has higher brightness than that synthesized in single molten salt.
引文
[1]徐叙瑢,苏勉增.发光学与发光材料[M].北京:化学工业出版社, 2004, 2
    [2]Koedam M, Opstelten J J. Measurement and computer-aided optimization of spectral power distributions[J]. Lighting Research Technology. 1971, 3(3): 205-210
    [3]Verstegen J M P J, Radielovic D, Vrenken L, et al. A New generation of "deluxe" fluorescent lamps, combining an efficacy of 80 lumens/W or more with a color rendering index of approximately 85[J]. Journal of the Electrochemical Society, 1974, 121(12): 1627-1631
    [4]Cees Ronda. Luminescence From Theory to Applications[M]. Federal Republic of Germany: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, 3
    [5]Joffin N, Ghys J D, Verelst M, et al. The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis[J]. Journal of Luminescence, 2005, 113(3-4): 249-257
    [6]Dosi Dosev, Guo Bing, kennedy Ian M . Photoluminescence of Eu3+: Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis[J]. Journal of Aerosol Science, 2006, 37(3): 402-412
    [7]Wu Zhisen, Dong Yan, Jiang Jianqing. Synthesis of BaMgAl10O17: Eu2+ particles with small grain size and regular morphology[J]. Journal of Alloys and Compounds, 2009, 467: 605-610
    [8]Lei Fang, Yan Bing. Solid-state synthesis, characterization and luminescent properties of Eu3+-doped gadolinium tungstate and molybdate phosphors:Gd(2-x)MO6:Eux3+(M=W, Mo)[J]. Journal of Solid State Chemistry, 2008, 181: 2845-2851
    [9]Yuan Shuanglong, Yang Yunxia, Zhang Xianghua, et al. Eu2+ and Mn2+ codoped Ba2Mg(BO3)2 - new red phosphor for white LEDs[J]. Optics Letters, 2008, 33(23): 2865-2867
    [10]Peng Tianyou, Yang Huanping, Pu Xuli, et al. Combustion synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor nanoparticles[J]. Journal of Materials Letters, 2004, 58(3-4): 352-356
    [11]Talwar G J, Joshi C P, Moharil S V, et al. Combustion synthesis of Sr3MgSi2O8: Eu2+ and Sr2MgSi2O7: Eu2+ phosphors[J]. Journal of Luminescence, 2009, 129(11): 1239-1241
    [12]Xu Mei, Zhang Weiping, Dond Ning, et al. Preparation and characterization of optical spectroscopy of Lu2O3: Eu nanocrystals[J]. Journal of Solid State Chemistry, 2005, 178: 477-482.
    [13]Gu Jianfeng, Yan Bing. Hydrothermal synthesis and luminescent properties of Ca2V2O7: Eu3+ phosphors. Journal of Alloys and Compounds, 2009, 476(1-2): 619-623
    [14]Yu Lixin, Song Hongwei, Lu Shaozhe, et al. Influence of shape anisotropy onphotoluminescence characteristics in LaPO4: Eu nanowires[J]. Journal of Chemical Physics Letters, 2004, 399: 384–388
    [15] Pan Yuexiao, Tao Lili, Yang Chenghao, et al. Sol-gel Synthesis of Er3+ and Ho3+Respectively Doped Gd2(MoO4)3 Upconversion Luminescent Nanocrystals[J]. Journal of Rare Metal Material and Engineering, 2008, 37(2): 269-272
    [16]Zhu Peifen, Di Weihua, Zhu Qiren. Luminescent properties and thermal stability of BaMgAl10O17: Eu2+ synthesized by sol-gel route[J]. Journal of Alloys and Compounds, 2008, 454: 245-249
    [17]Katelnikovas A, Bettentrup H, Uhlich D, et al. Synthesis and optical properties of Ce3+-doped Y3Mg2Al2SiO12 phosphors[J]. Journal of Luminescence, 2009, 129: 1356-1361
    [18]Pénard Anne-Laure, Gacoin Thierry, Jean-Pierre Boilot. Functionalized Sol-Gel Coatings for Optical Applications[J]. Journal of Account Chemical Research, 2007, 40(9): 895-902
    [19]Zhao Chunlei, Hu Yunsheng, Zhuang Weidong, et al. Luminescence modification of Eu3+ activated molybdate phosphor prepared via co-precipitation[J]. Journal of Rare Earths, 2009, 27(5): 758-760
    [20]Yang Yuling, Li Xueming, Feng Wenlin, et al. Effect of surfactants on morphology and luminescent properties of CaMoO4: Eu3+ red phosphors. Journal of Alloys and Compounds, 2011, 509(3): 845-848
    [21]Zhang Zhanhui, Wang Yuhua. Enhanced emission and improved thermal stability of BaMgAl10O17: Eu2+ phosphor via additional Mg2+ doping[J]. Materials Letters, 2007, 61: 4128-4130
    [22]Hu Xuefang, Yan Shirun, Ma Lin, et al. Preparation of LaPO4: Ce,Tb phosphor with different morphologies and their fluorescence properties[J]. Powder Technology, 2009, 192: 27-32
    [23]Thongtem Titipun, Phuruangrat Anukorn, Thongtem Somchai. Characterization of MMoO4 (M=Ba, Sr and Ca) with different morphologies prepared using a cyclic microwave radiation[J]. Materials Letters, 2008, 62: 454-457
    [24]Sundar S, Manoharana, Goyal Supriya, et al. Microwave synthesis and characterization of doped ZnS based phosphor materials[J]. Materials Research Bulletin, 2001, 36: 1039-1047
    [25]Ryua Jeong Ho, Yoona Jong Won, Lim Chang Sung, et al. Microwave-assisted synthesis of CaMoO4 nano-powders by a citrate complex method and its photoluminescence property[J]. Journal of Alloys and Compounds, 2005, 390: 245-249
    [26]Park W J, Jung M K, Masaki T. Characterization of YVO4: Eu3+, Sm3+ red phosphor quick synthesized by microwave rapid heating method[J]. Materials Science and Engineering B, 2008, 146: 95-98
    [27]Kanga Yun Chan, Rohb Hyun Sook, Park Seung Bin, et al. Use of LiCl flux in the preparation of Y2O3:Eu phosphor particles by spray pyrolysis[J]. Journal of the EuropeanCeramic Society, 2002, 22: 1661-1665
    [28]Wang L S, Zhou Y H, Quan Z W, et al. Formation mechanisms and morphology dependent luminescence properties of Y2O3: Eu phosphors prepared by spray pyrolysis process[J]. Materials Letters, 2005, 59: 1130-1133
    [29]Lee Sang Ho, Koo Hye Young, Lee Su Min, et al. Characteristics of Y3Al5O12: Ce phosphor powders prepared by spray pyrolysis from ethylenediaminetetraacetic acid solution[J]. Ceramics International, 2010, 36: 611-615
    [30] López R, Zárate J, Aguilar E A, et al. Preparation of neodymium-doped yttrium aluminum garnet powders and fibers[J]. Journal of Rare Earths, 2008, 26(5): 670-673
    [31]Yin S, Shinozaki M, Sato T. Synthesis and characterization of wire-like and near-spherical Eu2O3-doped Y2O3 phosphors by solvothermal reaction[J]. Journal of Luminescence, 2007, 126 : 427-433
    [32]Liang Yujun, Liu Rong, Yan Wenshuai, et al. Molten Salt Synthesis and Photoluminescence of YVO4: Eu Microcrystalline Phosphors[J]. Advanced Materials Research, 2009, 66: 65-68
    [33]Liu Ye, Ma Junfeng, Dai Changdong, et al. Low-Temperature Synthesis of YVO4 Nanoparticles and their Photocatalytic Activity[J]. Journal of American Ceramics Society, 2009, 92(11): 2791-2794
    [34]Huang Yan, Ye Hongqi, Zhuang Weidong, et al. Preparation of Y2O3: Eu3+ phosphor by molten salt assisted method[J]. Transactions Nonferrous Metals Society of China, 2007, 17: 644-648
    [35]Zych E, Walasek A, Trojan-Piegza J, et al. Fabrication of submicron-sized oxide phosphors and their spectroscopic properties[J]. Radiation Measurements, 2007, 42: 894-898
    [36]Wang Yonggang, Ma Junfeng, Tao Jiantao, et al. Low temperature synthesis of CaMoO4 nano particles[J]. Ceramics International, 2007, 33: 693-695
    [37]Wang Yonggang, Ma Junfeng, Tao Jiantao, et al. Synthesis of CaWO4 nanoparticles by a molten salt method[J]. Materials Letters, 2006, 60: 291-293
    [38]Jiang xiaohui, Ma Junfeng, Liu Jun, et al. Synthesis of ZnWO4 nano-particles by a molten salt method[J]. Materials Letters, 2007, 61: 4595-4598
    [39]Trojan-Piegza J, Zych E. Preparation of nanocrystalline Lu2O3: Eu phosphor via a molten salts route[J]. Journal of Alloys and Compounds, 2004, 380: 118-122
    [40]Yu Quanmao, Liu Yufeng, Wu Shan, et al. Luminescent properties of Ca2SiO4: Eu3+ red phosphor for trichromatic white light emitting diodes[J]. Journal of Rare Earths, 2008, 26(2): 783-786
    [41]Wang Yinzhen, He Qinyu, Chu Benli. Synthesis and characterization of Ce-doped Lu2SiO5 powders by the solid-state reaction with Li2SO4 flux[J]. Journal of Alloys and Compounds, 2009, 479: 704-706
    [42]Zhu Peifen, Zhu Qiren, Zhu Hongyang, et al. Effect of SiO2 coating on photoluminescenceand thermal stability of BaMgAl10O17: Eu2+ under VUV and UV excitation[J]. Optical Materials, 2008, 30: 930-934
    [43]Yan Xiaosong, Li Wanwan, Sun Kang. Preparation and luminescent properties of a novel red emitting phosphor of Ca1-2xMxIn2O4: xEu3+(M=Li, Na, K) for white LED solid-state lighting[J]. Journal of Alloys and Compounds, 2010, 508: 475-479
    [44] Lua Chung-Hsin, Huang Chien-Hao, Cheng Bing-Ming, et al. Synthesis and luminescence properties of microemulsion-derived Y3Al5O12: Eu3+ Phosphors[J]. Journal of Alloys and Compounds, 2009, 473: 376-381
    [45]彭子飞,余军保,罗彩芹等.燃烧法制备Zn2SiO4: Eu3+红色荧光粉及其发光性能[J].中国稀土学报, 2008, 26(2): 828-832
    [46]Fu Yenpei, Wen Shaw-Bing, Hsu Chin-Shang. Preparation and characterization of Y3Al5O12: Ce and Y2O3: Eu phosphors powders by combustion process[J]. Journal of Alloys and Compounds, 2008, 458: 318–322
    [47]He Fei, Yang Piaoping, Niu Na, et al. Hydrothermal synthesis and luminescent properties of YVO4: Ln3+(Ln = Eu, Dy, and Sm) microspheres[J]. Journal of Colloid and Interface Science, 2010, 343: 71-78
    [48]Jin Ye, Zhang Jiahua, LüShaozhe, et al. Fabrication of Eu3+ and Sm3+ Codoped Micro/Nanosized MMoO4(M=Ca, Ba, and Sr) via Facile Hydrothermal Method and Their Photoluminescence Properties through Energy Transfer[J]. J. Phys. Chem. C, 2008, 112(15): 5860 -5864
    [49]雷芳,徐崇福,杨敏丽等.溶胶-凝胶法合成蓝色荧光粉SrAl2Si2O8: Eu2+[J].发光学报, 2006, 27(4):479-483
    [50]Zhai Yongqing, Yao Zihua, Ding Shiwen et al. Synthesis and characterization of Y2O3: Eu nanopowder via EDTA complexing sol-gel process[J]. Materials Letters, 2003, 57: 2901-2906
    [51]Yi Guangshun, Lu Huachang, Zhap Shuying, et al. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4: Yb, Er Infrared-to-Visible Up-Conversion Phosphors[J]. Journal of Nano Letters, 2004, 4(11): 2191-2196
    [52]Afanasiev P, Geantet C. Synthesis of solid materials in molten nitrates[J]. Coordination Chemistry Reviews, 1998, 178-180: 1725-1752
    [53]Teshima Katsuya, Lee SunHyung, Mizuno Yusuke et al. Environmentally Friendly Growth of Well-Developed LiCoO2 Crystals for Lithium-Ion Rechargeable Batteries Using a NaCl Flux[J]. Journal of Crystal Growth Design, 2010, 10 (10): 4471-4475
    [54]Du Ke, Peng Zhongdong, Hu Guorong, et al. Synthesis of LiMn1/3Ni1/3Co1/3O2 in molten KCl for rechargeable lithium-ion batteries[J]. Journal of Alloys and Compounds, 2009, 476: 329-334
    [55]Ghallali H El, Groulta H, Barhoun A, et al. Electrochemical synthesis of Ni-Sn alloys in molten LiCl-KCl[J]. Electrochimica Acta, 2009, 54: 3152-3160
    [56]Baral Antara, Varma K.B.R. Low temperature molten-salt synthesis of nanocrystalline cubic Sr2SbMnO6[J]. Journal of Solid State Chemistry, 2009, 182: 3282-3288
    [57]Xu Chengyan, Zhen Liang, Yang Rusen, et al. Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction[J]. Journal of American Chemistry Society, 2007, 129(50): 15444 -15445
    [58]Li Lihong, Deng Jinxia, Chen Jun, et al. Wire Structure and Morphology Transformation of Niobium Oxide and Niobates by Molten Salt Synthesis[J]. Journal of Chemistry Materials, 2009, 21(7): 1207-1213
    [59] Zhang Xianke, Tang Shaolong, Zhai Lin, et al. A simple molten salt method to synthesize single-crystalline potassium titanate nanobelts[J]. Materials Letters, 2009, 63: 887-889
    [60]Ito Yoshiho, Shimada Shiro, Inagaki Michio. Molten-salt synthesis of Ba1-xPbxTiO3 / BaTiO3, composites with controlled compositions[J]. Solid State Ionics, 1997,101-103: 1135-1140
    [61] Kan Yanmei, Jin Xihai, Wang Peiling Wang. Anisotropic grain growth of Bi4Ti3O12 in molten salt fluxes[J]. Materials Research Bulletin, 2003, 38: 567-576
    [62]聂建华,张寒,徐满等.熔盐法合成莫来石晶须[J].稀有金属材料与工程, 2009, 38(2): 1154-1157
    [63]Jin Xihai, Gao Lian. Size Control ofα-Al2O3 Platelets Synthesized in Molten Na2SO4 Flux[J]. Journal of American Ceramics Society, 2004, 87(4): 533-540
    [64]陈浩,王玺堂,代军.熔盐法制备氧化镁粉体及其反应机理研究[J].矿冶工程, 2010, 30(2): 89-92
    [65] Fang Lei, Bing Yan, Haohong Chen and Jingtai Zhao. Molten Salt Synthesis, Characterization, and Luminescence Properties of Gd2MO6:Eu3+(M=W, Mo) Phosphors. Journal of American Ceramics Society. 2009, 92(6): 1262-1267.
    [66]Yan Bing, Lei Fang. Molten salt synthesis, characterization and luminescence of ZnWO4: Eu3+ nanophosphor[J]. Journal of Alloys and Compounds, 2010, 507(2): 460-464.
    [67]黄燕,胡运生,赵春雷等.共沉淀-熔盐焙烧法制备Y2O3:Eu及其发光性能的研究[J].中国稀土学报. 2007, 25(2): 157-161
    [68]Wu Xiaoyong, Liang Yujun, Liu Rong, et al. The photoluminescence properties of Y2O3: Eu3+ prepared by surfactant assisted co-precipitation-molten salt synthesis[J]. Materials Research Bulletin. 2010, 45(5): 594-597
    [69]Liang Yujun, Liu Rong, Yan Wenshuai, et al. Molten Salt Synthesis and Photoluminescence of YVO4: Eu Microcrystalline Phosphors[J]. Advanced Materials Research, 2009, 66: 65-68
    [70]刘蓉,梁玉军,吴晓勇等. YVO4: Sm3+红色发光材料的熔盐法合成与光谱性能[J].高等学校化学学报, 2009, 30(11): 2127-2130
    [71]黄燕.熔盐法制备Y2O3: Eu3+及YAG: Ce3+荧光粉新工艺研究[D]. 2007,中南大学
    [72]袁乐,徐华蕊.水热均匀沉淀-熔盐煅烧法制备YAG: Ce3+荧光粉及其发光性能的研究[J].材料导报, 2009, 23(9): 18-21
    [73]刘子峰,王昕,柯于林等.熔盐法合成磷酸镧粉体及其形貌[J].硅酸盐学报, 2008, 36(5): 720-723
    [74]余泉茂,刘中仕,荆西平.场发射显示器( FED)荧光粉的研究进展[J].液晶与显示, 2005, 20(1): 7-17
    [75]Wang Jiaguo, Jing Xiping, Yan Chunhua, et al. Ca1-2xEuxLixMoO4: A novel red phosphor for solid state lighting based on a GaN LED[J]. Journal of the Electrochemical Society, 2005, 152(3): G186-G188
    [76]Hu Yunsheng, Zhuang Weidong, Ye Hongqi, et al. A novel red phosphor for white light emitting diodes[J]. Journal of Alloys and Compounds, 2005, 390: 226-229
    [77]Tian Lianhua, Yang Ping, Wu Hao, et al. Luminescence properties of Y2WO6: Eu3+ incorporated with Mo6+ or Bi3+ ions as red phosphors for light-emitting diode applications[J]. Journal of Luminescence, 2010, 130: 717-721
    [78]Gao Li, Ge Xin, Chai Zhanli, et al. Shape-Controlled Synthesis of Octahedralα-NaYF4 and Its Rare Earth Doped Submicrometer Particles in Acetic Acid[J]. Nano Research, 2009, 2: 565-574
    [79]魏代玲,甘自保,张旭等.溶剂热法制备硒化铅亚微米八面体[J].化学工程师, 2010, 176(5): 17-18
    [80]李志利,盖利刚,张伟等.水热法制备八面体Fe3O4亚微米晶及其影响因素[J].材料导报, 2010, 24(5): 33-37
    [81]Wang Zhonglin. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies[J]. Journal of the Physical Chemistry B, 2000, 104 (6): 1153-1175
    [82]王稼国.近紫外线激发的荧光材料的研究[D].北京:北京大学, 2005
    [83]孙家跃,肖昂,夏志国等.阴极射线荧光粉的研究进展和应用[J].北京工商大学学报(自然科学版), 2003, 21(4): 1-10
    [84]邓新荣,胡国荣,彭忠东等. PDP用红色荧光粉的研究进展[J].材料导报, 2006, 20(6): 04-34
    [85]李军建,成建波,刘诗逸等.超细Y2O3: Eu3+荧光粉的制备及其阴极射线发光研究[J].真空科学与技术, 2002, 22(3): 213-216
    [86]胡晓珊,秦毅红,黄小卫等. Y2O3: Eu3+荧光粉表面包覆In2O3的研究[J].中国稀土学报, 2006, 24(3): 284-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700