铜弹带堆焊中泛铁规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜合金堆敷层在兵器制造业上应用广泛。本文利用TIG堆焊方法在35CrMnSiA钢基体表面堆敷Hs201铜合金。在分析堆焊温度场分布、焊接工艺对温度场的影响及在电弧作用下堆敷层与基体熔池流动规律的基础上,主要对铜合金中泛铁的分布、形态的发展演变以及泛铁量规律进行了系统的研究。
     通过分析焊接传热过程,采用焊后堆敷层几何参数建立实体模型,利用高斯面热源和堆敷层体热源结合的复合热源作为热源模型,编写用户子程序实现热源摆动运动,模拟了不同工艺下的焊接温度场。研究结果表明:基体内部各点热循环最高温度、冷却速度随着距界面距离增加而减小;相同焊接电流时,摆动焊基体界面处热循环最高温度低于单道焊,冷却速度也小于单道焊;背部水冷焊接时,基体与堆敷层的冷却速度大大提高。通过实测值对模拟结果进行验证,发现在水冷焊接时基体表面处最高温度有较大误差,其余结果吻合较好。
     利用温度场分析获得的结果并结合电弧压力测量结果,研究堆敷层与基体熔池内液相的流动规律。研究结果表明:在假设前提下,不论是单一流场还是复合流场都会在很短的时间内达到稳定;在双相流场内,熔化基体从熔池底部向堆敷层两侧运动,液态铜合金由堆敷层顶部进入基体熔池。在流动过程中,接近熔池底部液相的流动速度较小,而堆敷层顶部流动速度较大。
     通过光学显微镜、扫描电镜、能谱分析和X-射线衍射等方法对界面区和堆敷层合金进行分析,利用温度场及熔池流场结果解释堆敷层中泛铁的分布、形态的演变过程。结果表明:在电弧压力的作用下,熔化基体流向堆敷层两侧,并在那里率先凝固形成泛铁;液态铜合金流入熔池,因此在堆敷层中心与熔池中心泛铁较少。随着焊接电流的增大,泛铁形态由最初的无可见泛铁(I<270A)发展到细小的颗粒状、类树枝状泛铁(I=270A),再发展到大块球状泛铁(I=300A),最后发展到Cu/Fe界面模糊,堆敷层内Cu、Fe相互包覆(I=330A)。通过EDXA方法测量堆敷层内泛铁量,建立泛铁量与焊接电流关系模型。
     论文最后讨论了控制泛铁量因素,结果表明:在270A时采用背部水冷的方法,泛铁量比空冷焊接时降低了40%;采用热丝焊接方法泛铁量降低了8.6%。
Copper cladding layer has been widely used in field of weapons manufacturing. In this paper, a cladding of Hs201 was cladded on the surface of 35CrMnSiA steel substrate by means of tungsten inert gas (TIG) cladding. On basis of analyzing the temperature field, the influence of processing condition on temperature field, and the law of flow in the cladding layer and the molten pool under the effect of TIG-arc, distribution and concentration of Fe in the copper alloy cladding layer, the evolution of the morphology of Fe in the copper layer, and the content of Fe were studied primarily and systematically.
     Based on the comprehensive analyses of heat transfer behavior in cladding process, a entity model was presented by using the physical dimensions of cladding layers, the heat source was composed of a segment column heat source and a Gaussian distribution surface heat source, the weaving movement of heat source was achieved by user’s defined functions, and temperature fields under different cladding process were simulated. The results showed that the peak temperatures of weld thermal cycle decreased alone with the increasing of the distance from the interface in the steel substrate, cooling velocity also decreased; the peak temperatures of weld thermal cycle at interface is lower in weaving welding than single-pass welding at the same cladding current, the cooling velocity is also lower in weaving welding; the cooling velocity of cladding layer and the steel substrate increased greatly with water cooling to the back of the substrate; compared the results with the experimental data, there was a rather large error at the peak temperature at the interface in cladding on water cooling substrate. The other results obtained by simulation were in good agreement with the experimental ones.
     Using the results obtained from temperature fields analyze and from the arc pressure test, the law of flowing liquid in cladding layer and the molten pool in substrate. Results showed that following the presumption the paper given, either single phase flow field or double phase flow field became stable in a very short time; in double phase flow field molten steel at the bottom of the molten pool flowed to both sides of the cladding layer, Molten copper alloy at the top of the cladding layer flowed to molten pool. In flow field, rate of flow near the molten bottom was low, but it is high at the top of the cladding layer.
     The interface and the cladding layer were analyzed by means of optical microscope, SEM, EDXA, and XRD, and the evolution of the distribution and concentration of Fe, the morphology of Fe in the cladding layer was studied with the calculated results. The results showed molten steel was taken out of the molten pool to both sides of the cladding layer, and solidified there; molten copper alloy flowed into the molten pool so that there is little Fe in the middle of the cladding layer and the molten pool. Alone with increasing of cladding current, the morphology of Fe in cladding layer evolved from invisible Fe (I<270A) to fine grain or arborization (I<270A), and to block Fe (I=300A), and finally the interface of Cu/Fe became blurred, molten copper alloy and steel contained each other (I=300A). The content of Fe in cladding layer measured by EDXA, and the model on the relationship between the content of Fe and cladding current was built.
     At last the factors which could restrain the transfer of Fe were investigated, results show that Fe content decreased by 40% on a water cooling substrate when cladding current was 270A; at the same current, Fe content decreased by 8.6% with hot filler wire.
引文
1 V. Malin. Development of Mold Solidification Welding for Deposition Nonferrous Alloys onto Steel. Welding Journal. 1992, 71(5): 35~36
    2徐晓菱,朱伟,朱凌云.弹带装配工艺现状及其发展.兵器材料科学与工程. 2002, 5(3):222~224
    3王克鸿,徐越兰等.无熔深堆焊铜技术研究.机械设计与制造工程. 2002, 31(1): 58~59
    4王克鸿,徐越兰等.弹带熔敷扩散焊接技术研究.兵器材料科学与工程. 2002, 25(3): 34~36
    5王克鸿,徐越兰等.无熔深熔覆铜工艺.焊接学报. 2001, 22(6): 69~72
    6吕永辉等.船用换热器B30/10CrNi3MoV封头与法兰焊接工艺研究.材料开发与应用. 2001(16): 16~19
    7 Rendii. K. I, Zhou Y, Kolcama. H, Sorth. T. H. Liquid-solid interface migration at grain boundary regions during transient liquid phase brazing. Metallurgical Transactions. 1992, 23A(10): 2905~2915
    8赵晖等. 16Mn钢板堆焊CuNi合金的渗透裂纹形成分析.材料热处理学报. 2005(26): 40~43
    9季杰等.铜渗透裂纹机理.焊接学报. 2004, (25): 125~130
    10 T. Yohru, H. Omhura. Dissolution and Deposit of Base Metal in Brazing to Dissimilar Materials and its Application (Part 1). J. of Japan Welding Society. 1977, 46(11): 809~813
    11 T. Yohru, H. Omhura. Dissolution and Deposit of Base Metal in Brazing to Dissimilar Materials and its Application (Part 2). J. of Japan Welding Society. 1978, 47(7): 409~412
    12 T. Yohru, H. Omhura. Dissolution and Deposit of Base Metal in Brazing to Dissimilar Materials and its Application (Part 3). J. of Japan Welding Society. 1980, 49(2): 117~123
    13 T. Yohru, H. Omhura. Dissolution and Deposit of Base Metal in Brazing to Dissimilar Materials and its Application (Part 4). J. of Japan Welding Society. 1981, 50(9): 924~930
    14 T. Yohru, H. Omhura. Dissolution and Deposit of Base Metal in Brazing toDissimilar Materials and its Application (Part 5). J. of Japan Welding Society. 1982, 51(5): 410~416
    15 T. Yohru, H. Omhura. Dissolution and Deposit of Base Metal in Brazing to Dissimilar Materials Carbon Steel Brazing. Welding journal. 1980, 49(10): 78s~82s
    16 T. Yohru, H. Omhura. Dissolution and Deposit of Base Metal in Brazing to Dissimilar Materials Carbon Steel Brazing. Welding journal. 1985, 54(1): 1s~12s
    17翟宗仁,郑立刚.铜基钎料高温钎焊不锈钢晶间贯穿机理的研究.焊接学报. 1988, 19(1): 1~8
    18 F. Nippes, D.J. Ball. Copper-Contamination Cracking: Cracking Mechanism and Crack Inhibitors. Welding Journal. 1982, 51(3): 75~81
    19 J. H. Li, R. Y. Lin. Joint Zone Evolution in Infrared Bonded Steels with Copper Filler. Metallurgical and Materials Transactions B. 2001, 32B(12): 1177~1183
    20 V.F. Khorunov, S.V. Maksimova, I.V. Zvolinsky, S.M. Samokin. Arc Brazing of Heat-Resistant Ni alloy. Edited by T. Poul. Advanced Brazin & Soldering Technologies International Brazing & soldering Conference Proceedings, Albuquerque New Mexico, 2000: 6~9
    21白津生,林嘉明.铜的TIG钎焊工艺探讨.焊接技术. 1994, 12(2): 24~25
    22王宇,周方明.薄板电弧钎焊钎缝形成及界面现象.机械设计与制造工程. 2000, 18(2): 45~47
    23翟宗仁,郑立刚.铜基钎料高温钎焊不锈钢晶间贯穿机理的研究.焊接学报. 1988, 19(1): 1~8
    24 A. Munitz, S.P. Elderandall, R. Abbaschian. Metable Liquid Phase Separation in Tungsten Inert Gas and Electron Beam Copper/Stainless-steel Welds. Journal of Materials Science. 1995, 51(30): 2901~2910
    25于治水.镀锌钢板氩弧钎焊润湿铺展及界面行为.哈尔滨工业大学博士学位论文. 2003: 112~133
    26 S.P. Elder. Metastable Liquid Immiscibility in FeCu Alloy. Materials Science Forum. 1989, 50(2): 137~144
    27 F. Nippes, D.J. Ball. Copper-Contamination Cracking: Cracking Mechanism and Crack Inhibitors. Welding Journal. 1982, 51(3): 75~81
    28任振安,郭作兴,吴山力.工艺参数对铜基激光熔覆层组织及耐磨性的影响.焊接学报. 2002, 23(1): 69~80
    29单际国,赵楠楠,任家烈.聚焦光束堆焊铜基自熔合金过程中Fe3Si增强相的反应合成.中国有色金属学报. 2004, 14(3): 450~454
    30 D. W. zeng, C. S. Xie, M. Q. Wang. In Situ Synthesis and Characterization of Fep/Cu Composite Coating on SAE 1045 Carbon Steel by Laser Cladding. Materials Science and Engineering. 2003, A344: 357~364
    31王毛球,曾大文,宋武林等.激光熔覆复合涂层组织特征及其形成机理研究.激光技术. 1999, 23(3): 149~152
    32 Yuan-Ching Lin, Shi-Wei Wang, Yu-Chang Lin. Analysis of Microstructure and Wear Performance of WC–Ti Clad Layers on Steel, Produced by Gas Tungsten Arc Welding. Surface and Coatings Technology. 2005, (200): 2106~2113
    33 Xia Zhou, Guohui Qu. Fabrication of Composite alloy Cladding Material by Brazing Process. Journal of Materials Processing Technology. 2005 (168): 280~285
    34 Shan-Ping Lu, Oh-Yang Kwon. Microstructure and Wear Property of Fe–Mn–Cr–Mo–V Alloy Cladding by Submerged Arc Welding. Journal of Materials Processing Technology. 2004(147): 191~196
    35 P. Hedmen, H.Rohde. Innovations in Welding Technology in 1998. Welding and Cutting. 1999, 51(5): 85~98
    36 Edoardo Capello, Barbara Previtali. The Influence of Operator Skills, Process Parameters and Materials on Clad Shape in Repair Using Laser Cladding by Wire. Journal of Materials Processing Technology. 2006(174): 223~232
    37 T. Zacharia et al. Heat Transfer during Nd-Yag Pulsed Laser Welding and Its Effect on Solidification Structure of Austenitic Stainless Steels. Metallurgical and Materials Transactions. 1989, 20A(5): 957~967
    38 S. A. David et al. Effect of Rapid Solidification on Stainless Steel Weld Metal Microstructures and Its Implication on the Schaeffler Diagram. Welding Journal. 1987, 66(10): 289s~300s
    39姜晓飞. CMT法30CrMnSi钢板表面熔覆CuSi3工艺研究.哈尔滨工业大学硕士学位论文. 2006: 12~14
    40贾昌申.焊接电弧的等离子流力.焊接学报. 1994, 15(2): 101~105
    41张义顺等.等离子弧一MIG焊双电弧作用下的焊接熔池形态分析.试验与研究. 2005, 34(5): 21~22
    42赵玉珍.焊接熔池的流体动力学行为及凝固组织模拟.北京工业大学博士学位论文. 2004: 40~78
    43武传松.熔透熔池表面下塌变形的动态演变过程分析.金属学报. 2006, 42(8): 865~869
    44赵朋成.全熔透TIG焊接熔池形态瞬时行为的数值模拟.山东大学博士学位论文. 2003: 41~67
    45杨雪峰, Aristeu da Silveira Neto. GTAW焊接过程中熔池发展的数值模拟及与实验结果的比较.四川大学学报(工程科学版). 2002, 34(6): 47~51
    46张瑞华等. GTA焊接熔池特性的数值模拟.兰州理工大学学报. 2004, 30(5):21~24
    47王宏等.激光深熔焊熔池流动的换热特性.焊接学报. 2005, 26(11): 47~51
    48郭景杰等.合金熔体及其处理.机械工业出版社, 2005: 18~53
    49 Takamichi, Roderick I. L. Guthrie.液态金属的物理性能.科学出版社, 2006: 20~237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700