复合材料壁板颤振分析与优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代飞行器的性能不断提高,其翼面蒙皮壁板以及金属热防护系统的外面板在高速气流作用下会发生不稳定现象,即壁板颤振。针对此类问题的分析方法,是目前国际上超音速气动弹性研究的热点之一。本文在全面回顾壁板颤振分析方法及其工程应用的基础上,研究了三类复合材料壁板颤振问题及相关优化设计,本文主要工作包括如下几个方面:
     (1)提出了偏航壁板颤振速度的概念和分析方法,用以描述现代飞行器做高速机动飞行时,最容易发生壁板颤振的情况。采用模拟退火算法,对不同气流偏角的壁板颤振速度分析,确定最小的壁板颤振速度,即偏航壁板颤振速度。与固定气流偏角下的壁板颤振速度相比,复合材料层合板的偏航壁板颤振速度明显低于其它气流偏角下的颤振速度。当热颤振模态发生变化时,温度场热效应使偏航壁板颤振发生“跳跃”现象,对应的气流偏角发生变化,随温升的增加,壁板热颤振速度先升高后降低,两者呈非线性关系。
     (2)利用单目标/多目标模拟退火算法,对复合材料层合板的偏航壁板颤振速度进行了优化设计研究。研究表明:以偏航壁板颤振速度作为目标函数,所获得最优铺层方式能满足所有飞行条件下的机动安全要求,并能有效地解决以不同气流偏角下的壁板颤振速度作为优化设计目标而带来的最优铺层方式选择问题。
     (3)提出了一种高效的蜂窝夹层结构简化分析模型,该模型基于三层准三维单元和多孔材料的胞元理论。分析该模型的壁板颤振速度,并验证了其有效性。以该模型的壁板颤振速度为目标函数之一,分别进行了铝合金面板的蜂窝夹层结构的多目标优化设计和复合材料面板的蜂窝夹层结构的多目标优化设计。与初始设计相比,壁板颤振速度得到明显提高,其它目标函数的性能得到改善,并获得了两组优化的Pareto解集。
     (4)在Msc.Nastran软件平台上,利用DMAP语言开发了非线性壁板颤振分析程序。通过算例分析,验证了二次开发程序的有效性。建立了具有分层损伤的纤维增强金属层合板(铝合金和玻璃纤维)的有限元模型,综合考虑几何非线性和材料非线性对颤振现象的影响。算例结果表明:分层损伤的出现,将增大复合材料层合板的非线性颤振的振动幅值。当分层面积增大时,壁板颤振出现多种非线性动力学现象(极限环振荡、概周期运动以及多频运动)。当铝合金材料层的应力达到屈服极限时,材料非线性明显增大非线性颤振的振动幅值。
     最后对本文工作进行了总结,并展望了未来研究方向。
With the performance of modern vehicles improve continuously, the flutter of skinpanels on the exposed surfaces of supersonic vehicles and outer faceplate of metallicthermal protection system may occur in supersonic flow. Panel flutter analysis currentlyis one of the aeroelastic research hotspots in international community. Based on theoverall review of panel flutter analysis and its application in practical engineering, thisdissertation investigated the problems of flutter analysis and optimization design of threetypes of composite structures. The main research work presented in this dissertationincludes:
     (1) An concept for panel flutter speed under yawed flow and analysis method usingthis concept are proposed. With the concept of panel flutter speed under yawed flow,theworst-case flutter analysis can be performed efficiently during maneuvering flight. Thepanel flutter speeds under yawed flow are obtained by means of simulated annealingoptimization algorithm. Compared with panel flutter speed under other flow conditions,panel flutter speed under yawed flow is the minimum speed. On condition that thethermal flutter modes change, the thermal effect could produce transition phenomenon inpanel flutter under yawed flow, and the corresponding flow yaw angle also changes; Theflutter speed first increases and then decreases as the temperature rises which shows anonlinear relationship between flutter speed and temperature elevation.
     (2) Single/Multi-objective optimizations are conducted using simulated annealing,the results show that the stacking sequence optimization design could significantlyimprove the panel flutter speed under yawed flow and preferably solve the selectionproblem of the optimal stacking sequence in current panel flutter optimization.
     (3) Based on three-layer-quasi-three-dimensional element and cellular theory,ansimplified model for sandwich structure with honeycomb is proposed. An flutter analysisof sandwich structure is performed using simplified model and mumerical resultsdemonstrate the validity of the simplified model. Two groups of multi-objectiveoptimization design are conducted, in which maximum flutter speed for two kinds ofdifferent sandwich structures is taken as one of multi-objective functions. Theoptimization design could significantly improve the panel flutter speed and other objective functions also could obtain a satisfactory effect.Two Paroto Sets wereachieved.
     (4) With the software of Msc.Nastran,an analysis program for nonlinear panelflutter is developed using DMAP language and numerical results demonstrate the validityof the programs developed. Considering the effect of geometric nonlinearity andmatieral nonlinearity, a finite element model of fiber reinforced metal laminates(aluminum alloy and fiberglass) with delamination damage is established. Numericalresults show that the present of delamination damage have an important influence on thepanel flutter speed. When the stress reached yield stress, material nonlinearity has animportant effect on limit cycle flutter of fibre reinforced metal laminate and has greaterinfluence limit cycle flutter of fibre reinforced metal laminate with delaminationdamage.
引文
[1] H.W.伏欣,气动弹性力学原理(沈克扬译),上海,上海科学技术文献出版社,1982
    [2]杨智春,夏巍,孙浩,高速飞行器壁板颤振的分析模型和分析方法,应用力学学报,2006,23(4):537-542.
    [3]杨智春,夏巍,壁板颤振的分析模型、数值求解方法和研究进展,力学进展,2010,40(1):81-98.
    [4] Bisplinghoff,R. L.,Ashley,H.,Principles of Aeroelasticity,Wiley,New York,1962,419-420.
    [5] Backer,R.,F-117A Structures and Dynamics Design Considerations,Plenary Session8,AIAADynamics Specialists Conference,Dallas,TX,April,1992.
    [6]孟凡颢,钟腾育,用壁板颤振理论解决某系列飞机的方向舵蒙皮裂纹故障,飞机设计,2000,(4):126.
    [7]张云峰,高速气流作用下冲压发动机进气道壁板结构振动特性研究,[博士论文],哈尔滨工业大学,2007。
    [8] GRAVES, M. T.,BERT, C. W.,Nonlinear flutter of arbitrarily laminated anisotropic rectangularpanels,Structures, Structural Dynamics and Materials Conference,18th,1977.186-190.
    [9] Dowell, E. H.,Panel Flutter: A Review of the Aeroelastic Stability of Plates and Shells,AIAAJournal,1970,8(3),385-399.
    [10] Hedgepeth,J. M.,Flutter of Rectangular Simply Supported Panels at High Supersonic Speeds,Joural of the Aeronautical Sciences,1957,24(8),563-573.
    [11] Dugundji,J,Theoretical Considerations of Panel Flutter at High Supersonic Mach Numbers,AIAA Journal,1966,4(7),1257-1266.
    [12] Dowell,E. H. and Voss,H. M.,Experimental and Theoretical Panel Flutter Studies in the MachNumber Range1.0to5.0,,AIAA Journal,1965,3(12),2292-2304.
    [13] Johns,D. J.,The Present Status of Panel Flutter,Rept.484,Advisory Group for AeronauticalResearch and Development,1961.
    [14] Cunningham,H. J.,Flutter Analysis of Flat Rectangular Panels Based on Three-DimensionalSupersonic Unsteady Potential Flow,1967,TR R-256, NASA
    [15] Dowell,E. H.,Nonlinear Oscillations of a Fluttering Plate I,AIAA Journal,1966,4(7),1267-1275.
    [16] Fralich,R. W.,Postbuckling Effects on the Flutter of Simply Supported Rectangular Panels atSupersonic Speeds,1963,TN D-1615,NASA.
    [17] Librescu,L.,Aeroelastic Stability of Orthothopic Heterogeneous Thin Panels in the Vicinity ofthe Flutter Critical Boundary,Part I,Journal de Mecanique,1965,4(1),51-76.
    [18] Mclntosh,S. G.,Jr.,Theoretical Considerations of Some Nonlinear Aspects of HypersonicPanel Flutter,1970,NASA Grant NGR05-020-102.
    [19] Guang F. C. and Chuh M.,Finite Element Modal Formulation for Hypersonic Panel FlutterAnalysis with Thermal Effects,AIAA Journal,2004,42(4):687-685.
    [20] Nydick I.,Friedmann P. P. and Zhong X.,Hypersonic Panel Flutter Studies on Curved Panel,AIAA36th Structures,Structural Dynamics,and Materials Conference,AIAA,1995,2995-3011.
    [21] Dowell,E. H.,Nonlinear Oscillation of a Fluttering Plate I,AIAA Journal,1966,4(7),1267-1275.
    [22] Dowell,E. H.,Nonlinear Oscillation of a Fluttering Plate II,AIAA Journal,1967,5(10),1856-1862.
    [23] Ventres,C. S.,Nonlinear Flutter of Clamped Plates,Ph. D.,Princeton University,1970.
    [24]杨智春,夏巍,超音速气流中二维壁板的非线性颤振响应分析,振动工程学报,2009,22(3):221-226。
    [25] Friedmann,P.,and Hanin,M.,Supersonic Nonlinear Flutter of Orthotropic or Isotropic Panelswith Arbitrary Flow Direction,Israel Journal of Technology,1968,6(1-2),46-57.
    [26] Chandiramani,N. K.,Plaut,R. H.,and Librescu,L.,Nonperiodic Flutter of Buckled CompositePanel,Sadhana Journal,1995,20(2-4),671-689.
    [27] Olson,M. D.,Finite Element Approach to Panel Flutter,AIAA Journal,1967,5(12),2267-2270.
    [28] Olson,M. D.,Some Flutter Solutions Using Finite Element,AIAA Journal,1970,8(4),747-752.
    [29] Yang,T. Y. and Sung,S. H.,Finite Element in Three-Dimensional Supersonic Unsteady PotentialFlow,AIAA Journal,1977,15(12):1677-1683.
    [30] Mei,C. and Rogers,J. L.,Jr.,Application of Nastran to Large Deflection Supersonic Flutter ofPanels,NASA TMX-3429,1976:67-97
    [31] Mei,C.,A Finite Element Approach for Nonlinear Panel Flutter,AIAA Journal,1977,15(8):1107-1110.
    [32] Rao,K.,S. and Rao,G. V.,Large Amplitude Supersonic Flutter of Panels with Ends ElasticallyRestrained Against Rotation,Computer and Structures,1980,11:197-221.
    [33] Bismarck-Nasr,M. N.,Finite Element Analysis of Aeroelasticity of Plates and Shells,AppliedMechanics Reviews,1992,45(12),461-482.
    [34] Gray C. E.,Jr.,Mei C.,Large Amplitude Finite Element Flutter Analysis of Composite Panelsin Hypersonic Flow,AIAA Journal,1993,31:1090-1099.
    [35] Dixon I. R. and Mei C.,Nonlinear Flutter of Rectangular Composite Panels under UniformTemperature using Finite Elements,ASME DE,1992,50:123-132.
    [36] Xue D. Y.,Mei C. and Shore C. P.,Finite Element Two-Dimensional Panel Flutter at HighSupersonic Speeds and Elevated Temperature,Proceedings of the31st Structures,StructuralDynamics and Materials Conference,1990,1464-1475.
    [37] Bolotin V. V., Nonconservative Problems of the Theory of Elastic Stability [M], NewYork:McMillan,1963,199-312.
    [38] Eastep F. E.,McIntosh S. C.,Analysis of Nonlinear Panel Flutter and Response under RandomExcitation or Nonlinear Aerodynamic Loading,AIAA Journal,1971,9(3):411-418.
    [39] Kuo C. C.,Morino L.,Dugundji J.,Pertrubation and Harmonic Balance Methods for NonlinearPanel Flutter,AIAA Journal,1972,10(11):1479-1484.
    [40] Morino L.,A Perturbation Method for Treating Nonlinear Panel Flutter Problems,AIAAJournal,1969,7(3):405-411.
    [41] Gordnier R. E.,Visbal M. R.,Development of a Three-Dimensional Viscous Aeroelastic Solverfor Nonlinear Panel Flutter,Journal of Fluids and Structures,2002,16(4):497-527.
    [42] Bolotin V. V.,Petrovsky A. V.,Secondary Bifurcations and Global Instability of an AeroelasticNonlinear System in the Divergence Domain,Journal of Sound and Vibration,1996,191(3):431-451.
    [43] Selvam R. P.,Qu Z. Q.,Zheng Q.,Three Dimensional Nonlinear Panel Flutter at SupersonicEuler Flow,AIAA Paper2002-1485,2002.
    [44] Moon S. H,Hwang J. S.,Panel Flutter Suppression with an optimal Controller Based on theNonlinear Model using Piezoelectric Materials,Composites Structures,2005,68:371-379.
    [45] Kordes,E. E.,and Noll,R. B.,Theoretical Flutter Analysis of Flat Rectangular Panels inUniform Coplanar Flow with Arbitrary Direction,NASA TN D-1156,1962.
    [46] Bohon,H. L.,Flutter of Flat Rectangular Orthotropic Panels with Biaxial Loading and ArbitraryFlow Direction,NASA-TN-D-1949,1963.
    [47] Durvasula,S.,Flutter of simply supported,Parallelogrammic,Flat Panels in SupersonicFlow,AIAA Journal,1967,5(9),1668-1673.
    [48] Durvasula,S.,Flutter of Clamped Skew Panels in Supersonic Flow,Journal of Aircraft,1971,8(6),461-466.
    [49] Kariappa,V.,Somashekar,B.,R.,and Shah,C. G.,Discrete Element Approach to Flutter ofSkew Panels with In-Plane Forces Under Yawed Supersonic Flow,AIAA Journal,1970,8(11),2017-2022.
    [50] Sander,G.,Bon,C.,and Geradin,M.,Finite Element Analysis of Supersonic Panel Flutter,International Journal for Numerical Methods in Engineering,1973,7(3),379-394.
    [51] Shyprykevich, P., and Sawyer, J. W., Orthotropic Panel Flutter at Arbitrary YawAngles-Experiment and Correlation with Theory,1973,AIAA Paper73-192.
    [52] Sawyer,J. W.,Flutter of Elastically Supported Orthotropic Panels Including the Effects of FlowAngles,1974,NASA TN D-7491.
    [53] David Y. X. and Chuh Mei.,Finite Element Nonlinear Panel Flutter with Arbitrary Temperaturesin Supersonic Flow,AIAA Journal,1993,31(1):154-162.
    [54]陈文俊,几种气动热弹性设计方法,战术导弹技术,2001,5:31-39.
    [55] Houboult,J. C.,A Study of Several Aerothermoelastic Problems of Aircraft Structures inHigh-Speed Flight,Ph. D.Thesis,Eidenssischen Technischen Hochschule,The Swiss FederalInstitute of Technology,1958.
    [56] Yang T. Y. and Han A. D.,Flutter of Thermally buckled Finite Element Panels,AIAA Journal,1976,14(7):875-977.
    [57] Xue D. Y. and Mei C.,Finite Element Nonlinear Flutter and Fatigue Life of Two DimensionalPanels with Temperature Effects,Journal of Aircraft,1993,30(6):993-1000.
    [58] Xue,D. Y.,and Mei,C.,Finite Element Nonlinear Flutter with Arbitrary Temperatures inSupersonic Flow,AIAA Journal,1993,31(1),154-162.
    [59] Liaw D. G.,Nonlinear Supersonic Flutter of Laminated Composite Plates Under Thermal Loads,Computers&Structures,1997,65(5):733-740.
    [60] Kariappa V.,Somashekar B. R.and Shah C. G.,Drscrete Element Approach to Flutter of SkewPanels with In-Plane Forces under Yawed Supersonic Flow, AIAA Journal,1970,8(11):2017-2022.
    [61] Cheng Guangfeng,Mei C. and Lee Y. Y.,Flow Angle,Temperature and Aerodynamic Dampingon Supersonic Panel Flutter Stability Boundary,AIAA2002-1285.
    [62] Chern YC.,Chao CC.,Comparison of natural frequencies of laminates by3D theroy,Part-II,curved panels,Journal of Sound and Vibrations,2000,230:1009-1030.
    [63] Qatu MS.,Recent research advances in the dynamic behavior of shells:1989-2000,Part1:Laminated composite shells,Applied Mechanics Reviews,Tran of ASME,2002,55:325-350.
    [64] Reddy JN.,Exact solutions of moderately thick laminated shells,Journal of Engineering,ASCE,1984,110:794-809.
    [65] Vlachoutsis S.,Shear correction factors for plates and shells,Int.,J,Num,Meth,Engineering,1992,33:1537-1552.
    [66] Rikards R.,Chate A.,Vibration and damping analysis of laminated composite and sandwichshells,Mech,Comp,Mater,Struct,1997,4:209-232.
    [67] Noor AK.,Burton WS.,Bert CW.,Computational models for sandwich panels and shells,Applied Mechanics Reviews,Trans of ASME,1996,49:155-199.
    [68] Librecu L.,Khdeir AA.,Frederick D.,A Shear deformable theory of laminated compositeshallow shell type panels and their response analysis,I: free vibration and buckling,ActaMechanica,1989,76:1-33.
    [69] Khdeir AA.,Reddy JN.,Frederich D.,A study of bending,vibration and buckling of cross-plycircular cylindrical shells with various shell theories,Int,J,Engg,Sci.,1989,27:1337-1351.
    [70] Carrera E.,Theories and finite elements for multilayered plates and shells,a unified compactformulation with numerical assessment and benchmarking,Arch,Comp,Meth.,Engg.,2003,10:215-296.
    [71] Ganapathi M.,Haboussi M.,Free vibrations of thick laminated anisotropic non-circularcylindrical shells,Comp,Struc.,2003,60:125-133.
    [72] Yang HTY.,Saigal S.,Masud A.,Kapania RK.,A survey of recent shell finite elements,Int.,J.,Num.,Meth.,Engg.,2000,47:101-127.
    [73] Mackerle J.,Finite element analysis of sandwich structures: a bibliography (1980-2001),Engg,Comp,2002,19:206-245.
    [74] Kapania RK.,Mohan P.,Static,free vibration and thermal analysis of composite plates and shellsusing a flat triangular shell element,Comp,Mech.,1996,17:343-357.
    [75] Chao WC.,Reddy JN.,Analysis of laminated composite shells using a degenerated3D element,Int,J,Num,Meth,Engg,1984,20:1991-2007.
    [76] Khare RK.,Rant T.,Garg AK.,Free vibration fo composite and sandwich laminates with ahigher-order facet shell element,Comp,Struct,2004,65:405-418.
    [77] Moita JS.,Soares CMM.,Soares CAM.,Buckling and dynamic behaviour of laminatedcomposite structures using a discrete higher-order displacement model,Comput,Struct,1999,73:407-423.
    [78] Attia O.,El-Aafrany A.,A high-order shear element for nonlinear vibration annlysis ofcomposite layered plates and shells,Int,J,Mech,Sci,1999,41:461-486.
    [79] Sheng HY.,Ye JQ.,A three-dimensional state space finite element solution for laminatedcomposite cylindrical shells,Comput,Mech,Appl,Mech,Engg,2003,192:2441-2459.
    [80] Plantema F. J.,Sandwich Construction,Wiley,New York,1966.
    [81] Allen H. G.,Analysis and Design of Structural Sandwich Panels,Pergamon,Oxford,1969.
    [82] Zenkert D.,An Introduction to Sandwich Construction,Chameleon Press,London,1995.
    [83] Gibson LJ,Ashby MF. The mechanics of three dimensional cellular materials [J]. Proc Roy SocLondon,1982,A382:43-49.
    [84]富明慧,尹久仁.蜂窝芯层的等效弹性参数[J].力学学报,1991,31(1)
    [85]梁森,陈华玲,陈天宁.蜂窝夹芯面内等效力学参数的分析研究.航空材料学报,2004,23(3)。
    [86]王萍萍,陈昌亚等.蜂窝夹芯剪切等效模量研究[J].力学与实践,2005(27):17-18.
    [87] Noor A. K.,Burton W. S.,Bert S. W.,Computational Models for Sandwich Panels and Shell,Applied Mechanics Review1996,49:155-199.
    [88] Ha K. H.,Finite Element Analysis of Sandwich Plates: an Overview,Computers and Structures,1990,37:397-403.
    [89] Yu Y. Y.,Flexural Vibrations of Elastic Sandwich Plates,Journal of Aerospace Sciences,1960,27:272-282.
    [90] Yu Y. Y.,Simplified Vibration Analysis of Elastic Sandwich Plates,Journal of AerospaceSciences,1960,27:894-900.
    [91] Ibrahim I. M.,Farah A.,Rizk MNF.,Dynamic Analysis of Unbalanced Anisoptropic SandwichPlates,Proceedings of the ASCE Journal of Engineering Mechanics,1981,107:405-418.
    [92] Ng SSF.,Das B.,Free Vibration and Buckling Analysis of Clamped Skew Sandwich Plates bythe Galerkin Method,Journal of Sound and Vibration,1986,107:97-106.
    [93] Kanematsu H. H.,Hirano Y.,Lyama H.,Bending and Vibration of CFRP-Faced RectangularSandwich Plates,Composite Structures,1988,10:145-165.
    [94] Chang J. S.,Chen H. C.,The Vibration of Sandwich Plates of Variable Thickness,Journal ofSound and Vibration,1992,155:195-208.
    [95] Cheng Z. Q.,Wang X. X.,Huang M. G.,Nonlinear Flexural Vibration of Rectangular ModeratelyThick Plates and Sandwich Plates,International Journal of Mechanical Sciences,1993,35:815-827.
    [96] Raville M. E.,Veng CES.,Determination of Natural Frequecies of Vibration of Sandwich Plates,Experimental Mechanics,1967,7:490-493.
    [97] Srinivas S.,Rao A. K.,Bending,Vibration and Buckling of Simply Supported Thick OrthotropicRectangular Plates and Laminates,International Journal of Solids and Structures,1970,6:1463-1483.
    [98] Khatur T. P.,Cheung Y. K.,Bending and Vibration of Multi-layer Sandwich Beams and Plates,International Journal for Numerical Methods in Engineering1973,6:11-24.
    [99] Lee L. J.,Fan Y. J.,Bending and Vibration Analysis of Composite Sandwich Plates,Computersand Structures,1966,60:103-112.
    [100] Bardell N. S.,Dunsdon J. M.,Langley R. S.,Free Vibration Analysis of Coplanar SandwichPanels,Composite Structures,1977,38:463-475.
    [101] Chang H. C.,Cheung Y. K.,Static and Dynamic Analysis of Multi-layered Sandwich Plates,International Journal of Mechanical Sciences,1972,14:399-406.
    [102] Chong K. P.,Cheung Y. K.,Free Vibration of Formed Sandwich Panels,Journal of Sound andVibration,1982,81:575-582.
    [103] Zhou H. B.,Li G. Y.,Free Vibration Analysis of Sandwich Plates with Laminated Faces usingSpline Finite Point Method,Computers and Structures,1996;59:257-263.
    [104] Vogelesang I. B.,Gnnink J. W.,Chen D.,New Developments in ARALL Laminates,ICASProceeding,Jerussalem,1988,1615-1633.
    [105] Gunnink J. W.,Design of the ARALL F-27lower wing fatigue panel,Composite Structures,Proceedings of the Fourth International Conference on Composites Structures,1987,93-97.
    [106] Vermeern C. A.,An history overview of the development of fiber metal laminates,AppliedComposite Materials,2003,10:189-205.
    [107] Chen J. L.,Sun C. T.,Modeling of orthotropic elastic-plastic properties of ARALL laminates,Composites Science and Technology,1989,36:321-337.
    [108] Wu G. G.,Yang J. M.,Analytical modeling and numerical simulation of the nonlineardeformation of hybrid fiber-metal laminates,Modeling and Simulation in Materials Scienceand Engineering,2005,13:413-425.
    [109] Marissen R.,Fatigue crack growth in ARALL: A hybrid aluminum-aramid composite materialcrack growth mechanisms and quantitative predictions of the crack growth rates, TheNetherlands:Delft University of Technology,1988,1-102.
    [110] Lawcock G,Ye L.,Mai Y. W.,Novel fiber reinforced metal laminates for aerospace applications:Part II notched strength and fatigue behavior,SAMPE Journal,1995,31:67-75.
    [111] Lin C. T.,Kao P. W.,Effect of fiber bridging on the fatigue crack propagation in carbon fiberreinforced aluminum laminates,Materials Science and Engineering,1995,1:65-73.
    [112] Burianek D. A., Spearing S. M., Delamination growth from face seams in cross-plytitanium/graphite hybrid laminates,Composites Science and Technology,2001,61:261-269.
    [113]刑文训,谢金星,现代优化计算方法,北京,清华大学出版社,2003.
    [114]张光澄,非线性最优化计算方法,高等教育出版社,2005.
    [115]黄传奇,乔新,复合材料翼面结构气动弹性剪裁,航空学报,1990,11(1):78-82.
    [116]杨希祥,李晓斌,肖飞等,智能优化算法及其在飞行器优化设计领域的应用综述,宇航学报,2009,30(6):2051-2061.
    [117] Volk J. A.,Ausman J. D.,Tich E. J.,The Role of Automated Multidisciplinary Structure Sizingin Flexible Wing Development,AIAA-94-1485,1994.
    [118] Pendleton E.,Lee M.,Wasserman L.,An Application of the Active Flexible Wing Concept toan F-16Derivative Wing Model,AIAA-91-0987-CP,1991.
    [119] Kim D. H.,Oh S. W.,Lee I.,Kweon J. H.,et ta,Weight Optimization of Composite Flat andCurved Wings Satisfying both Flutter and Divergence Constrains,Advances in CompositeMaterials and Structures,Pts1and2334-335477-4802007.
    [120] Manan A.,Vio G. A.,Harmin M. Y.,Cooper J. E.,Optimization of Aeroelastic CompositeStructures using Evolutionary Algorithms,Engineering Optimizatin,2010,42(2):171-184.
    [121] Tong S. S.,Powell D.,Goel S.,Integration of Artificial Intelligence and NumericalOptimization Techniques for the Design of Complex Aerospace Systems,Aerospce DesignConference,1992,1-11.
    [122] Wang X.,Damodaran M.,Aerodynamic Shape Optimization using Computational FluidDynamics and Parallel Simulated Annealing Algorithtms,AIAA Journal,2001,38(8):1500-1508.
    [123] Venter G.,Sobieszcansk J.,Multidisciplinary Optimization of a Transport Aircraft Wing usingPartical Swarm Optimization,9th,AIAA/ISSMO Symposlum on Multidisciplinary Analysis andOptimization,Atlanta,Georgla,2002,1-11.
    [124] ZHANG Qing zhen,LIU Cun jia,YANG Bo,et al,Reentry Trajectory Planning OptimizationBased on Ant Colony Algorithm,IEEE International Conference on Robotics and Biomimetics,Sanya,China,2007,1064-1068.
    [125] Abdel-Motagaly K.,Finite Element Analysis and Active Control for Nonlinear Flutter ofComposite Panel under Yawed Supersonic Flow,PH. D.,Aerospace Engineering Old DominionUniversity,2001.
    [126] Kordes Eldon E, Noll Richard B. Theoretical flutter analysis of flat rectangular panels inuniform coplanar flow with arbitrary direction. Nasa TN D-1156, January,1962.
    [127] Chen R, Blosser Max L. Metallic thermal protection system panel flutter study [J]. Journal ofSpacecraft and Rockets, Vol.41, No.2, March-April,2004.
    [128]杨智春,谭光辉,夏巍,铺层方式对复合材料壁板热颤振特性的影响,宇航学报,2008,29(3).
    [129]夏巍,杨智春.复合材料壁板热颤振的有限元分析,西北工业大学学报,2005,23(2):180-183.
    [130] Sander G,Bon C, Geradin M,Finite element analysis of supersonic panel flutter,International Journal for Numerical Engineering,1973,7:379-394.
    [131] Xue David Y, Mei Chuh,Finite element nonlinear panel flutter with arbitrary temperatures insupersonic flow, AIAA-92-2129-CP.
    [132] Corso L. M.,Popelka D. A.,Nixon M. W.,Design,Analysis and Test of a Composite TailoredTiltrotor Wing,Aemerical Helicopter Socety,53rd Annual Forum Proceedings,1997,1:2209-219.
    [133] Santini P.,Gasbari P.,Altobelli M.,Rossi A,A Comparative Overview of Strain ActuatedSurfaces Design,Journal of Reinforecd Plastics and Composites,1997,16(6):519-536.
    [134]杨智春,张立新,谭光辉,基于遗传算法的复合材料壁板热颤振优化设计,宇航学报,2008,29(4).
    [135] Seresta O,et al, Stacking sequence design of flat composite panel for flutter and thermalbuckling,AIAA Journal,2006,44(11):2727-2735.
    [136]王凌着,智能优化算法及应用[M],清华大学出版社和施普林格出版社,2001.
    [137]余旭东等着.导弹现代结构设计[M].国防工业出版社,2007.
    [138] Shiau L C,Kuo S Y, Nonlinear panel flutter of composite sandwich plates with thermaleffect,Journal of Mechanics,2008,24(2).
    [139]杨智春,杨飞,张玲凌,动力吸振器用于夹层壁板颤振抑制的研究,振动与冲击,2009,28(2)。
    [140] Gibson L. J.,Ashby M. F.,Schajer G. S., The mechanics of two-dimension cellular materials,Proc R Soc A,1982,382:25-42.
    [141] Nabarrete A,De Almeida S F M,Hansen J S. Sandwich-Plate Viration Analysis: Three-LayerQuasi-Three-Dimensional Finite Element Model,AIAA Journal,2003,41(8)..
    [142] Crawley E F. The Natural Modes of Graphite/Epoxy Cantilever Plates and Shells [J]. Journal ofComposit Materials,1979,13:195.
    [143] Nayak A K,Shenoi R A,Moy S S J. Transient responseof composite sandwich plates[J]. Journalof Composit Materials,2004,64:249-267.
    [144] Vlot A.,Impact loading on fiber metal laminates,International Journal of Impact Engineering,1996,18(3):291-307.
    [145] Caprino G.,Spataro G.,Del Luongo S.,Low-velocity impact behavior of fiberglass-aluminiumlaminates,Composites: Part A2004,35:605-16.
    [146] Caprino G.,Lopresto V,Laccarino P.,A simple mechanical model to predict the macroscopicresponse of fiberglass-aluminium laminates under low-velocity impact,Composites Part A2007,38:290-300.
    [147] Asundi A.,Choi AYN,Fiber metal laminates:an advanced material for future aircraft,Journalof materials Processing Techonology,1997,63(1-3):384-94.
    [148] Marsh G.,Airframes exploit composites in battle for supremacy,Reinforced Plastics,2005,49(3):26-32.
    [149] Abrate S.,Impact on laminated composite materials,Applied Mechanics Review,1991,44:155-90.
    [150] Meo,马兆侠,兰胜威等,带隔热层蜂窝夹层结构的超高速撞击特性研究,宇航学报,2010,31(8):2043-2049。
    [151] Meo, S., Morris, A. J.,Vignjevic, R., et al, Numerical simulations of low-velocity impacton an aircraft sandwich panel, Composite Structures,2003,62,353-360.
    [152]杨智春,谭光辉,夏巍,铺层方式对复合材料壁板热颤振特性的影响,宇航学报,29(3):1047-1052.
    [153]王晓庆,韩景龙,张军红,不同气流偏角下的壁板热颤振分析及多目标优化,航空学报,2010,31(11)2195-2201.
    [154]赵永辉,气动弹性力学与控制,科学出版社,2007.
    [155] S. Rajendran,D. Q. Song,Finite element modeling of delamination buckling of compositepanel using ANSYS,Proceeding of2nd Asian ANSYS User Conference,1988.
    [156]触建恒,含分层损伤复合材料结构逐渐损伤分析研究[硕士论文],南京:南京航空航天大学能源与动力学院,2007.
    [157]刘风楠,赵美英,郭葳,含分层损伤复合材料层合板压缩剩余强度计算,航空工程进展,2010,1(3):256-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700