组蛋白脱乙酰酶抑制剂DMA-PB对创伤性脑损伤的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:创伤性脑损伤(traumatic brain injury,TBI)能够产生大量病理损害包括炎症反应。炎症级链效应以小胶质细胞激活和致炎因子的产生为特征,进而加重其他病理损伤。能够干预致炎因子产生和胶质细胞活化的药物对TBI具有潜在的治疗价值。目前大量研究显示组蛋白脱乙酰酶(histone deacetylase,HDAC)抑制剂的抗炎作用以及在多种中枢神经系统疾病中的应用前景。然而在TBI领域尚无报道。最近一项研究发现在实验性儿科TBI后海马CA3区的乙酰化组蛋白表达降低,这种变化与TBI导致的兴奋性毒性等损伤密切相关。因此HDAC抑制剂可能会对TBI的防治产生积极作用。
     研究方法:本研究利用成年大鼠液压冲击损伤(fluid percussion injury,FPI)模型评价新型HDAC抑制剂DMA-PB对TBI的保护作用。采用乙酰组蛋白免疫组织化学方法检测海马CA2/3区组蛋白乙酰化程度,通过测量相对光密度评价乙酰化组蛋白表达水平。以OX-42免疫组织化学方法检测海马CA2/3区小胶质细胞的变化。通过对四种不同形态的小胶质细胞(静息型、肥大型、活化型、吞噬型)的定量分析鉴别炎症反应程度。以Fluoro-Jade B组织荧光法观察TBI后海马CA2/3区早期神经元变性。酶联免疫吸附实验分别检测海马组织中肿瘤坏死因子α(tumor necrosis factor-alpha,TNFα)以及白介素1β(interlukin-1β,IL-1β)的含量。Morris水迷宫评价大鼠的空间记忆及认知功能。结晶紫染色分析海马CA2/3区延迟性神经元损伤。兴趣区域(region of interest,ROI)为海马组织。
     结果:乙酰组蛋白免疫染色后,相对光密度的测量结果显示损伤侧海马CA2/3区乙酰化组蛋白表达降低,新型HDAC抑制剂DMA-PB在0.25mg/kg、2.5mg/kg、25mg/kg的剂量下均明显提高了组蛋白乙酰化程度,但各剂量组之间无显著差异。OX-42免疫染色后,四种不同形态的小胶质细胞的定量分析结果显示假手术组以静息型占绝对优势,显著的高于其他各TBI组,无活化型及吞噬型,各TBI组以活化型及吞噬型为主,与模型组相比,HDAC抑制剂DMA-PB显著的降低了TBI后吞噬型小胶质细胞的密度,抑制了小胶质细胞炎症反应程度,但各剂量组之间无显著差异。Fluoro-Jade B组织荧光的定量分析结果显示,假手术组无荧光标记细胞,提示无神经元变性发生,各TBI组变性神经元在背景的衬托下发亮荧光,与模型组相比,HDAC抑制剂DMA-PB有减少变性神经元的趋势,但无统计学差异,其中以高剂量组的抑制效果最明显。酶联免疫吸附实验结果显示,与假手术组相比,模型组损伤侧海马内两种炎症因子的含量显著增加,而HDAC抑制剂DMA-PB则明显降低了TNFα及IL-1β的含量。Morris水迷宫结果显示,与假手术组相比,模型组大鼠发现隐藏平台的潜伏期明显延长,提示记忆缺损,而HDAC抑制剂DMA-PB高剂量组(25mg/kg)的潜伏期显著缩短,改善了TBI所致的认知损害,中低剂量组(2.5mg/kg、0.25mg/kg)只呈现缩短趋势无统计学差异。结晶紫染色结果显示,假手术组海马神经元形态正常,细胞边界清晰,胞膜完整,胞核规则,核仁清晰可见,损伤后细胞皱缩明显,形态不规则,神经元典型的多层排列结构被破坏,且细胞数量明显减少,与模型组相比,HDAC抑制剂DMA-PB高剂量(25mg/kg)显著增加了神经元密度,而中低剂量(2.5mg/kg、0.25mg/kg)对细胞数量的影响无统计学意义。
     结论:我们的实验证实TBI可致成年大鼠海马组蛋白脱乙酰化。新型HDAC抑制剂DMA-PB可能以一种间接作用逆转组蛋白脱乙酰化。并且DMA-PB各剂量均可抑制小胶质细胞炎症反应及炎症因子TNFα、IL-1β的产生,显示出强大的抗炎作用。对TBI后早期神经元变性,DMA-PB具有减少趋势,但对延迟性神经元损伤及空间记忆认知功能的损坏,高剂量组呈现明显的改善作用。可见,DMA-PB对大鼠创伤性脑损伤具有保护作用,尤以抗炎作用显著,并抑制神经元变性而改善神经功能。
     意义:本课题首次研究了新型组蛋白脱乙酰酶抑制剂DMA-PB对创伤性脑损伤的作用,发现DMA-PB可抑制早期小胶质细胞活化等炎症反应,并改善延迟性神经元损伤及记忆认知功能,对组蛋白脱乙酰酶抑制剂的抗炎性能及在创伤性脑损伤中的应用提供了实验依据。同时首次发现成年大鼠液压冲击性创伤性脑损伤后海马CA2/3区组蛋白乙酰化降低,DMA-PB可能通过间接作用提高组蛋白乙酰化,为创伤性脑损伤的病理生理机制增加了新的内容,也为深入阐明DMA-PB的作用机制提供了切入点。
Objective:Traumatic brain injury(TBI) produces a number of pathologies including inflammation.The inflammatory cascade is characterized by activation of microglia and proinflammatory cytokines which can exacerbate other pathologies.Pharmacological therapy that can modulate pro-inflammatory cytokines or microglia activation could have potential efficacy in TBI.A number of studies have focused on histone deacetylase(HDAC) inhibitors as novel therapeutics in a variety of central nervous system(CNS) diseases and showed anti-inflammatory effects.However no data have been reported on TBI.A recent study in experimental pediatric TBI reported a decrease in hippocampal CA3 histone H3 acetylation after injury.These changes were attributed to documented upstream excitotoxic and stress cascades associated with TBI.HDAC inhibitors may contribute to prevention and treatment of TBI.The aim of this study was to evaluate the possible protective effects of DMA-PB,a novel HDAC inhibitor,on TBI.
     Methods:Drug was administered intraperitoneally(i.p.) immediately after TBI.Coronal brain sections were stained with acetyl-histone H3 antibody,OX-42 antibody or Fluoro-Jade B.Measurement of proinflammatory cytokines(TNFα and IL-1β),acquisition function and delayed neuronal degeneration was assessed with Enzyme-Linked ImmunoSorbent Assay(ELISA),Morris Water Maze(MWM) and cresyl violet staining techniques.The region of interest (ROI) was focused on hippocampus.
     Results:Histone acetylation was assessed by Acetyl-Histone H3 immunohistochemistry and measured by relative optical density(OD).The result showed that lower ROD was observed in the hippocampus CA2/3 region ipsilateral to FPI compared to sham group.The ROD among DMA-PB dosage treatment groups was not significantly different from the sham group.
     Microglia changes was carried out by using OX-42 immunohistochemistry and assessed by quantification of four classifications of microglia to identify inflammatory response.The sham group had a preponderance of resting microglia density that was significantly greater than any of the injury groups.No activated or phagocytic microglia was detected in the sham group.There were no significant differences in mean density of activated microglia between the injury groups.The density of phagocytic microglia was significantly different between injury groups.The DMA-PB treatments had significantly lower density of phagocytic microglia compared to the vehicle-treated TBI group.
     Neuronal degeneration was analyzed by using Fluoro-Jade B histofluorescence.The results showed that there was a trend for the DMA-PB treatment to reduce the number of ipsilateral degeneration neurons compared to vehicle with the highest dose(25 mg/kg) producing the largest reduction in neurodegeneration.
     Detection of TNFαand IL-1βwas made using enzyme-linked immunosorbent assay(ELISA).In vehicle-treated injured rats,the ipsilateral hemisphere showed a significant increase in TNFαand IL-1βlevels.The profound increase in pro-inflammatory cytokines associated with trauma was significantly reduced by DMA-PB treatment compared with levels in vehicle-treated injured rats.
     We further investigated more chronic outcome after TBI.Acquisition of a spatial memory was measured by using Morris water maze.The vehicle-treated TBI group showed a significant increase in the latencies(time to find a hidden platform) across testing days compared to sham control.However,DMA-PB treated group(25mg/kg) demonstrated significant improvement in decreased latencies. Delayed neuronal injury was analyzed by using Cresyl violet staining.In the sham group the neurons were normal,their borders were distinct and cell membrane integrity was preserved.Nucleus borders were regular and nucleolus was distinctively observed.In the injury groups,marked shrinkage was observed in the pyramidal neurons of CA2/3 region and increased irregularity was determined in cell and nucleus borders.Typical multiple row cell arrangements were disturbed and the number of cells was decreased.The effect of DMA-PB treatment on neuron density was examined by quantitative histopathological analysis.In vehicle group,hippocampal neuron density was significantly decreased in comparison with the sham group.However,treatment with DMA-PB (25mg/kg) significantly preserved the neurons of hippocampal regions as compared to vehicle group.
     Conclusions:the present study provided further evidence for the deacetylation of histone H3 by TBI and demonstrated that the novel HDAC6 inhibitor,DMA-PB,reversed the deacetylation measured in the hippocampus likely through an indirect action and robustly attenuated the inflammatory microglia response and production of inflammatory cytokines,produced a trend toward reduced neuronal degeneration in the hippocampus at early time after injury.DMA-PB significantly exhibited more chronic protective outcome characterized by efficiently decreasing delayed neuronal injury and improving spatial memory function.
     Our findings may provide a primary evidence for the possible benefits of HDAC inhibitors in TBI.We also provide some basic materials for novel HDAC inhibitor,DMA-PB.Further studies of HDAC inhibitors appear warranted for clarification of the underlying mechanisms of action for potential development of therapeutics for patients suffering from TBI.
引文
1. Zlatanova, J. et al. 1999. Chromatin structure revisited. Crit. Rev. Eukaryot. Gene Expr. 9, 245-255.
    2. Archer, T.K. et al. 1992. Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255, 1573-1576.
    3. Struhl K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599-606.
    4. Pazin MJ, Kadonaga JT. 1997. What's up and down with histone deacetylation and transcription? Cell 89:325-328.
    5. Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001; 293:1653-7.
    6. Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW et al. 2001. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7: 437-443.
    7. Nair AR, Boersma LJ, Schiltz L, Chaudhry MA, Muschel RJ, Chaudry A. 2001. Paradoxical effects of trichostatin A: inhibition of NF-Y associated histone acetyltransferase activity, phosphorylation of hGCN5 and downregulation of cyclin A and B1 mRNA. Cancer Lett 166: 55-64.
    8. Tong X, Yin L, Giardina C. 2004. Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem Biophys Res Commun 317: 463-471.
    9. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol, 2004, 338(1): 17-31.
    10. de Ruijter, A.J. et al. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737-749.
    11. Dangond, F. and Gullans, S.R. 1998. Differential expression of human histone deacetylase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate. Biochem. Biophys. Res. Commun. 247, 833-837.
    12. Weidle, U.H. and Grossmann, A. 2000. Inhibition of histone deacetylases: a new strategy to target epigenetic modifications for anticancer treatment. Anticancer Res. 20,1471-1485.
    13. McLaughlin, F. et al. 2003. The cell cycle, chromatin and cancer: mechanism-based therapeutics come of age. Drug Discov. Today 8, 793-802.
    14. Guardiola, A.R. and Yao, T.P. 2002. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J. Biol. Chem. 277, 3350-3356.
    15. Yoshida, M. et al. 1987. Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res. 47, 3688-369.
    16. Hu, E. et al. 2003. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J. Pharmacol. Exp. Ther. 307, 720-728.
    17. Wegener, D. et al. 2003. Recent progress in the development of assays suited for histone deacetylase inhibitor screening. Mol. Genet. Metab. 80, 138-147.
    18. Marks, P.A. et al. 2004. Histone deacetylase inhibitors: development as cancer therapy. Novartis Found. Symp. 259, 269-281.
    19. Nakajima, H. et al. 1998. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. 241,126-133.
    20. Sandor, V. et al. 2002. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res. 8, 718-728.
    21. Chambers, A.E. et al. 2003. Histone acetylation-mediated regulation of genes in leukaemic cells. Eur. J. Cancer 39,1165-1175.
    22. Nishida, K., Komiyama, T., Miyazawa, S., Shen, Z. N., Furumatsu, T., Doi, H., Yoshida, A., Yamana, J., Yamamura, M., Ninomiya, Y., Inoue, H., Asahara, H., 2004. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 50, 3365-76.
    23. Chung, Y. L., Lee, M. Y., Wang, A. J., Yao, L. F., 2003. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther. 8,707-17.
    24. Lin, H. S., Hu, C. Y., Chan, H. Y., Liew, Y. Y., Huang, H. P., Lepescheux, L., Bastianelli, E., Baron, R., Rawadi, G., Clement-Lacroix, P., 2007. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol. 150, 862-72.
    25. Luhrs H, Gerke T, Muller JG, Melcher R, Schauber J, Boxberge F, ScheppachW, Menzel T. 2002. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol 37:458- 466.
    26. Vernia P, Annese V, Bresci G, d'Albasio G, D'Inca R, Giaccari S, Ingrosso M, Mansi C, Riegler G, Valpiani D, Caprilli R, Gruppo Italiano per lo Studio del Colon and del Retto. 2003. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: Results of a multicentre trial. Eur J Clin Invest 33:244-248.
    27. Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, Mascagni P, Fantuzzi G, Dinarello CA, Siegmund B. 2006. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol 176:5015-5022.
    28. Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS. 2003. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest 111: 539-552.
    29. Reilly CM, MishraN,Miller JM, Joshi D, Ruiz P, Richon VM, Marks PA, Gilkeson GS. 2004. Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid. J Immunol 173:4171-4178.
    30. Kim, H. J., Rowe, M., Ren, M., Hong, J. S., Chen, P. S., Chuang, D. M., 2007. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther. 321, 892-901.
    31. Sinn, D. I., Kim, S. J., Chu, K., Jung, K. H., Lee, S. T., Song, E. C., Kim, J. M., Park, D. K., Kun Lee, S., Kim, M., Roh, J. K., 2007. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol Dis. 26,464-72.
    32. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P, Dona G, Fossati G, Sozzani S, Azam T, Bufler P, Fantuzzi G, Goncharov I, Kim SH, Pomerantz BJ, Reznikov LL, Siegmund B, Dinarello CA, Mascagni P. 2002. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits anti-inflammatory properties via suppression of cytokines. Proc Natl Acad Sci USA 99: 2995-3000.
    33. Blanchard, F., Chipoy, C., 2005. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 10: 197-204.
    34. Takada, Y., Gillenwater, A., Ichikawa, H., Aggarwal, BB., 2006. Suberoylanilide hydroxamic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastognesis by suppressing nuclear factor-kappaB activation. J Biol Chem 281: 5612-5622.
    35. Yin, L., Laevsky, G., Giardina, C., 2001. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem 276:44641-44646.
    36. Klampfer, L., Huang, J., Swaby, L. A., Augenlicht, L., 2004. Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem. 279: 30358-30368.
    37. Suuronen, T. et al. 2003. Regulation of microglial inflammatory response by histone deacetylase inhibitors. J. Neurochem. 87,407-416.
    38. Iwata, K. et al. 2002. Trichostatin A, a histone deacetylase inhibitor, down-regulates interleukin-12 transcription in SV-40-transformed lung epithelial cells. Cell. Immunol. 218, 26-33.
    39. Miao, F. et al. 2004. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 279, 18091-18097.
    1. Jellinger, K. A., Paulus, W., Wrocklage, C., Litvan, I., 2001. Effects of closed traumatic brain injury and genetic factors on the development of Alzheimer's disease. Eur J Neurol. 8, 707-10.
    2. Nemetz, P. N., Leibson, C., Naessens, J. M., Beard, M., Kokmen, E., Annegers, J. F., Kurland, L. T., 1999. Traumatic brain injury and time to onset of Alzheimer's disease: a population-based study. American Journal of Epidemiology. 149, 32-40.
    3. Van Den Heuvel, C., Thornton, E., Vink, R., 2007. Traumatic brain injury and Alzheimer's disease: a review. Prog Brain Res. 161, 303-16.
    4. Teasdale, G. M., Graham, D. I., 1998. Craniocerebral trauma: protection and retrieval of the neuronal population after injury. Neurosurgery. 43, 723-737.
    5. Carbonell, W. S., Grady, M. S., 1999. Regional and temporal characterization of neuronal, glial, and axonal response after traumatic brain injury in the mouse. Acta Neuropathol (Berl). 98, 396-406.
    6. Morganti-Kossmann, M. C., Satgunaseelan, L., Bye, N., Kossmann, T., 2007. Modulation of immune response by head injury. Injury. 38,1392-400.
    7. Dietrich, W. D., Chatzipanteli, K., Vitarbo, E., Wada, K., Kinoshita, K., 2004. The role of inflammatory processes in the pathophysiology and treatment of brain and spinal cord trauma. Acta Neurochir Suppl. 89, 69-74.
    8. Morganti-Kossmann, M. C., Rancan, M., Stahel, P. F., Kossmann, T., 2002. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care. 8,101-105.
    9. Perry, V.H., Cunningham, C., Holmes, C., 2007. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol. 7, 161-167.
    10. Shaw, K.N., Commins, S., O'Mara, S.M., 2005. Cyclooxygenase inhibition attenuates endotoxin-induced spatial learning deficits, but not an endotoxin-induced blockade of long-term potentiation. Brain Res. 1038, 231-237.
    11. Tancredi, V., D'Antuono, M., Cafe, C., Giovedi, S., Bue, M.C., D'Arcangelo, G., Onofri, F., Benfenati, F., 2000. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J. Neurochem. 75, 634-643.
    12. Palin, K., Bluthe, R.M., Verrier, D., Tridon, V., Dantzer, R., Lestage, J., 2004. Interleukin-Ibeta mediates the memory impairment associated with a delayed type hypersensitivity response to bacillus Calmette-Guerin in the rat hippocampus. Brain Behav. Immun. 18, 223-230.
    13. Tanaka, S., Ide, M., Shibutani, T., Ohtaki, H., Numazawa, S., Shioda, S., Yoshida, T., 2006. Lipopolysaccharide-induced microglial activation induces learning and memory de.cits without neuronal cell death in rats. J. Neurosci. Res. 83, 557-566.
    14. Sato, M., Chang, E., Igarashi, T., Noble, L.J., 2001. Neuronal injury and loss after traumatic brain injury: time course and regional variability. Brain Res. 917, 45-54.11,3257-67.
    15. Hicks, R.R., Smith, D.H., Lowenstein, D.H., Saint Marie, R., Mclntosh, T.K., 1993. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J. Neurotrauma 10, 405-414.
    16. Rolkerts, M.M., Berman, R.F., Muizelaar, J.P., Rafols, J.A., 1998. Disruption of MAP-2 immunostaining in rat hippocampus after traumatic brain injury. J. Neurotrauma. 15, 349-363.
    17. Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon-Cardo, C., Thaler, H. T., Rifkind, R. A., Marks, P. A., and Richon, V. M. (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60:5165-5170.
    18. Marks, P. A., Richon, V. M., and Rifkind, R. A. (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 92:1210-1216.
    19. Richon, V. M., Zhou, X., Rifkind, R. A., and Marks, P. A. (2001). Histone deacetylase inhibitors: development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cells Mol Dis 27:260-264.
    20. Minucci, S., and Pelicci, P. G. (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38-51.
    21. Faraco, G., Pancani, T., Formentini, L, Mascagni, P., Fossati, G., Leoni, F., Moroni, F., Chiarugi, A., 2006. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol. 70, 1876-84.
    22. Kim, H. J., Rowe, M., Ren, M., Hong, J. S., Chen, P. S., Chuang, D. M., 2007. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther. 321, 892-901.
    23. Ren, M., Leng, Y., Jeong, M., Leeds, P. R., Chuang, D.-M., 2004. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. Journal of Neurochemistry. 89,1358-1367.
    24. Camelo, S., Iglesias, A. H., Hwang, D., Due, B., Ryu, H., Smith, K., Gray, S. G., Imitola, J., Duran, G., Assaf, B., Langley, B., Khoury, S. J., Stephanopoulos, G., De Girolami, U., Ratan, R. R., Ferrante, R. J., Dangond, F., 2005. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol. 164,10-21.
    25. Ferrante, R. J., Kubilus, J. K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N. W., Ratan, R. R., Luthi-Carter, R., Hersch, S. M., 2003. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci. 23, 9418-27.
    26. Gardian, G., Browne, S. E., Choi, D. K., Klivenyi, P., Gregorio, J., Kubilus, J. K., Ryu, H., Langley, B., Ratan, R. R., Ferrante, R. J., Beal, M. F., 2005. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J Biol Chem. 280, 556-63.
    27. Chung, Y L., Lee, M. Y., Wang, A. J., Yao, L. F., 2003. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther. 8, 707-17.
    28. Glauben, R., Batra, A., Fedke, I., Zeitz, M., Lehr, H. A., Leoni, F., Mascagni, P., Fantuzzi, G., Dinarello, C. A., Siegmund, B., 2006. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol. 176, 5015-22.
    29. Lin, H. S., Hu, C. Y., Chan, H. Y., Liew, Y. Y., Huang, H. P., Lepescheux, L., Bastianelli, E., Baron, R., Rawadi, G., Clement-Lacroix, P., 2007. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol. 150, 862-72.
    30. Nishida, K., Komiyama, T., Miyazawa, S., Shen, Z. N., Furumatsu, T., Doi, H., Yoshida, A., Yamana, J., Yamamura, M., Ninomiya, Y., Inoue, H., Asahara, H., 2004. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 50, 3365-76.
    31. Sinn, D. I., Kim, S. J., Chu, K., Jung, K. H., Lee, S. T., Song, E. C., Kim, J. M., Park, D. K., Kun Lee, S., Kim, M., Roh, J. K., 2007. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol Dis. 26,464-72.
    32. Butler, K. V., Kozikowski, A. P., 2008. Chemical origins of isoform selectivity in histone deacetylase inhibitors. Curr Pharm Des. 14, 505-28.
    33. Kozikowski, A. P., Chen, Y., Gaysin, A., Chen, B., D'Annibale, M. A., Suto, C. M., Langley, B. C., 2007. Functional Differences in Epigenetic Modulators-Superiority of Mercaptoacetamide-Based Histone Deacetylase Inhibitors Relative to Hydroxamates in Cortical Neuron Neuroprotection Studies. J Med Chem.
    34. Adcock, I. M., 2007. HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol. 150,829-31.
    35. Blanchard, F., Chipoy, C, 2005. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 10: 197-204.
    36. Takada, Y., Gillenwater, A., Ichikawa, H., Aggarwal, BB., 2006. Suberoylanilide hydroxamic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastognesis by suppressing nuclear factor-kappaB activation. J Biol Chem 281: 5612-5622.
    37. Yin, L., Laevsky, G., Giardina, C., 2001. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem 276: 44641-44646.
    38. Klampfer, L., Huang, J., Swaby, L. A., Augenlicht, L, 2004. Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem. 279: 30358-30368.
    39. Gao, W. M., Chadha, M. S., Kline, A. E., Clark, R. S., Kochanek, P. M., Dixon, C. E., Jenkins, L. W., 2006. Immunohistochemical analysis of histone H3 acetylation and methylation-Evidence for altered epigenetic signaling following traumatic brain injury in immature rats. Brain Res. 1070, 31-4.
    40. West, M.J., Slomianka, L., and Gundersen, H.J. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 231, 482 - 497.
    41. Sterio, D.C. (1984). The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 134,127 - 136.
    42. Gundersen, H.J. (1986). Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J. Microsc. 143, 3 - 45.
    43. Chen, B., Petukhov, P. A., Jung, M., Velena, A., Eliseeva, E., Dritschilo, A., Kozikowski, A. P., 2005. Chemistry and biology of mercaptoacetamides as novel histone deacetylase inhibitors. Bioorg Med Chem Lett. 15,1389-92.
    44. Kreutzberg, G. W., 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312-8.
    45. Garden, G. A., Moller, T., 2006. Microglia biology in health and disease. J Neuroimmune Pharmacol. 1,127-37.
    46. Streit, W. J., 2002. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 40,133-9.
    47. Gehrmann, J., Kreutzberg, G. W., Microglia in experimental neuropathology. In: H. Kettenmann, B. Ransom, Eds., Neuroglia. vol. Oxford University Press, New York, 1995, pp. 883-904.
    48. Atkins, C. M., Oliva, A. A., Jr., Alonso, O. F., Pearse, D. D., Bramlett, H. M., Dietrich, W. D., 2007. Modulation of the cAMP signaling pathway after traumatic brain injury. Exp Neurol. 208,145-58.
    49. Giulian, D., Robertson, C., 1990. Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol. 27, 33-42.
    50. Huitinga, I., van Rooijen, N., de Groot, C. J., Uitdehaag, B. M., Dijkstra, C. D., 1990. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med. 172,1025-33.
    51. Popovich, P. G., Guan, Z., Wei, P., Huitinga, I., van Rooijen, N., Stokes, B. T., 1999. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol. 158, 351-65.
    52. Aihara, N., Hall, J. J., Pitts, L. H., Fukuda, K., Noble, L. J., 1995. Altered immunoexpression of microglia and macrophages after mild head injury. J Neurotrauma. 12, 53-63.
    53. Mclntosh, T. K., Juhler, M., Wieloch, T.,1998. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury. J Neurotrauma. 15, 731-769.
    54. Thompson, H. J., Lifshitz, J., Marklund, N., Grady, M. S., Graham, D. I., Hovda, D. A., Mclntosh, T. K., 2005. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma. 22,42-75.
    55. Lu, K. T., Wang, Y. W., Yang, J. T., et al. (2005). Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma. 22, 885-895.
    56. Sanderson, K. L., Raghupathi, R., Saatman, K. E., et al. (1999). Interleukin-1 receptor antagonist attenuates regional neuronal cell death and cognitive dysfunction after experimental brain injury. J Cereb Blood Flow Metab. 19, 1118-1125.
    57. Shohami, E., Bass, R., Wallach, D., et al. (1996). Inhibition of tumor necrosis factor alpha (TNF alpha) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab. 16, 378-384.
    58. Goodman, J. C., Robertson, C. S., Grossman, R. G., et al. (1990). Elevation of tumor necrosis factor in head injury. J Neuroimmunol. 30,213-217.
    59. Hayakata, T., Shiozaki, T., Tasaki, O., et al. (2004). Changes in CSF S100B and cytokine concentrations in early phase severe traumatic brain injury. Shock. 22, 102-107.
    60. He, J., Even, C. O., Hoffman, S. W., et al. (2004). Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol. 189,404-412.
    61. Knoblach, S. M., Fan, L., Faden, A. I., 1999. Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol. 95,115-125.
    62. Shohami, E., Novikov, M., Bass, R., et al. (1994). Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J Cereb Blood Flow Metab. 14,615-619.
    63. Boehme, M. W., Deng, Y, Raeth, U., Bierhaus, A., Ziegler, R., Stremmel, W., Nawroth, P. P., 1996. Release of thrombomodulin from endothelial cells by concerted action of TNF-alpha and neutrophils: in vivo and in vitro studies. Immunology. 87(1): 134-40.
    64. Sterner-Kock, A., Braun, R. K., Schrenzel, M. D., Hyde, D. M., 1996. Recombinant tumour necrosis factor-a and platelet-activating factor synergistically increase intercellular adhesion molecule-1 and E-selectin-dependent neutrophil adherence to endothelium in vitro. Immunology. 87(3), 454-460.
    65. Wang, C. X., Shuaib, A., 2002. Involvement of inflammatory cytokines in central nervous system injury. Progress in Neurobiology. 67 (2), 161-172.
    66. Chao, C. C., Hu, S., (1994). Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures. Dev Neurosci. 16, 172-179.
    67. Chao, C. C., Hu, S., Ehrlich, L., et al. (1995). Interleukin-1 and tumor necrosis factor-alpha synergistically medicate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun. 9, 355-365.
    68. Holmin, S., Mathiesen, T. (2000). Intracerebral administration of interleukin-1 beta and induction of inflammation, apoptosis, and vasogenic edema. J Neurosurg. 92,108-120.
    69. Megyeri, P., Abraham, C. S., Temesvari, P., et al. (1992). Recombinant human tumor necrosis factor alpha constricts pial arterioles and increases blood-brain barrier permeability in newborn piglets. Neurosci Lett. 148, 137-140.
    70. Friedlander, R. M., Gagliardini, V., Rotello, R. J., et al. (1996). Functional role of interleukin 1 beta (IL-1 beta) in IL-1 beta-converting enzyme-mediated apoptosis. J Exp Med. 184, 717-724.
    71. Shohami, E., Gallily, R., Mechoulam, R., et al. (1997). Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-alpha inhibitor and an effective neuroprotectant. J Neuroimmunol. 72, 169-177.
    72. Hallam, T. M., Floyd, C. L., Folkerts, M. M., Lee, L. L., Gong, Q. Z., Lyeth, B. G., Muizelaar, J. P., Berman, R. F., 2004. Comparison of behavioral deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models. J Neurotrauma. 21, 521-39.
    73. Lyeth, B. G., Gong, Q. Z., Shields, S., Muizelaar, J. P., Berman, R. F., 2001. Group I metabotropic glutamate antagonist reduces acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats. Exp Neurol. 169,191-9.
    74. Zhong, C., Zhao, X., Sarva, J., Kozikowski, A., Neale, J. H., Lyeth, B. G., 2005. NAAG peptidase inhibitor reduces acute neuronal degeneration and astrocyte damage following lateral fluid percussion TBI in rats. J Neurotrauma. 22, 266-76.
    75. Schmued, L. C., Albertson, C., Slikker, W. J., 1997. Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Research. 751,37-46.
    76. Schmued, L. C., Hopkins, K. J., 2000. Fluoro-Jade: novel fluorochromes for detecting toxicant-induced neuronal degeneration. Toxicologic Pathology. 28, 91-99.
    77. Wang, H., Lynch, J. R., Song, P., Yang, H. J., Yates, R. B., Mace, B., Warner, D. S., Guyton, J. R., Laskowitz, D. T., 2007. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Exp Neurol. 206, 59-69.
    78. Zhao, X., Ahram, A., Berman, R. F., Muizelaar, J. P., Lyeth, B. G., 2003. Early loss of astrocytes after experimental traumatic brain injury. Glia. 44,140-52.
    79. de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S., van Kuilenburg, A. B., 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 370, 737-49.
    80. Narayan RK, Michel ME, Ansell B, et al. Clinical trials in head injury. J Neurotrauma 2002;19:503-557.
    81. Fujimoto ST, Longhi L, Saatman KE, Mcintosh TK. (2004). Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev. 28:365-378.
    82. Lyeth, B.G., Jenkins, L.W., Hamm, R.J., et al. (1990). Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res. 526, 249-258.
    83. Scheff, S.W., Baldwin, S.A., Brown, R.W., et al. (1997). Morris water maze deficits in rats following traumatic brain injury: lateral controlled cortical impact. J. Neurotrauma 14, 615-627.
    84. Yamaki, T., Murakami, N., Iwamoto, Y., et al. (1997). Evaluation of learning and memory dysfunction and histological findings in rats with chronic stage contusion and diffuse axonal injury. Brain Res. 752,151-160.
    85. Whalen MJ, Carlos TM, Dixon CE, et al. (2004). Effect of traumatic brain injury in mice deficient in intercellular adhesion molecule-1: assessment of histopathologic and functional outcome. J Neurotrauma. 16:299-309.
    86. Mcintosh, I K., Vink, R., Noble, L., Yamakami, I., Fernyak, S., Soares, H., Faden, A. I., 1989. Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience. 28, 233-244.
    87. Raghupathi, R., Graham, D.I., and Mcintosh, T.K. (2000). Apoptosis after traumatic brain injury. J. Neurotrauma 17, 927-938.
    88. Hasselmo, M.E., Wyble, B.P., 1997. Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behav. Brain Res. 89,1-34.
    89. Lisman, J.E., 1999. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate CA3 interactions. Brain Res. 22, 233-242.
    90. Lorincz, A., Buzsaki, G., 2000. Two phase computational model training long-term memories in the entorhinal-hippocampal region. Ann. N.Y. Acad. Sci. 911,83-111.
    91. McNaughton, B.L., Morris, R.G., 1987. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10,408-415.
    92. Erecinska, M., Silver, I.A., 1996. Calcium handling by hippocampal neurons under physiologic and pathologic condition. In: Seisjo, Bo.K., Wieloch, Tadeusz (Eds.), Advances in Neurology: Cellular and Molecular Mechanism of Ischemic Brain Damage, vol. 100. Lippincott Raven Publishers, Philadelphia, pp. 119-131.
    93. Nourhashemi, F., Guyonnet, S.G., Andrieu, S., Ghisolfi, A., Qusset, P.J., Jean, H.A., Grand, A., Pous, J., Vellas, B., Albarede, J.L., 2000. Alzheimer's disease; protective factors. Am. J. Clin. Nutr. 71, 643S-649S.
    94. Smith, P., Kesner, R.P., Chiba, A.A., 1993. Continuous recognition and spatial and non-spatial stimuli in hippocampal lesion rats. Behav. Neural Biol. 59, 107-115.
    95. Liu, B., Hong, J. S., 2003. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 304,1-7.
    96. McGeer, P. L., McGeer, E. G., 1998. Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis Assoc Disord. 12 Suppl 2, S1-6.
    97. Petri, S., Kiaei, M., Kipiani, K., Chen, J., Calingasan, N. Y., Crow, J. P., Beal, M. F., 2006. Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 22,40-9.
    98. Saha, R. N., Pahan, K., 2006. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 13, 539-50.
    99. Chen, P. S., Wang, C. C., Bortner, C. D., Peng, G. S., Wu, X., Pang, H., Lu, R. B., Gean, P. W., Chuang, D. M., Hong, J. S., 2007. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience. 149, 203-12.
    100. Huuskonen, J., Suuronen, T., Nuutinen, T., Kyrylenko, S., Salminen, A., 2004. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol. 141, 874-80.
    101. Popovich, P. G., Guan, Z., McGaughy, V., Fisher, L., Hickey, W. F., Basso, D. M., 2002. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol. 61,623-33.
    102. Zhou, Y., Wang, Y., Kovacs, M., Jin, J., Zhang, J., 2005. Microglial activation induced by neurodegeneration: a proteomic analysis. Mol Cell Proteomics. 4, 1471-9.
    103. Leoni F, Zaliani A, Bertolini G et al. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci USA 2002; 99:2995-3000.
    104. Aung HT, Schroder K, Himes SR et al. LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J 2006; 20:1315-27.
    105. Brogdon J, Xu Y, Szabo S, An S, Buxton F, Cohen D, Huang Q. 2007. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function Blood. 109:1123-30.)
    106. Bode KA, Schroder K, Hume DA, Ravasi T, Heeg K, Sweet MJ, Dalpke AH. 2007. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology. 122(4):596-606
    107. Chen LF, Greene WC. Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med 2003; 81:549-57.
    108. Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001; 293:1653-7.
    109. Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ, and Ratan RR (2003) Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an SP1-dependent pathway. Proc Natl Acad Sci USA 100:4281-4286.
    110. Chen G, Zeng WZ, Yuan PX, Huang L-D, Jiang YM, Zhao ZH, and Manji HK (1999) The Mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 72:879-882.
    111. Bown CD, Wang JF, and Young LT (2000) Increased expression of endoplasmic reticulum stress proteins following chronic valproate treatment of rat C6 glioma cells. Neuropharmacology 39:2162-2169.
    112. Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, and Yamawaki S (2001) Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology 158:100-106.
    113. Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, Wilson B, Lu RB, Gean PW, Chuang DM, et al. (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11:1116-1125.
    114. Kanai H, Sawa A, Chen RW, Leeds P, and Chuang DM (2004) Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Pharmacogen J 4:336-344.
    115. Chuang DM, Hough C, and Senatorov W (2005) Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative disease. Annu Rev Pharmacol Toxicol 45:269-290.
    116. Kawaguchi, Y., Kovacs, J. J., McLaurin, A., Vance, J. M., Ito, A., Yao, T. P., 2003. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 115, 727-38.
    117. Pandey, U. B., Batlevi, Y., Baehrecke, E. H., Taylor, J. P., 2007. HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy. 3, 643-5.
    118. Dompierre, J. P., Godin, J. D., Charrin, B. C., Cordelieres, F. P., King, S. J., Humbert, S., Saudou, F., 2007. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci. 27, 3571-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700