钼酸盐纳米材料的制备及相关性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年,可控合成具有特定形貌和尺寸的功能纳米材料由于其在光电,磁性,机械等领域的潜在应用价值引起了人们越来越多的兴趣。
     金属钼酸盐由于其独特的晶体结构和物理性质而在非常多的领域都有广泛的应用潜力,如光致发光,微波器件,光学纤维,闪烁材料,湿敏器件,催化剂等。因此有关金属钼酸盐的制备技术和应用研究,成为人们非常感兴趣的课题。
     本论文选取钼酸亚铁、钼酸钾和钼酸镉纳米材料为研究对象,通过对合成方法和反应条件的研究,探索过程简便、条件温和,成本低廉的新途径,实现对钼酸盐材料的微观结晶形貌的可控合成;对合成的钼酸盐材料进行了各种性能测试。
     本文的主要研究内容包括:
     (1)用水热法合成了钼酸亚铁纳米棒,利用XRD、XPS、SEM和TEM等分析技术对制备出的材料进行表征,分析并提出了钼酸亚铁纳米棒的生长模型,对钼酸亚铁纳米棒的磁性和塞贝克(Seebeck)系数进行了测试和分析。
     (2)以复合熔融盐为溶剂合成了钼酸钾纳米带,通过XRD、SEM和TEM表征,分析了材料的形貌和结构,在室温下测试了材料的光致发光性质,并测试了用钼酸钾纳米带制备的电极在锂电池中的性能。
     (3)用沉淀法在室温下制备出了直径为1微米的钼酸镉微球,用XRD和SEM对样品进行了表征,发现微球是由更小的颗粒组成的。
Controllable synthesis of functional materials with the specific morphology and size has aroused growing interest due to its optical, magnetic, mechanical and other areas of potential applications in the past decade.
     Metal molybdate due to its unique crystal structure and physical properties have a widely application potential in many fields, such as photoluminescence, microwave devices, optical fiber, scintillating materials, humidity devices, catalysts and so on.
     Therefore, the preparation technology and application research of metal molybdate become very interested topic.
     This thesis focuses on the materials of ferrous molybdate, cadmium molybdate and molybdate potassium to achieve controllable synthesis methods that are simple, mild and low-cost, and explore the new properties of these materials. The main contents can be summarized as fallowing:
     (1) Monoclinic FeMoO_4 nanorods have been prepared by the hydrothermal method in an acid aqueous solution. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectrum, X-ray photoelectron spectra and differential scanning calorimetry are used to characterize the structure, morphology and composition of the sample. The growth mechanism of the FeMoO_4 nanorods is proposed. Seebeck effect and magnetic property were investigated.
     (2) Potassium molybdate nanoblets was synthesized by molten salt. XRD, SEM and TEM were used to characterizated and analysised the morphology and structure of the material. Photoluminescence properties of materials are tested at room temperature, and electrode performance in lithium batteries of Potassium molybdate nanoblets is also investigated.
     (3) CdMoO_4 microspheres have been prepared by stirring reacting solution at room temperature. X-ray diffraction spectrum and scanning electron microscopy were used to characterizated the samples.
引文
[1]吴天诚,杜仲良,高绪珊.纳米纤维[M].北京:化学工业出版社, 2003.
    [2]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社, 2002.
    [3]尾崎又治,架集诚一郎.纳米微粒导论[M].赵健泽,张联盟译.武汉:武汉工业大学出版社, 1991.
    [4]唐一科,许静,韦立凡,纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报(自然科学版) [J]. 2005, 58(1): 5.
    [5]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.146.
    [6]周世杰,张喜燕,贾冲,夏宝玉,周明哲.纳米材料制备技术的研究现状[J].材料导报,2005,19:2-16.
    [7] M. Rontani, Quantum phases in artificial molecules[J]. Solid State Commun., 2001 (119): 30.
    [8] N. N. Ledenstoy,Crystalline growth characteristics[J].Mater Pmgtl, 998,35(2—4):289.
    [9]刘跃进,李振民,等.水热法合成云母氧化铁结晶条件.化工学报,2004,55(5):20.
    [10]希忠,张禹,刘国权,等.CVD金刚石膜{100}取向生长的原子尺度仿真[J].北京科技大学学报.2002,24(2):143.
    [11]王富耻.材料现代测试分析方法[M].北京,北京理工大学出版社,2006:1-289.
    [12]吴刚.材料结构表征及应用[M].北京,化学工业出版社,2001:1-379 .
    [13]周小菊,张嫦,刘东,李永康,吴莉莉.纳米材料的性质及应用[J].西南民族学院学报, 2002, 28(4): 566.
    [14]江今朝,涂向真.纳米材料的性质和应用[J].江西化工, 2002, 2: 18.
    [15] N. N. Leyzerovich, K. G.Bramnik, T. Buhrmester, H. Ehrenberg and H. Fuess, Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe) [J]. J. of Power Sources, 2004, 127: 76-84.
    [16] V. B. Mikhailika, H. Krausa, D. Wahla, H. Ehrenbergb, M. S. Mykhaylyk, Optical and luminescence studies of ZnMoO4 using vacuum ultraviolet synchrotron radiation[J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2006, 562(1): 513-516.
    [17] B. L. Chamberland, J. A. Kafalas, J. B. Goodenough, Characterization of chromium manganese oxide(MnCrO3)and chromium(III)manganate[J]. Inorg.Chem., 1997, 16: 44-48.
    [18] T. Qi, K. Takagi, T. Fukazawa, Scintillation study of ZnWO4 single crystals[J]. Appl. Phys. Lett. 1980, 36: 278-282.
    [19] L. G. Van Uitert,S. Preziosi, Zinc Tungstates for Microwave Maser Applications[J]. J. Appl. Phys. 1962, 33: 2908-2910.
    [20] H. Wang, F. D. Medina, Y. D. Zhou, Q. N. Zhang, Temperature dependence of the polarizedRaman spectra of ZnWO4 single crystals [J]. Phys. Rev. B, 1992, 45: 10356-10359.
    [21] H. Grassmann, H. G.Moser, E. Lorenz,Scintillation properties of ZnWO4[J]. J. Lumin, 1985, 33: 109-112.
    [22] W. Qu, W. Wlodarski, J. U. Meyer, Comparative study on micromorphology and humiditysensitive properties of thin-film and thick-film humidity sensors based on semiconductingMnWO4 [J].Sens. Actuators B, 2000, 64: 76-79.
    [23]姜晓辉.钨酸盐、钼酸盐纳米材料的制备合成制备及发光性能的研究[D].中国海洋大学硕士学位论文,2008.
    [24] C. Peng, L. Gao, S. W. Yang, J. Sun, A general recipitation strategy for large-scale synthesis of molybdate nanostructures[J]. Chem. Commun., 2008, 5601–5603.
    [25] Y. Ding, Y. Wan, Y. L. Min, W. Zhang, S. H. Yu,General Synthesis and Phase Control of Metal Molybdate Hydrates MMoO4·nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) Nano/Microcrystals by a Hydrothermal Approach: Magnetic, Photocatalytic, and Electrochemical Properties[J]. Inorg. Chem., 2008, 47(17): 7813-7823.
    [26] L. Cheng, Q. Shao, M. W. Shao, X. W. Wei, Z. C. Wu, Photoswitches of One-Dimensional Ag2MO4 (M =Cr, Mo, and W) [J]. J. Phys. Chem. C, 2009, 113:1764-1768.
    [27] H. Ehrenberg, M. Wiesmann, J. Garcia-Jaca, H. Weitzel, H. Fuess,Magnetic structures of the high-pressure modifications of CoMoO4 and CuMoO4[J]. J. Magn. Magn. Mater., 1998, 182, 152-160.
    [28] J. H. Ryua, J. W. Yoon, C. S. Lim, W. C. Oh, K. B. Shim,Microwave-assisted synthesis of CaMoO4 nano-powders by a citrate complex method and its photoluminescence property[J]. J Alloys. Compd., 2005, 390: 245–249.
    [29] E. Cavalli, A. Belletti, M.G. Brik, Optical spectra and energy levels of the Cr3+ ions in MWO4(M = Mg, Zn, Cd) and MgMoO4 crystals[J]. J. Phys. Chem. Solids, 2008, 69: 29-34.
    [30] L. Y. Zhou, J. S. Wei, F. Z. Gong, J. L. Huang, L. H. Yi, A potential red phosphor ZnMoO4:Eu3+ for light-emitting diode application[J]. J. Solid State Chem., 2008, 181, 1337-1341.
    [31] R. Grasser, E. Pitt, A. Scharmann, G. Zimmerer, Optical properties of CaWO4 and CaMoO4crystals in the 4 to 25 eV region[J]. phys. status solidi B, 1975, 69: 359-368.
    [32] L. F. Johnson, G. D. Boyd, K. Nassau, R. R. Soden, Continuous Operation of a solid-state optical Maser[J]. Phys. Rev, 1962, 126: 1406-1409.
    [33] W. S. Wang, L. Zhen, C. Y Xu, W. Z Shao, Room Temperature Synthesis, Growth Mechanism, Photocatalytic and Photoluminescence Properties of Cadmium MolybdateCore-ShellMicrospheres[J]. Cryst. Growth Des., 2009 , 9(3): 1559.
    [34] P . A. Christian, J. N. Carides, F. J. DiSalvo, J. V. Waszczak, Vanadium oxide cathode materials for secondary lithium cells[J]. J. Electrochem. Soc., 127(11), 1980, 2315-2319
    [35] T. Tsumura, M. Inagaki, Lithium insertion/extraction reaction on crystalline MoO3[J]. SolidState Ionics., 1997, 104: 183-189
    [36] A. Yu, N. Kumagaj, Z. Liu, J. Lee,Preparation of sodium molybdenum oxides by a solution technique and their electrochemical performance in lithium intercalation[J]. Solid State Ionics. 1998, 106: 11-18.
    [37] R. H. Sanchez, L. Trevino, A. F. Fuentes, A. Martinez-de la Cruz, L. M. Torres-Martinez, Electrochemical lithium insertion in two polymorphs of a reduced molybdenum oxide[J]. J.Solid State Electrochem., 2000, 4(4): 210-215.
    [38] Y. Ding, S. H. Yu, C. Liu, Z. A. Zang, 3D Architectures of Iron Molybdate: Phase Selective Synthesis, Growth Mechanism, and Magnetic Properties[J]. Chem. Eur. J., 2007, 13: 746–53.
    [39] X. Huang,J. f. Ma, P. W. Wu, Y. M Hu, J. H. Dai,Z. B. Zhu, H. Y. Chen, H. F. Wang, Hydrothermal synthesis of LiCoPO4 cathode materials for rechargeable lithium ion batteries[J]. Mater. Lett., 2005, 59: 578-582.
    [40] L. Zhang, X. F. Cao, Y. L. Ma, X. T. Chen, Z. L. Xue, Microwave-assisted solution-phase preparation and growth mechanism of FeMoO4 hierarchical hollow spheres[J]. CrystEngComm, 2010, 12: 207–210.
    [41] C. H. Zheng, C. G. Hu, X. Y. Chen, H. liu,c Y. F. Xiong, J. Xu, B. Y. Wan. L. Y. Huang, Raspite PbWO4 nanobelts: synthesis and properties[J]. CrystEngComm, 2010, 12: 3277–3282.
    [42] L. Zhen, W. S. Wang, C. Y. Xu, W. Z. Shao, M. M. Yeb, Z. L. Chen, High photocatalytic activity and photoluminescence property of hollow CdMoO4 microspheres[J]. Scripta Mater., 2008, 58: 461–464.
    [43] Y. Ren, J. F. Ma, Y. G. Wang, X. Y. Zhu, B. T. Lin, J. Liu, X. H. Jiang, J. T. Tao, Shape-Tailored Hydrothermal Synthesis of CdMoO4 Crystallites on Varying pH Conditions [J]. J. Am. Ceram. Soc., 2007, 90(4): 1251–1254.
    [44]都有为.纳米磁性材料及其应用[J].中国高校科技与产业化,2002(7):36-39.
    [45]白木,周洁.纳米磁性材料及其应用[J].信息记录材料,2002,3(2):38-39.
    [46]顾宁,付德刚等.纳米技术与应用[M].北京:人民邮电出版社,2002.
    [47] C. P. Boan, J.D, Livingston[J]. SuPerparamagnetism[J]. J. Appl. Phys.,1959, 30:120.
    [48]梅红.纳米/微米复合热电材料热电与力学性能研究,武汉理工大学硕士学位论文,2010.
    [49] P. Gao, Y. Xie, L. Ye, Y. Chen, Z. Li, Synthesis of Single-crystal BaMo2O7 Nanowire Bundles: A General, Low-temperature Hydrothermal Approach to 1D Molybdenum Oxide-based Nanostructures[J]. Chem. Lett., 2006, 35: 162.
    [50] W. Xiao, J. S. Chen, C. M. Li, R. Xu, X. W. Lou,Synthesis, Characterization, and Lithium Storage Capability of AMoO4 (A = Ni, Co) Nanorods[J]. Chem. Mater., 2010, 22: 746–754.
    [51] T. Fujii, F. M. F. de Groot, G. A. Sawatzky, F. C. Voogt, T. Hibma, K. Okada,, In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy[J]. Phys. Rev. B, 1999, 59: 3195–3202.
    [52] S. Rajagopal, D. Nataraj, O. Yu. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures[J]. J. Alloys Compd., 2010, 493: 340.
    [53] X. Y. Wu, J. Du, H. b. Li, M. F. Zhang, B.J. Xi, H. Fan, Y. C. Zhu, Y. T. Qian, Aqueous mineralization process to synthesize uniform shuttle-like BaMoO4 microcrystals at room temperature[J]. J. Solid State Chem., 2007, 180: 3288.
    [54] J. A. Rodriguez, J. C. Hanson, S. Chaturvedi, A. Maiti, J. L. Brito, Studies on the Behavior of Mixed-Metal Oxides:Structural, Electronic, and Chemical Properties ofβ-FeMoO4[J]. J. Phys. Chem. B, 2000, 104:8145–8152.
    [55] J. Li, Z. Chen, X. X. Wang, D. M. Proserpio, A novel two-dimensional mercury antimony telluride: low temperature synthesis and characterization of RbHgSbTe3[J]. J. Alloys Compd. 1997, 262: 28.
    [56] Y. Ding, Y. Wan, Y. L. Min, W. Zhang, S. H. Yu, General Synthesis and Phase Control of Metal Molybdate Hydrates MMoO4·nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) Nano/Microcrystals by a Hydrothermal Approach: Magnetic, Photocatalytic, and Electrochemical Properties[J]. Inorg. Chem., 2008, 47: 7813.
    [57] [日]犬石嘉雄,滨川圭弘,白藤纯嗣.半导体物理.周绍康等译[M].科学技术出版社, 1986.15-20.
    [58] S. Komaba, N. Kumagai, R. Kumagai,N. Kumagai, H. Yashiro, Molybdenum oxides synthesized by hydrothermal treatment of A2MoO4 (A=Li, Na, K) and electrochemical lithium intercalation into the oxides[J].Solid State Ionics, 2002, 152– 153: 319– 326。
    [59] L.Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. S. Lao, R. S. Yang, Y. Dai, Z. L. Wang,Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries[J]. Adv. Mater. 2007, 19: 3712–3716.
    [60] Y. Q. Yang, H. Yang, Q. Wang, L. J. Yu, C. Wang, S. J. Dai, Y. Z. Yuan, Study of the supported K2MoO4 catalyst for methanethiol synthesis by one step from high H2S-containingsyngas[J].Catal. Lett., 2001, 74(3–4): 221-225.
    [61] K. Eda, K. Chin, N. Sotani, M. Stanley Whittingham, K2Mo4O13 phases prepared by hydrothermal synthesis[J]. J. of Solid State Chem., 2004, 177: 916–921.
    [62] B. M. Gatehouse, P. Leverett, Crystal Structure of Potassium Tetramolybdate, K2Mo4O13 and its Relationshipto the structures of Other Univalent Metal Polymolybdates [J]. J Chem Soc (A), 1971, 2107-2112.
    [63] M. Wakihara. Recent developments in lithium ion batteries[J]. Mater. Sci. Eng., R,2001,33:109-134.
    [64]马萍.新型二次极锂电池正负材料的研究[D].哈尔滨工程大学博士学位论文,2007.
    [65] Whittingham M S.Insertion eleetrodes as SMART materials the first 25 years and future Promises[J]. Solid State Ionics.2000, 134: 169-178.
    [66] Bruno Scrosati, Jürgen Garche,Lithium batteries: Status, prospects and future[J]. J. Power Sources, 2010, 195: 2419–2430.
    [67] Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, DOE, July 2007.
    [63] X. H. Jiang, J. F. Ma, B. T. Lin, Y. Ren, J. Liu, X. Y. Zhu, J. T. Tao, Hydrothermal Synthesis of CdMoO4 Nano-Particles [J]. J. Am. Ceram. Soc., 2007, 90(3): 977–979.
    [64] Q. Gong, G. Li, X. F. Qian, H. G. Cao, W. M. Du, X. D. Ma, Synthesis of single crystal CdMoO4 octahedral microparticles via microemulsion-mediated route[J]. J. Colloid Interface Sci., 2006, 304: 408~412.
    [65] W. S. Wang, L. Zhen, C. Y. Xu, B. Y. Zhang, W. Z. Shao, Room Temperature Synthesis of Hollow CdMoO4 Microspheres by a surfactant-Free Aqueous Solution Route[J]. J. Phys. Chem. B, 2006, 110: 23154-23158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700