流感病毒诱导神经胶质细胞的病理变化及天然免疫反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的与意义:
     流感病毒感染可引起人呼吸系统疾病,同时亦可感染中枢神经系统(CNS),导致部分感染人群产生CNS病变。在流感相关性脑病与脑炎综合征病人的脑脊液中促炎症细胞因子浓度出现异常升高。神经胶质细胞,尤其是小胶质细胞和星形胶质细胞是CNS细胞因子产生的主要来源,但其在流感病毒感染CNS时的功能仍不清楚。因此,探索小胶质细胞和星形胶质细胞在流感病毒感染后所发生的病理变化及免疫反应,为明确胶质细胞在感染中的作用、理解CNS感染流感病毒后的发病机制提供必要的实验依据。此外,根据人流感病毒基因组核酸的类型、进化趋势及预实验的线索,推测流感病毒与APOBEC家族蛋白存在可能的潜在相关性。探寻APOBEC与流感病毒复制及突变的关系,为寻找对流感病毒具有潜在抑制作用的因子、理解病毒进化因素提供新的思路。
     实验方法:
     1.明确病毒遗传背景、建立反向遗传平台:选取人A/Shantou/169/2006(H1N1)和禽A/Chicken/Guangdong/1/05(H5N1)流感病毒,对病毒全基因组进行克隆测序,构建反向遗传通用载体及含上述两种病毒全基因组片段的质粒;
     2.探讨胶质细胞感染流感病毒后的病理变化和免疫反应:分离培养小鼠神经胶质细胞,检测流感病毒受体;使用遗传背景明确的H1N1和H5N1感染小胶质细胞及星形胶质细胞,检测病毒复制、病毒生长曲线、细胞病变、细胞因子基因转录水平及蛋白分泌变化;使用人胶质细胞,检测流感病毒感染后APOBEC家族基因转录水平变化;
     3.探讨APOBEC家族蛋白与流感病毒复制及突变频率的关系:克隆APOBEC家族成员并构建MDCK表达细胞系,检测流感病毒在APOBEC表达细胞上的复制效率与突变频率。
     实验结果:
     1.完成了人H1N1和禽H5N1流感病毒的纯化培养及基因组的克隆与测序;
     2.成功构建了CMV及Pol I双向启动子的反向遗传载体,及两株流感病毒全基因组反向遗传质粒;
     3.亲和荧光实验表明小鼠胶质细胞存在禽及人流感病毒受体SA-α2,3-Gal和SA-α2,6-Gal;
     4.小鼠小胶质细胞和星形胶质细胞均可被流感病毒感染并产生子代病毒。小胶质细胞对流感病毒的敏感性和复制效率高于星形胶质细胞,H1N1复制效率高于H5N1;
     5.流感病毒感染胶质细胞可产生细胞病变效应(CPE)并诱导细胞凋亡,小胶质细胞的CPE和凋亡率高于星形胶质细胞:
     6.流感病毒感染可诱导小胶质细胞和星形胶质细胞的促炎症细胞因子(IL-1α、IL-1β、IL-6及TNF-α)及趋化因子(CCL-2、-3、-5及CXCL-2、-9、-10)的mRNA水平上调;H5N1的感染能诱导更强烈的上调反应;
     7. ELISA结果表明,小胶质细胞和星形胶质细胞在流感病毒感染后,促炎症细胞因子IL-1β、IL-6和TNF-α的分泌量上调;H5N1的感染能诱导更强烈的上调反应;
     8.小鼠胶质细胞表达APOBEC3,人胶质细胞表达APOBEC-3B、-3C、-3F和-3G,在流感病毒感染后,其转录水平发生上调;
     9.克隆并表达了人APOBEC-1、-2、-3A、-3B、-3C、-3F、-3G、-3H、-4和AID,小鼠APOBEC-3和大鼠APOBEC-1,其中hA3F和hA3G构建了稳定转染的细胞系; 10.在证实hA3F和hA3G的表达不受流感病毒封闭,且具有抑制HBV复制活性的情况下,表明hA3F和hA3G对流感病毒的复制效率及基因突变频率无明显作用;其它APOBEC家族成员尚未发现具有明显抑制流感病毒复制的潜力。
     结论:
     1.成功构建了反向遗传通用载体及两株流感病毒的全基因组反向遗传质粒;
     2.小鼠胶质细胞表面存在人流感病毒受体SA-α2,6-Gal及禽流感病毒受体SA-α2,3-Gal,人及禽流感病毒均可感染小鼠小胶质细胞和星形胶质细胞,并进行有效复制产生具有感染性的子代病毒;
     3.流感病毒的感染可对小鼠胶质细胞产生以CPE和凋亡为特征的直接损伤作用,其中小胶质细胞对流感病毒更为敏感;
     4.流感病毒感染可诱导小鼠胶质细胞产生促炎症细胞因子反应为特征的炎症反应;其中H5N1可诱导更为强烈的促炎症因子反应;
     5.流感病毒可诱导胶质细胞APOBEC蛋白家族成员表达上调,但人APOBEC-3F和-3G对流感病毒的复制效率和基因突变频率无明显作用,其它APOBEC家族成员亦无明显抑制流感病毒复制的能力。
Background and aims
     Influenza virus infection can cause human respiratory illnesses and occasional central nervous system (CNS) disorders. Influenza virus can infect the CNS. Besides, pro-inflammatory cytokines are reportedly increased in the cerebrospinal fluids and plasma of patients with influenza encephalopathy and encephalitis. Microglia and astrocytes are capable of producing cytokines in the CNS. Nevertheless, the role(s) of microglia and astrocytes in acute encephalopathy and encephalitis caused by influenza virus infection remains unexplored. Therefore, to understand the immune responses mediated by microglia and astrocytes after influenza virus infection and the mechanism underlying the associated encephalopathy and encephalitis, mouse microglia and astrocytes were isolated and infected with human H1N1 and avian H5N1 influenza viruses, then their viral susceptibility and productivity, and cytopathic, apoptotic, and pro-inflammatory cytokine responses were examined.
     A steady increase of uracil (U) and adenine (A) along with the decrease in cytosine (C) and guanine (G) was detected in human influenza virus genomes but not in the avian influenza virus genomes. One of those speculations is that humans have a native defense against RNA viruses similar to APOBEC proteins. Based on other reports and our previous results, we speculated that APOBEC might be involved in the inhibition or hypermutation of influenza virus. There is no report on whether APOBEC enzymes can inhibit or hypermutate human IAV until now. It will be beneficial to explore and understand the novel potential inhibitors and hyper-mutagenesis factors among cytidine deaminase or intercellular immunity mediators might be found.
     Methods
     1. To clarity the genetics background and construct the reverse genetics system, the universal reverse genetics vector was constructed. All the eight genome-fragments of human H1N1 and avian H5N1 influenza viruses were cloned using RT-PCR and sequenced. Then the fragments were inserted into the universal vectors.
     2. To investigate the cytopathy and immune reactions of glial cells infected influenza viruses, mouse microglia and astrocytes were isolated and infected by human H1N1 and avian H5N1 influenza viruses. Then their viral receptors distribution, infection, apoptosis, cytopathy, and immune responses were examined using affinity fluorescence, immuno- fluorescence, semi-quantitative RT-PCR, ELISA and other assays. The mRNA levels of APOBEC members in infected human glial cells were determined by semi-quantitative RT-PCR.
     3. To clarify the role of APOBEC3 members in cell defenses against influenza A virus, the effects of APOBEC members on influenza A virus replication and hypermutation were investigated. The APOBEC members were cloned and expressed in transfected cells and confirmed by Western blotting and FCM. The viral replication in APOBEC expressed cells were examined by TCID50 and PFU assay. The viral mutations were checked by sequencing.
     Results
     1. The genome fragments of H1N1 and H5N1 strains were cloned and sequenced successfully;
     2. The universal reverse genetics vector was constructed and confirmed by sequencing;
     3. Viral receptors, sialic acid (SA)-α2,3-Galactose(Gal) and SA-α2,6-Gal, were both observed to be homogeneously distributed on microglia and astrocytes;
     4. Both H1N1 and H5N1 viruses were replicative and productive in microglia and astrocytes;
     5. Virus-induced apoptosis and cytopathy in infected cells were observed at 24 h post-infection (p.i.);
     6. The mRNA expression of pro-inflammatory cytokines (IL-1α, IL-1β, IL-6 and TNF-α) and chemokines (CCL-2, -3, -5, and CXCL-2, -9, -10) examined at 6 h and 24 h p.i. was up-regulated, and their expression levels were considerably higher in H5N1 infection. The protein levels of secreted pro-inflammatory IL-1β, IL-6 and TNF-αat 6 h and 24 h p.i. were also induced, with greater induction by H5N1 infection;
     7. Mouse APOBEC3 and human APOBEC-3B, -3C, -3F, and -3G were detected in mouse and human glial cells, respectively. Their mRNA levels were up-regulated after influenza virus infection;
     8. The APOBEC members, including human APOBEC-1, -2, -3A, -3B, -3C, -3F, -3G, -3H, -4, AID, mouse APOBEC-3, and rat APOBEC-1, were cloned and confirmed by sequencing, and expressed in transfected cells.
     9. The results of viral titers assay showed that there were no significant differences in replication of influenza virus between APOBEC proteins expressed cells and the control cells. It indicated that APOBEC3F and 3G could inhibit the replication of HBV in HepG2.2.15 cells. Western blotting indicated that APOBEC3F and 3G proteins were both over-expressed during the infection of influenza virus. DNA sequencing showed that there was no hypermutation in influenza virus genome induced by APOBEC3F or 3G.
     Conclusions
     1. The genome fragments of H1N1 and H5N1 strains were cloned and sequenced successfully; The universal reverse genetics vector was constructed and confirmed by sequencing;
     2. This study firstly demonstrated that both human H1N1 and avian H5N1 influenza viruses could infect and induce apoptosis, cytopathy, and pro-inflammatory cytokine production in mouse microglia and astrocytes in vitro. The results suggest that direct cellular damage and the consequences of immunopathological injuries in the CNS contribute to the influenza viral pathogenesis.
     3. APOBEC3F and 3G could effectively inhibit HBV replication, but could not inhibit human influenza A virus replication or induce its hypermutation. And other APOBEC members, including human AID, APOBEC1, APOBEC3A, 3B, 3C, 3H and rat APOBEC1, have no inhibition effect on the replication of influenza A virus, too.
引文
[1] Nicholson, K.G, Webster, R.G, Hay, A.J. Textbook of influenza. London: Blackwell Science Ltd, 1998.
    [2]郭元吉,程小雯.流行性感冒病毒及其实验技术.北京:中国三峡出版社, 1997.
    [3]张增峰.人呼吸道甲型流感病毒受体的分布和感染H5N1流感病毒的病理变化.汕头大学博士学位论文. 2007. 2.
    [4] de Jong JC, Claas EC, Osterhaus AD, Webster RG, Lim WL. A pandemic warning?. Nature, 1997,389(6651):554.
    [5] Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K, Webster R, Cox N, Hay A. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci U S A, 2000,97(17):9654-9658.
    [6] Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF. Human infection with influenza H9N2. Lancet, 1999,354(9182):916-917.
    [7]郭元吉,李建国,程小雯,王敏,邹毅,李钏华,蔡访潺,廖华乐,张烨,郭俊峰,黄瑞敏,贝东.禽H9N2亚型流感病毒能感染人的发现.中华实验和临床病毒学杂志, 1999,13(2):105-108.
    [8]郭元吉,谢健屏,王敏,董婕,郭俊峰,张烨,吴昆昱.从我国人群中再次分离到H9N2亚型流感病毒.中华实验和临床病毒学杂志, 2000,14(3):209-212.
    [9] Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, Van Doornum GJ, Koch G, Bosman A, Koopmans M, Osterhaus AD. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A, 2004,101(5):1356-1361.
    [10] Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, Meijer A, van Steenbergen J, Fouchier R, Osterhaus A, Bosman A. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet, 2004,363(9409):587-593.
    [11] McGeoch D, Fellner P, Newton C. Influenza virus genome consists of eight distinct RNA species. Proc Natl Acad Sci U S A, 1976,73(9):3045-3049.
    [12] Honda A, Mukaigawa J, Yokoiyama A, Kato A, Ueda S, Nagata K, Krystal M, Nayak DP, Ishihama A. Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem, 1990,107(4):624-628.
    [13] Compans RW, Content J, Duesberg PH. Structure of the ribonucleoprotein of influenza virus. J Virol, 1972,10(4):795-800.
    [14] Horisberger M, Schulze C. Properties of an RNA polymerase complex detected in influenza virus-infected cells. Arch Gesamte Virusforsch, 1974,46(1-2):148-155.
    [15] Krug RM, Broni BA, Bouloy M. Are the 5' ends of influenza viral mRNAs synthesized in vivo donated by host mRNAs? Cell, 1979,18(2):329-334.
    [16] Beaton AR, Krug RM. Selected host cell capped RNA fragments prime influenza viral RNA transcription in vivo. Nucleic Acids Res, 1981,9(17):4423-4436.
    [17] Hay AJ, Lomniczi B, Bellamy AR, Skehel JJ. Transcription of the influenza virus genome. Virology, 1977,83(2):337-355.
    [18] Enami M, Fukuda R, Ishihama A. Transcription and replication of eight RNA segments of influenza virus. Virology, 1985,142(1):68-77.
    [19] Tchatalbachev S, Flick R, Hobom G. The packaging signal of influenza viral RNA molecules. RNA, 2001,7(7):979-989.
    [20] Nayak DP, Hui EK, Barman S. Assembly and budding of influenza virus. Virus Res, 2004,106(2):147-165.
    [21] Neumann G, Watanabe T,Kawaoka Y. Plasmid-driven formation of influenza virus-like particles. J Virol, 2000,74(1):547-551.
    [22] Neumann G, Kawaoka Y. Generation of influenza A virus from cloned cDNAs--historical perspective and outlook for the new millenium. Rev Med Virol, 2002,12(1):13-30.
    [23] Pleschka S, Jaskunas R, Engelhardt OG, Zurcher T, Palese P, Garcia-Sastre A. A plasmid-based reverse genetics system for influenza A virus. J Virol, 1996,70(6):4188-4192.
    [24]卢建红,刘秀梵,邵卫星. A型流感病毒的反向遗传技术研究进展.中国生物工程杂志, 2005,25(3):1-5.
    [25]程从升,舒跃龙,张智清.流感病毒的反向遗传学研究进展.病毒学报, 2007,23(1):68-71.
    [26] Enami M, Luytjes W, Krystal M, Palese P. Introduction of site-specific mutations into the genome of influenza virus. Proc Natl Acad Sci U S A, 1990,87(10):3802-3805.
    [27] Luytjes W, Krystal M, Enami M, Parvin JD, Palese P. Amplification, expression, and packaging of foreign gene by influenza virus. Cell, 1989,59(6):1107-1113.
    [28] Neumann G, Zobel A, Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology, 1994,202(1):477-479.
    [29] Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A, 1999,96(16):9345-9350.
    [30] Neumann G, Kawaoka Y. Genetic engineering of influenza and other negative-strand RNA viruses containing segmented genomes. Adv Virus Res, 1999,53:265-300.
    [31] Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A. Rescue of influenza A virus from recombinant DNA. J Virol, 1999,73(11):9679-9682.
    [32] Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A, 2000,97(11):6108-6113.
    [33] Hoffmann E, Neumann G, Hobom G, Webster RG, Kawaoka Y. "Ambisense" approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology, 2000,267(2):310-317.
    [34] Hoffmann E, Webster RG. Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. J Gen Virol, 2000,81(Pt 12):2843-2847.
    [35] Hoffmann E, Krauss S, Perez D, Webby R, Webster RG. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine, 2002,20(25-26):3165-3170.
    [36] Hoffmann E, Mahmood K, Yang CF, Webster RG, Greenberg HB, Kemble G. Rescue of influenza B virus from eight plasmids. Proc Natl Acad Sci U S A, 2002,99(17):11411-11416.
    [37] Hoffmann E, Lipatov AS, Webby RJ, Govorkova EA, Webster RG. Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5N1 influenza virus vaccines. Proc Natl Acad Sci U S A, 2005,102(36):12915-12920.
    [38] Webster RG, Webby RJ, Hoffmann E, Rodenberg J, Kumar M, Chu HJ, Seiler P, Krauss S, Songserm T. The immunogenicity and efficacy against H5N1 challenge of reverse genetics-derived H5N3 influenza vaccine in ducks and chickens. Virology, 2006,351(2):303-311.
    [39] de Wit E, Spronken MI, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA. Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments. Virus Res, 2004,103(1-2):155-161.
    [40] Nakai Y, Itoh M, Mizuguchi M, Ozawa H, Okazaki E, Kobayashi Y, Takahashi M, Ohtani K, Ogawa A, Narita M, Togashi T, Takashima S. Apoptosis and microglial activation in influenza encephalopathy. Acta Neuropathol, 2003,105(3):233-239.
    [41] Studahl M. Influenza virus and CNS manifestations. J Clin Virol, 2003,28(3):225-232.
    [42] Linnemann CC Jr, Shea L, Kauffman CA, Schiff GM, Partin JC, Schubert WK. Association of Reye's syndrome with viral infection. Lancet, 1974,2(7874):179-182.
    [43] Davis LE, Kornfeld M. Influenza A virus and Reye's syndrome in adults. J Neurol Neurosurg Psychiatry, 1980,43(6):516-521.
    [44] Harrington M, Draper IT. Post-influenzal encephalitis and Reye's syndrome. J Neurol Neurosurg Psychiatry, 1981,44(7):649.
    [45] Ku AS, Chan LT. The first case of H5N1 avian influenza infection in a human with complications of adult respiratory distress syndrome and Reye's syndrome. J Paediatr Child Health, 1999,35(2):207-209.
    [46] Gooskens J, Kuiken T, Claas EC, Harinck HI, Thijssen JC, Baelde HJ, Kroes AC. Severe influenza resembling hemorrhagic shock and encephalopathy syndrome. J Clin Virol, 2007,39(2):136-140.
    [47] Weitkamp JH, Spring MD, Brogan T, Moses H, Bloch KC, Wright PF. Influenza A virus-associated acute necrotizing encephalopathy in the United States. Pediatr Infect Dis J, 2004,23(3):259-263.
    [48] Horner FA. Neurologic disorders after Asian influenza. N Engl J Med, 1958,258(20):983-985.
    [49] Fujimoto S, Kobayashi M, Uemura O, Iwasa M, Ando T, Katoh T, Nakamura C, Maki N, Togari H, Wada Y. PCR on cerebrospinal fluid to show influenza-associated acute encephalopathy or encephalitis. Lancet, 1998,352(9131):873-875.
    [50] Ito Y, Ichiyama T, Kimura H, Shibata M, Ishiwada N, Kuroki H, Furukawa S, Morishima T. Detection of influenza virus RNA by reverse transcription-PCR and proinflammatory cytokines in influenza-virus-associated encephalopathy. J Med Virol,1999,58(4):420-425.
    [51] Ishigami A, Kubo S, Ikematsu K, Kitamura O, Tokunaga I, Gotohda T, Nakasono I. An adult autopsy case of acute encephalopathy associated with influenza A virus. Leg Med (Tokyo), 2004,6(4):252-255.
    [52] Nishimura H, Itamura S, Iwasaki T, Kurata T, Tashiro M. Characterization of human influenza A (H5N1) virus infection in mice: neuro-, pneumo- and adipotropic infection. J Gen Virol, 2000,81(Pt 10):2503-2510.
    [53] Shinjoh M, Yoshikawa T, Li Y, Shiraishi K, Ueki H, Nerome K. Prophylaxis and treatment of influenza encephalitis in an experimental mouse model. J Med Virol, 2002,67(3):406-417.
    [54] Kawada J, Kimura H, Ito Y, Hara S, Iriyama M, Yoshikawa T, Morishima T. Systemic cytokine responses in patients with influenza-associated encephalopathy. J Infect Dis, 2003,188(5):690-698.
    [55] Ichiyama T, Isumi H, Ozawa H, Matsubara T, Morishima T, Furukawa S. Cerebrospinal fluid and serum levels of cytokines and soluble tumor necrosis factor receptor in influenza virus-associated encephalopathy. Scand J Infect Dis, 2003,35(1):59-61.
    [56] Togashi T, Matsuzono Y, Narita M, Morishima T. Influenza-associated acute encephalopathy in Japanese children in 1994-2002. Virus Res, 2004,103(1-2):75-78.
    [57] Ichiyama T, Morishima T, Isumi H, Matsufuji H, Matsubara T, Furukawa S. Analysis of cytokine levels and NF-kappaB activation in peripheral blood mononuclear cells in influenza virus-associated encephalopathy. Cytokine, 2004,27(1):31-37.
    [58] Fukumoto Y, Okumura A, Hayakawa F, Suzuki M, Kato T, Watanabe K, Morishima T. Serum levels of cytokines and EEG findings in children with influenza associated with mild neurological complications. Brain Dev, 2007,29(7):425-430.
    [59] Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol, 2005,175(7):4320-4330.
    [60] Sei Y, Vitkovic L, Yokoyama MM. Cytokines in the central nervous system: regulatory roles in neuronal function, cell death and repair. Neuroimmunomodulation, 1995,2(3):121-133.
    [61] Garden GA, Moller T. Microglia biology in health and disease. J Neuroimmune Pharmacol, 2006,1(2):127-137.
    [62] Kim SU, de Vellis J. Microglia in health and disease. J Neurosci Res, 2005,81(3):302-313.
    [63] Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol, 2007,28(3):138-145.
    [64] Nunoi H, Mercado MR, Mizukami T, Okajima K, Morishima T, Sakata H, Nakayama S, Mori S, Hayashi M, Mori H, Kagimoto S, Kanegasaki S, Watanabe K, Adachi N, Endo F. Apoptosis under hypercytokinemia is a possible pathogenesis in influenza-associated encephalopathy. Pediatr Int, 2005,47(2):175-179.
    [65] Hu S, Peterson PK, Chao CC. Cytokine-mediated neuronal apoptosis. Neurochem Int, 1997,30(4-5):427-431.
    [66] Dhib-Jalbut S, Gogate N, Jiang H, Eisenberg H,Bergey G. Human microglia activate lymphoproliferative responses to recall viral antigens. J Neuroimmunol, 1996,65(1):67-73.
    [67] Correa SG, Maccioni M, Rivero VE, Iribarren P, Sotomayor CE, Riera CM. Cytokines and the immune-neuroendocrine network: What did we learn from infection and autoimmunity?. Cytokine Growth Factor Rev, 2007,18(1-2):125-134.
    [68] Konstantinos AP, Sheridan JF. Stress and influenza viral infection: modulation of proinflammatory cytokine responses in the lung. Respir Physiol, 2001,128(1):71-77.
    [69] Osterholm MT. Preparing for the next pandemic. N Engl J Med, 2005,352(18):1839-1842.
    [70] Chan MC, Cheung CY, Chui WH, Tsao SW, Nicholls JM, Chan YO, Chan RW, Long HT, Poon LL, Guan Y, Peiris JS. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir Res, 2005,6:135-147.
    [71] Cheung CY, Poon LL, Lau AS, Luk W, Lau YL, Shortridge KF, Gordon S, Guan Y, Peiris JS. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet, 2002,360(9348):1831-1837.
    [72] Marcus PI. Celebrating the 50th anniversary of the discovery of interferon. J Interferon Cytokine Res, 2007,27(2):87-89.
    [73]李卫中,洪敏,李琦涵. APOBEC家族:介导天然抗病毒免疫的新型宿主细胞因子.病毒学报, 2006,22(1):74-80.
    [74] Cullen BR. Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J Virol, 2006,80(3):1067-1076.
    [75] Davidson NO, Innerarity TL, Scott J, Smith H, Driscoll DM, Teng B, Chan L. Proposed nomenclature for the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme: APOBEC-1. RNA, 1995,1(1):3.
    [76] Anant S, MacGinnitie AJ, Davidson NO. apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, is a novel RNA-binding protein. J Biol Chem, 1995,270(24):14762-14767.
    [77] Fujino T, Navaratnam N, Jarmuz A, von Haeseler A, Scott J. C to U editing of apolipoprotein B mRNA in marsupials: identification and characterisation of APOBEC-1 from the American opossum Monodelphus domestica. Nucleic Acids Res, 1999,27(13):2662-2671.
    [78] Liao W, Hong SH, Chan BH, Rudolph FB, Clark SC, Chan L. APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochem Biophys Res Commun, 1999,260(2):398-404.
    [79] Jarmuz A, Chester A, Bayliss J, Gisbourne J, Dunham I, Scott J, Navaratnam N. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics, 2002,79(3):285-296.
    [80] OhAinle M, Kerns JA, Malik HS, Emerman M. Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H. J Virol, 2006,80(8):3853-3862.
    [81] Rogozin IB, Basu MK, Jordan IK, Pavlov YI, Koonin EV. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle, 2005,4(9):1281-1285.
    [82] Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts.Nature, 2003,424(6944):99-103.
    [83] Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, Peterlin BM. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol, 2004,78(11):6073-6076.
    [84] Shindo K, Takaori-Kondo A, Kobayashi M, Abudu A, Fukunaga K, Uchiyama T. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J Biol Chem, 2003,278(45):44412-44416.
    [85] Liddament MT, Brown WL, Schumacher AJ, Harris RS. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol, 2004,14(15):1385-1391.
    [86] Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature, 2002,418(6898):646-650.
    [87] Yu Q, Chen D, Konig R, Mariani R, Unutmaz D, Landau NR. APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication. J Biol Chem, 2004,279(51):53379-53386.
    [88] Delebecque F, Suspene R, Calattini S, Casartelli N, Saib A, Froment A, Wain-Hobson S, Gessain A, Vartanian JP, Schwartz O. Restriction of foamy viruses by APOBEC cytidine deaminases. J Virol, 2006,80(2):605-614.
    [89] Russell RA, Wiegand HL, Moore MD, Schafer A, McClure MO, Cullen BR. Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors. J Virol, 2005,79(14):8724-8731.
    [90] Turelli P, Mangeat B, Jost S, Vianin S, Trono D. Inhibition of hepatitis B virus replication by APOBEC3G. Science, 2004,303(5665):1829.
    [91] Rosler C, Kock J, Malim MH, Blum HE, von Weizsacker F. Comment on "Inhibition of hepatitis B virus replication by APOBEC3G". Science, 2004,305(5689):1403; author reply 1403.
    [92] Chen H, Lilley CE, Yu Q, Lee DV, Chou J, Narvaiza I, Landau NR, Weitzman MD. APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. CurrBiol, 2006,16(5):480-485.
    [93] Wiegand HL, Cullen BR. Inhibition of alpharetrovirus replication by a range of human APOBEC3 proteins. J Virol, 2007,81(24):13694-13699.
    [94] Huthoff H, Malim MH. Cytidine deamination and resistance to retroviral infection: towards a structural understanding of the APOBEC proteins. Virology, 2005,334(2):147-153.
    [95] [Suspene R, Henry M, Guillot S, Wain-Hobson S, Vartanian JP. Recovery of APOBEC3-edited human immunodeficiency virus G to A hypermutants by differential DNA denaturation PCR. J Gen Virol, 2005,86(Pt 1):125-129.
    [96] Suspene R, Guetard D, Henry M, Sommer P, Wain-Hobson S, Vartanian JP. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc Natl Acad Sci U S A, 2005,102(23):8321-8326.
    [97] Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH. DNA deamination mediates innate immunity to retroviral infection. Cell, 2003,113(6):803-809.
    [98] Bishop KN, Holmes RK, Sheehy AM, Malim MH. APOBEC-mediated editing of viral RNA. Science, 2004,305(5684):645.
    [99] Muller V, Bonhoeffer S. Guanine-adenine bias: a general property of retroid viruses that is unrelated to host-induced hypermutation. Trends Genet, 2005,21(5):264-268.
    [100] Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, Malim MH. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Curr Biol, 2004,14(15):1392-1396.
    [101] Noguchi C, Ishino H, Tsuge M, Fujimoto Y, Imamura M, Takahashi S, Chayama K. G to A hypermutation of hepatitis B virus. Hepatology, 2005,41(3):626-633.
    [102] Holmes RK, Malim MH, Bishop KN. APOBEC-mediated viral restriction: not simply editing?. Trends Biochem Sci, 2007,32(3):118-128.
    [103] Bishop KN, Holmes RK, Malim MH. Antiviral potency of APOBEC proteins does not correlate with cytidine deamination. J Virol, 2006,80(17):8450-8458.
    [104] Seppen J. Unedited inhibition of HBV replication by APOBEC3G. J Hepatol, 2004,41(6):1068-1069.
    [105] Rosler C, Kock J, Kann M, Malim MH, Blum HE, Baumert TF, von Weizsacker F. APOBEC-mediated interference with hepadnavirus production. Hepatology, 2005,42(2):301-309.
    [106] Noguchi C, Hiraga N, Mori N, Tsuge M, Imamura M, Takahashi S, Fujimoto Y, Ochi H, Abe H, Maekawa T, Yatsuji H, Shirakawa K, Takaori-Kondo A, Chayama K. Dual effect of APOBEC3G on Hepatitis B virus. J Gen Virol, 2007,88(Pt 2):432-440.
    [107] Rabadan R, Levine AJ, Robins H. Comparison of avian and human influenza A viruses reveals a mutational bias on the viral genomes. J Virol, 2006,80(23): 11887-11891.
    [1] Trans. J. Sambrook, Fritsch. E.F, Maniatis. T.分子克隆实验指南.金冬雁,黎孟枫,等译.北京:科学出版社, 1995.
    [2] Frederick M. Ausubel, et al.精编分子生物学实验指南.颜子颖,王海林译.北京:科学出版社, 2001.
    [3]卢圣栋,等.现代分子生物学实验技术.北京:中国协和医科大学出版社, 2001.
    [4]沈关心,周汝麟.现代免疫学实验技术.武汉:湖北科学技术出版社, 1998.
    [5]郭元吉,程小雯.流行性感冒病毒及其实验技术.北京:中国三峡出版社, 1997.
    [6] Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A, 2000,97(11):6108-6113.
    [7] Hoffmann E, Webster RG. Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. J Gen Virol, 2000,81(Pt 12):2843-2847.
    [8] Neumann G, Kawaoka Y. Synthesis of influenza virus: new impetus from an old enzyme, RNA polymerase I. Virus Res, 2002,82(1-2):153-158.
    [9] Neumann G, Fujii K, Kino Y, Kawaoka Y. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci U S A, 2005,102(46):16825-16829.
    [10] Massin P, Rodrigues P, Marasescu M, van der Werf S, Naffakh N. Cloning of thechicken RNA polymerase I promoter and use for reverse genetics of influenza A viruses in avian cells. J Virol, 2005,79(21):13811-13816.
    [11] Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol, 2001,146(12):2275-2289.
    [12] Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 2001,293(5536):1840-1842.
    [13] Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology, 2004,320(2):258-266.
    [14] Chen H, Li Y, Li Z, Shi J, Shinya K, Deng G, Qi Q, Tian G, Fan S, Zhao H, Sun Y, Kawaoka Y. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol, 2006,80(12):5976-5983.
    [15] Shinya K, Watanabe S, Ito T, Kasai N, Kawaoka Y. Adaptation of an H7N7 equine influenza A virus in mice. J Gen Virol, 2007,88(Pt 2):547-553.
    [16] Hatta M, Hatta Y, Kim JH, Watanabe S, Shinya K, Nguyen T, Lien PS, Le QM, Kawaoka Y. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog, 2007,3(10):1374-1379.
    [17] Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A, 2005,102(51):18590-18595.
    [18] Gabriel G, Abram M, Keiner B, Wagner R, Klenk HD, Stech J. Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J Virol, 2007,81(17):9601-9604.
    [19]陆家海,张定梅,王国玲.高致病性禽流感H5N1病毒研究进展.国际病毒学杂志, 2007,14(3):65-68.
    [20] Horimoto T, Kawaoka Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol, 1994,68(5):3120-3128.
    [21] Nicholson, K.G, Webster, R.G, Hay, A.J. Textbook of influenza. London: BlackwellScience Ltd, 1998.
    [22] Hayden FG, Treanor JJ, Fritz RS, Lobo M, Betts RF, Miller M, Kinnersley N, Mills RG, Ward P, Straus SE. Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: randomized controlled trials for prevention and treatment. JAMA, 1999,282(13):1240-1246.
    [23] Hayden FG, Atmar RL, Schilling M, Johnson C, Poretz D, Paar D, Huson L, Ward P, Mills RG. Use of the selective oral neuraminidase inhibitor oseltamivir to prevent influenza. N Engl J Med, 1999,341(18):1336-1343.
    [24] Monto AS, McKimm-Breschkin JL, Macken C, Hampson AW, Hay A, Klimov A, Tashiro M, Webster RG, Aymard M, Hayden FG, Zambon M. Detection of influenza viruses resistant to neuraminidase inhibitors in global surveillance during the first 3 years of their use. Antimicrob Agents Chemother, 2006,50(7):2395-2402.
    [25] Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, Kimura K, Hayden FG, Sugaya N,Kawaoka Y. Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet, 2004,364(9436):759-765.
    [26] Wetherall NT, Trivedi T, Zeller J, Hodges-Savola C, McKimm-Breschkin JL, Zambon M, Hayden FG. Evaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: report of the neuraminidase inhibitor susceptibility network. J Clin Microbiol, 2003,41(2):742-750.
    [27] McKimm-Breschkin J, Trivedi T, Hampson A, Hay A, Klimov A, Tashiro M, Hayden F, Zambon M. Neuraminidase sequence analysis and susceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir. Antimicrob Agents Chemother, 2003,47(7):2264-2272.
    [28] Gubareva LV. Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res, 2004,103(1-2):199-203.
    [29] Yen HL, Hoffmann E, Taylor G, Scholtissek C, Monto AS, Webster RG, Govorkova EA. Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. J Virol, 2006,80(17):8787-8795.
    [30] de Jong MD, Tran TT, Truong HK, Vo MH, Smith GJ, Nguyen VC, Bach VC, Phan TQ,Do QH, Guan Y, Peiris JS, Tran TH, Farrar J. Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med, 2005,353(25):2667-2672.
    [31] Matrosovich M, Zhou N, Kawaoka Y. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol, 1999,173(2):1146-1155.
    [32] Zvonarjev AY, Ghendon YZ. Influence of membrane (M) protein on influenza A virus virion transcriptase activity in vitro and its susceptibility to rimantadine. J Virol, 1980,33(2):583-586.
    [33] Koff WC, Knight V. Inhibition of influenza virus uncoating by rimantadine hydrochloride. J Virol, 1979,31(1):261-263.
    [34] Tominack RL, Hayden FG. Rimantadine hydrochloride and amantadine hydrochloride use in influenza A virus infections. Infect Dis Clin North Am, 1987,1(2):459-478.
    [35] Belshe RB, Smith MH, Hall CB, Betts R, Hay AJ. Genetic basis of resistance to rimantadine emerging during treatment of influenza virus infection. J Virol, 1988,62(5):1508-1512.
    [36] Sweet C, Hayden FG, Jakeman KJ, Grambas S, Hay AJ. Virulence of rimantadine-resistant human influenza A (H3N2) viruses in ferrets. J Infect Dis, 1991,164(5):969-972.
    [37] Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH. The molecular basis of the specific anti-influenza action of amantadine. EMBO J, 1985,4(11):3021-3024.
    [38] Seo SH, Hoffmann E, Webster RG. The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses. Virus Res, 2004,103(1-2):107-113.
    [39] Hoffmann E, Mahmood K, Yang CF, Webster RG, Greenberg HB, Kemble G. Rescue of influenza B virus from eight plasmids. Proc Natl Acad Sci U S A, 2002,99(17):11411-11416.
    [40] Hoffmann E, Neumann G, Hobom G, Webster RG, Kawaoka Y. "Ambisense" approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology, 2000,267(2):310-317.
    [41] Hoffmann E, Webster RG. Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. J Gen Virol,2000,81(Pt 12):2843-2847.
    [42] Li KS, Guan Y, Wang J, Smith GJ, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD, Estoepangestie AT, Chaisingh A, Auewarakul P, Long HT, Hanh NT, Webby RJ, Poon LL, Chen H, Shortridge KF, Yuen KY, Webster RG, Peiris JS. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 2004,430(6996):209-213.
    [43]何建凡,吕星,程小雯,吴春利,张顺祥,舒跃龙,房师松,逯建华,谷利妞,赖剑伟,高荣宝.深圳市首例人感染H5N1病毒病例的实验室诊断及分子特点分析. 2008,24(1):28-32
    [44]龙进学,王曲直,刘秀梵.禽流感病毒NS第263~277位核苷酸缺失降低其抗干扰素能力.微生物学通报. 2006,33(2):34-39
    [45]龙进学,薛峰,彭宜,顾敏,刘秀梵; H5N1亚型禽流感病毒NS第263~277位核苷酸缺失提高病毒对鸡的致病力.微生物学报, 2006,02:138-142;
    [46] Long JX, Peng DX, Liu YL, Wu YT, Liu XF. Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes, 2008, DOI:10.1007/s11262-007-0187-8
    [1] Hirst GK. Adsorption of influenza hemagglutinins and virus by red blood cells. The Journal of experimental medicine. 1942:195-209.
    [2] Cheung CY, Poon LL, Lau AS, et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet. 2002;360:1831-1837.
    [3]曹康张,施桥发,李虹,蒋中华,李明远. 2种纯化流感病毒方法的比较研究.河北医科大学学报. 2005;26:179-181.
    [4] Jiao X. Y SYQLKS. The Correlation Between Cytokine Production by Cerebral Cortical Glial Cells and Brain Lateralization in Mice. Neuromodulation. 2008;11:23-32.
    [5] KD McCarthy , Vellis. J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980;85:890-902.
    [6] Floden AM, Combs CK. Microglia repetitively isolated from in vitro mixed glial cultures retain their initial phenotype. J Neurosci Methods. 2007;164:218-224.
    [7] Jack CS, Arbour N, Manusow J, et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005;175:4320-4330.
    [8] Gabriel G, Dauber B, Wolff T, et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A. 2005;102:18590-18595.
    [9] McKimmie CS, Roy D, Forster T, Fazakerley JK. Innate immune response gene expression profiles of N9 microglia are pathogen-type specific. Journal of neuroimmunology. 2006;175:128-141.
    [10] Fu D, Guo Q, Ai Y, et al. Glial activation and segmental upregulation of interleukin-1beta (IL-1beta) in the rat spinal cord after surgical incision. Neurochem Res. 2006;31:333-340.
    [11] Myles MH, Dieckgraefe BK, Criley JM, Franklin CL. Characterization of cecal gene expression in a differentially susceptible mouse model of bacterial-induced inflammatory bowel disease. Inflammatory bowel diseases. 2007;13:822-836.
    [12] Luo Y, Lloyd C, Gutierrez-Ramos JC, Dorf ME. Chemokine amplification in mesangial cells. J Immunol. 1999;163:3985-3992.
    [13] McKimmie CS, Johnson N, Fooks AR, Fazakerley JK. Viruses selectively upregulate Toll-like receptors in the central nervous system. Biochem Biophys Res Commun. 2005;336:925-933.
    [14] Thijssen VL, Brandwijk RJ, Dings RP, Griffioen AW. Angiogenesis gene expression profiling in xenograft models to study cellular interactions. Exp Cell Res. 2004;299:286-293.
    [15] Brettingham-Moore KH, Rao S, Juelich T, Shannon MF, Holloway AF. GM-CSF promoter chromatin remodelling and gene transcription display distinct signal and transcription factor requirements. Nucleic Acids Res. 2005;33:225-234.
    [16] Blaeser F, Bryce PJ, Ho N, et al. Targeted inactivation of the IL-4 receptor alpha chain I4R motif promotes allergic airway inflammation. The Journal of experimental medicine. 2003;198:1189-1200.
    [17] Hayashi T, Kaneda T, Toyama Y, Kumegawa M, Hakeda Y. Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta ) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. The Journal of biological chemistry. 2002;277:27880-27886.
    [18] Han SH, Kim JH, Seo HS, et al. Lipoteichoic acid-induced nitric oxide production depends on the activation of platelet-activating factor receptor and Jak2. J Immunol. 2006;176:573-579.
    [19] Mori I, Imai Y, Kohsaka S, Kimura Y. Upregulated expression of Iba1 molecules in the central nervous system of mice in response to neurovirulent influenza A virus infection. Microbiol Immunol. 2000;44:729-735.
    [20] Ito D, Imai Y, Ohsawa K, et al. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res. 1998;57:1-9.
    [21] Yao D, Chen Y, Kuwajima M, Shiota M, Kido H. Accumulation of mini-plasmin in the cerebral capillaries causes vascular invasion of the murine brain by a pneumotropic influenza A virus: implications for influenza-associated encephalopathy. Biol Chem. 2004;385:487-492.
    [22] Shinya K, Shimada A, Ito T, et al. Avian influenza virus intranasally inoculated infects the central nervous system of mice through the general visceral afferent nerve. Arch Virol. 2000;145:187-195.
    [23] Fujimoto S, Kobayashi M, Uemura O, et al. PCR on cerebrospinal fluid to show influenza-associated acute encephalopathy or encephalitis. Lancet. 1998;352:873-875.
    [24] Ito Y, Ichiyama T, Kimura H, et al. Detection of influenza virus RNA by reverse transcription-PCR and proinflammatory cytokines in influenza-virus-associatedencephalopathy. J Med Virol. 1999;58:420-425.
    [25] Shinya K, Silvano FD, Morita T, et al. Encephalitis in mice inoculated intranasally with an influenza virus strain originated from a water bird. J Vet Med Sci 1998;60:627-629.
    [26] Gao P, Watanabe S, Ito T, et al. Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol. 1999;73:3184-3189.
    [27] Shinjoh M, Yoshikawa T, Li Y, et al. Prophylaxis and treatment of influenza encephalitis in an experimental mouse model. J Med Virol. 2002;67:406-417.
    [28] Mori I, Kimura Y. Neuropathogenesis of influenza virus infection in mice. Microbes Infect. 2001;3:475-479.
    [29] Watanabe C, Kawashima H, Takekuma K, Hoshika A, Watanabe Y. Increased nitric oxide production and GFAP expression in the brains of influenza A/NWS virus infected mice. Neurochem Res. 2007;33(6):1017-1023
    [30] Nakai Y, Itoh M, Mizuguchi M, et al. Apoptosis and microglial activation in influenza encephalopathy. Acta Neuropathol (Berl). 2003;105:233-239.
    [31] Ichiyama T, Nishikawa M, Yoshitomi T, Hayashi T, Furukawa S. Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures. Comparison with acute encephalitis/encephalopathy. Neurology. 1998;50:407-411.
    [32] Hayden FG, Fritz R, Lobo MC, et al. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest. 1998;101:643-649.
    [33] Konsman JP PP, Dantzer R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci. 2002;25:154-159.
    [34] Silvia G Correa, Mariana Maccioni, Virginia E. Rivero, et al. Cytokines and the immune–neuroendocrine network: What did we learn from infection and autoimmunity? . Cytokine & Growth Factor Reviews. 2007;18:125-134.
    [35] SC Lee, W Liu, DW Dickson, Brosnan C, Berman J. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. Journal of Immunology. 1993;150:2659-2667.
    [36] Alicja Krasowska-Zoladek, Monika Banaszewska, Michal Kraszpulski, Konat GW. Kinetics of inflammatory response of astrocytes induced by TLR3 and TLR4 ligation. Journal of Neuroscience Research. 2007;85:205-212.
    [37] Matrosovich MN, Gambaryan AS, Teneberg S, et al. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology. 1997;233:224-234.
    [38] Eash S, Tavares R, Stopa EG, et al. Differential distribution of the JC virus receptor-type sialic acid in normal human tissues. Am J Pathol. 2004;164:419-428.
    [39] Mori I, Hossain MJ, Takeda K, et al. Impaired microglial activation in the brain of IL-18-gene-disrupted mice after neurovirulent influenza A virus infection. Virology. 2001;287:163-170.
    [40] Chan MC, Cheung CY, Chui WH, et al. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir Res. 2005;6:135.
    [41] Seo SH, Webby R, Webster RG. No apoptotic deaths and different levels of inductions of inflammatory cytokines in alveolar macrophages infected with influenza viruses. Virology. 2004;329:270-279.
    [42] To KF, Chan PK, Chan KF, et al. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol. 2001;63:242-246.
    [43] Van Reeth K. Cytokines in the pathogenesis of influenza. Vet Microbiol. 2000;74:109-116.
    [44] Mogensen TH, Paludan SR. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev. 2001;65:131-150.
    [45] Zambon M, Barclay, W. Unravelling the mysteries of influenza. Lancet. 2002;360:1801-1802.
    [46] Hopkins SJ, Rothwell NJ. Cytokines and the nervous system I : expression and recognition. Trends Neurosci. 1995;18:83-88.
    [1] Rabadan R, Levine AJ, Robins H. Comparison of avian and human influenza A virusesreveals a mutational bias on the viral genomes. J Virol, 2006,80(23):11887-11891.
    [2] Bishop KN, Holmes RK, Sheehy AM, Malim MH. APOBEC-mediated editing of viral RNA. Science, 2004,305(5684):645.
    [3] Sells MA, Chen ML, Acs G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci U S A, 1987,84(4):1005-1009.
    [4] Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O'Shea KS, Moran JV, Cullen BR. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci U S A, 2006,103(23):8780-8785.
    [5] Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature, 2002,418(6898):646-650.
    [6] Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med, 2003,9(11):1404-1407.
    [7] Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabuzda D. Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem, 2004,279(9):7792-7798.
    [8] Trono D. Retroviruses under editing crossfire: a second member of the human APOBEC3 family is a Vif-blockable innate antiretroviral factor. EMBO Rep, 2004,5(7):679-680.
    [9] Simon V, Zennou V, Murray D, Huang Y, Ho DD, Bieniasz PD. Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog, 2005,1(1):20-28.
    [10] Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, Garcia-Sastre A. Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol, 2000,74(24):11566-11573.
    [11] Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, Garcia-Sastre A. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol, 2000,74(17):7989-7996.
    [12] Tan SL, Katze MG. Biochemical and genetic evidence for complex formation betweenthe influenza A virus NS1 protein and the interferon-induced PKR protein kinase. J Interferon Cytokine Res, 1998,18(9):757-766.
    [13] Maas S, Melcher T, Seeburg PH. Mammalian RNA-dependent deaminases and edited mRNAs. Curr Opin Cell Biol, 1997,9(3):343-349.
    [14] Hirano K, Min J, Funahashi T, Davidson NO. Cloning and characterization of the rat apobec-1 gene: a comparative analysis of gene structure and promoter usage in rat and mouse. J Lipid Res, 1997,38(6):1103-1119.
    [15] Dance GS, Sowden MP, Yang Y, Smith HC. APOBEC-1 dependent cytidine to uridine editing of apolipoprotein B RNA in yeast. Nucleic Acids Res, 2000,28(2):424-429.
    [16] Chutinimitkul S, Suwannakarn K, Chieochansin T, Mai le Q, Damrongwatanapokin S, Chaisingh A, Amonsin A, Landt O, Songserm T, Theamboonlers A, Poovorawan Y. H5N1 Oseltamivir-resistance detection by real-time PCR using two high sensitivity labeled TaqMan probes. J Virol Methods, 2007,139(1):44-49.
    [17] Yen HL, Herlocher LM, Hoffmann E, Matrosovich MN, Monto AS, Webster RG, Govorkova EA. Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob Agents Chemother, 2005,49(10):4075-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700