硫酸盐还原菌的快速检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫酸盐还原菌(SRB)是腐蚀性最强,也是研究最广泛的腐蚀微生物。本论文针对传统SRB检测方法周期长的问题,分别构建了基于生物识别材料伴刀豆球蛋白A、基于SRB生物印迹薄膜材料和基于SRB特征代谢的快速检测方法,实现对海洋环境中SRB的高灵敏度、高特异性检测,扩展了海洋腐蚀微生物快速检测方法,具有一定的应用前景。具体的研究结果如下:
     (1)构建了基于生物识别材料快速检测SRB的生物传感器。以伴刀豆球蛋白A为生物识别材料,以电化学方波伏安法为检测手段,借助多巴胺分子增强聚合作用将伴刀豆球蛋白A识别分子以及羧基二茂铁电化学信号分子共价修饰到Fe3O4@MnO2纳米材料表面。使用该电化学传感器能够将检测时间缩短至2h以内,同时将检测灵敏度提升3.4倍,检测限降低至40cfu mL-1。
     (2)构建了基于生物印迹薄膜快速检测SRB的传感器。通过细胞介导法制备SRB生物印迹薄膜实现SRB检测的选择性,以电化学阻抗法为检测手段,引入石墨烯纳米材料提升SRB的吸附平台的导电性,增强检测电流信号。基于生物印迹薄膜快速识别检测SRB克服了生物材料易失活、价格昂贵等缺点,能够在1h内获得SRB种群数量。
     (3)构建了基于SRB特征代谢过程快速检测SRB的方法。以SRB能够代谢产生硫化物的特征行为切入,构建了基于ZnO/ZnS阵列转化过程、基于ZnS纳米材料光催化性质、基于Thiobacillus thioparus细胞的微生物传感器、基于对巯基蛋白酶活性抑制作用和基于石墨烯催化性质特异性检测SRB的方法。借助纳米材料和生物酶的信号增强作用提高了检测灵敏度,在保证检测选择性的基础上缩短了检测所需时间。
Sulfate-reducing bacteria (SRB) are the most widely studied marine corrosivemicroorganisms. Since common SRB detection methods are time-consuming, thispaper focus on development and fabrication of fast SRB detection methods. Detectionmethods based on concanavalin A, cell-mediated bioimprinted films, and SRBcharacteristic metabolic process as the recognizing strategies were established forselective, sensitive and fast SRB quantitative analysis. The specific results of thethesis are as follows:
     1. A biosensor based on biomaterial recognition was established for rapid SRBdetection. Concanavalin A was chosen as bio-recognition element, and square wavevoltammetry was used for bacterial detection. Concanavalin A and signalingmolecules, ferrocene, were conjugated onto the surface of Fe3O4@MnO2nanomaterials with the help of dopamine enhanced polymerization process. Thiselectrochemical biosensor could shorten bacterial detection time to less than2h.Besides, the detection sensitivity enhancement was on the order of340%, and thelimit of detection would be decreased to40cfu mL-1.
     2. A sensor based on bioimprinted films was developed for rapid SRB detection.Bioimprinted films were synthesized by bacteria-mediated approach for selectivebacteria recognition, and electrochemical impedance spectroscopy was used for fastSRB population quantitative analysis. Graphene was introuced into bacterialattachment platform to obtain good electrochemical signals for bacterial detection.This bacterial detection method based on cell-mediated bioimprinted films couldavoid the use of biological bio-recognition elements, which are easily lost specificbinding abilities, and the bacterial population could be obtained within1h.
     3. Detection protocols based on SRB characteristic bacterial metabolic processwere constructed for rapid SRB quantitative analysis. Since sulfide is thecharacteristic metabolite of SRB, SRB detection methods based on chemical conversion from ZnO nanorods arrays to ZnS arrays, the photocatalytic property ofmicrobial synthesized ZnS nanoparticles, Thiobacillus thioparus microbial biosensor,inhibition of cysteine protease activity, and reduced graphene sheets were establishedby taking advantage of this SRB characteristic metabolite. The detection sensitivitywas greatly enhacned with the help of nanomaterials and enzymes, and the time forselective SRB detection was greatly shortened as a result.
引文
[1]王华.硫酸盐还原菌对几种金属材料的腐蚀机理研究[D];大连理工大学,2010.
    [2] Hao O J, Chen J M, Huang L, et al. Sulfate‐reducing bacteria[J]. Criticalreviews in environmental science and technology,1996,26(2):155-187.
    [3]中国科学院微生物研究所(译).伯杰氏细菌鉴定手册(第8版)北京;科学出版社.1984.
    [4]张小里,陈志昕.环境因素对硫酸盐还原菌生长的影响[J].中国腐蚀与防护学报,2000,20(4):224-229.
    [5]李文融.硫酸盐还原菌[J].工业水处理,1986,6(1):52-52.
    [6] Muyzer G, Stams A J. The ecology and biotechnology of sulphate-reducingbacteria[J]. Nature Reviews Microbiology,2008,6(6):441-454.
    [7] Fitz R M, Cypionka H. Formation of thiosulfate and trithionate during sulfitereduction by washed cells of Desulfovibrio desulfuricans[J]. Archives ofMicrobiology,1990,154(4):400-406.
    [8] Badziong W, Thauer R K. Growth yields and growth rates of Desulfovibriovulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate asthe sole energy sources[J]. Archives of Microbiology,1978,117(2):209-214.
    [9]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002.
    [10]陈皓文.海洋硫酸盐还原菌及其活动的经济重要性[J].黄渤海海洋,1998,16(4):64-74.
    [11] Maree J, Strydom W F. Biological sulphate removal in an upflow packed bedreactor[J]. Water Research,1985,19(9):1101-1106.
    [12]刘宏芳,冯绪文.细菌的变异及其腐蚀行为的研究[J].材料保护,2000,33(7):5-6.
    [13]Barton L L, Hamilton W A. Sulphate-reducing bacteria: Environmental andengineered systems[M]. Cambridge University Press,2007.
    [14]Sigalevich P, Meshorer E, Helman Y, et al. Transition from anaerobic to aerobicgrowth conditions for the sulfate-reducing bacterium Desulfovibrio oxyclinae resultsin flocculation[J]. Applied and environmental microbiology,2000,66(11):5005-5012.
    [15]Dolla A, Fournier M, Dermoun Z. Oxygen defense in sulfate-reducing bacteria[J].Journal of biotechnology,2006,126(1):87-100.
    [16]Fournier M, Zhang Y, Wildschut J D, et al. Function of oxygen resistance proteinsin the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough[J].Journal of bacteriology,2003,185(1):71-79.
    [17]Postgate J R. The sulphate-reducing bacteria[M]. Cambridge: CambridgeUniversity Press,1979.
    [18]Marchal R, Chaussepied B, Warzywoda M. Effect of ferrous ion availability ongrowth of a corroding sulfate-reducing bacterium[J]. International biodeterioration&biodegradation,2001,47(3):125-131.
    [19]Reis M, Almeida J, Lemos P, et al. Effect of hydrogen sulfide on growth ofsulfate reducing bacteria[J]. Biotechnology and bioengineering,1992,40(5):593-600.
    [20]Rosnes J T, Torsvik T, Lien T. Spore-forming thermophilic sulfate-reducingbacteria isolated from North Sea oil field waters[J]. Applied and environmentalmicrobiology,1991,57(8):2302-2307.
    [21]von Wolzogen Kuehr C, Van der Vlugt L: DTIC Document,1964.
    [22]Costello J. Cathodic depolarization by sulfate-reducing bacteria[J]. South AfricanJournal of Science,1974,70(7):202-204.
    [23]Pankhania I, Moosavi A, Hamilton W. Utilization of cathodic hydrogen byDesulfovibrio vulgaris (Hildenborough)[J]. Journal of general microbiology,1986,132(12):3357-3365.
    [24]Cypionka H, Dilling W. Intracellular localization of the hydrogenase inDesulfotomaculum orientis[J]. FEMS microbiology letters,1986,36(2):257-260.
    [25]Booth G, Tiller A. Cathodic characteristics of mild steel in suspensions ofsulphate-reducing bacteria[J]. Corrosion Science,1968,8(8):583-600.
    [26]Da Silva S, Basséguy R, Bergel A. The role of hydrogenases in the anaerobicmicrobiologically influenced corrosion of steels[J]. Bioelectrochemistry,2002,56(1):77-79.
    [27]Cord-Ruwisch R, Widdel F. Corroding iron as a hydrogen source for sulphatereduction in growing cultures of sulphate-reducing bacteria[J]. Applied Microbiologyand Biotechnology,1986,25(2):169-174.
    [28]Bryant R D, Jansen W, Boivin J, et al. Effect of hydrogenase and mixedsulfate-reducing bacterial populations on the corrosion of steel[J]. Applied andenvironmental microbiology,1991,57(10):2804-2809.
    [29]Starkey R L. The general physiology of the sulfate-reducing bacteria in relation tocorrosion[J]. Producers Monthly,1958,22(2):12-16.
    [30]King R, Miller J, Smith J. Corrosion of mild steel by iron sulphides[J]. BritishCorrosion Journal,1973,8(3):137-141.
    [31]Bao Q, Zhang D, Lv D, et al. Effects of two main metabolites ofsulphate-reducing bacteria on the corrosion of Q235steels in3.5wt.%NaCl media[J].Corrosion Science,2012,65(405-413.
    [32]刘奉令.海泥中硫酸盐还原菌对锌,铝牺牲阳极材料的腐蚀影响研究[D];重庆大学,2010.
    [33]Pope D H, Morris E A. Some experiences with microbiologically influencedcorrosion of pipelines[J]. Materials performance,1995,34(5):23-28.
    [34]Sahinkaya E. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR:performance and artificial neural network (ANN) modelling studies[J]. Journal ofhazardous materials,2009,164(1):105-113.
    [35]Bai H, Kang Y, Quan H, et al. Bioremediation of copper-containing wastewaterby sulfate reducing bacteria coupled with iron[J]. Journal of environmentalmanagement,2013,129(350-356.
    [36]Sahinkaya E, Yucesoy Z. Biotreatment of acidic zinc-and copper-containingwastewater using ethanol-fed sulfidogenic anaerobic baffled reactor[J]. Bioprocessand biosystems engineering,2010,33(8):989-997.
    [37]Srivastava N, Majumder C. Novel biofiltration methods for the treatment ofheavy metals from industrial wastewater[J]. Journal of hazardous materials,2008,151(1):1-8.
    [38]Mohan S V, Rao N C, Prasad K K, et al. Bioaugmentation of an anaerobicsequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducingbacteria (SRB) for the treatment of sulphate bearing chemical wastewater[J]. ProcessBiochemistry,2005,40(8):2849-2857.
    [39]Elliott P, Ragusa S, Catcheside D. Growth of sulfate-reducing bacteria underacidic conditions in an upflow anaerobic bioreactor as a treatment system for acidmine drainage[J]. Water Research,1998,32(12):3724-3730.
    [40]Ji-ning D H-y C, Hai-tao C. The test research of temperature to Sulfate-ReducingBacteria (SRB) disposal of coal mine wastewater[J]. Shanxi Architecture,2012,16(071.
    [41]刘广民,任南琪,王爱杰等.产酸硫酸盐还原系统中产酸菌的发酵类型及其与SRB的协同作用[J].环境科学学报,2004,24(5):782-788.
    [42]Speece R E. Anaerobic biotechnology for industrial wastewater treatment[J].Environmental science&technology,1983,17(9):416A-427A.
    [43]Lazar I, Petrisor I, Yen T. Microbial enhanced oil recovery (MEOR)[J]. PetroleumScience and Technology,2007,25(11):1353-1366.
    [44]McCrady M. The numerical interpretation of fermentation-tube results[J]. J infectDis,1915,17(1):183-212.
    [45]易绍金,丁齐柱.硫酸盐还原菌检测方法述评[J].世界石油科学,1993,2):66-69.
    [46]胡德蓉,林钦.硫酸盐还原菌(SRB)的生态特性及其检测方法的研究现状[J].南方水产科学,2007,3(3):67-72.
    [47]Tabor P S, Neihof R A. Improved microautoradiographic method to determineindividual microorganisms active in substrate uptake in natural waters[J]. Applied andenvironmental microbiology,1982,44(4):945-953.
    [48]Al-Hitti I K, Moody G J, Thomas J D R. Sulphide ion-selective electrode studiesconcerning Desulfovibrio species of sulphate-reducing bacteria[J]. Analyst,1983,108(1291):1209-1220.
    [49]Tatnall R E, Stanton K M, Ebersole R C. Testing for the Presence ofSulfate-Reducing Bacteria[J]. Materials performance,1988,27(8):71-80.
    [50]Ebersole R C G L J, Ng T, et al.. Sulfate reducing bacteria determination andcontrol: U.S. Patent4,999,286[P].1991-3-12.
    [51]Duriez L, Thomas M. Fluorimetric Detection of Sirohydrochlorin: A PotentialTechnique for the Rapid Detection of Sulfate-Reducing Bacteria in Water OilSystems[J]. Corrosion,1990,46(7):547-555.
    [52]Maxwell S. Assessment of sulfide corrosion risks in offshore systems bybiological monitoring[J]. SPE Production Engineering,1986,1(05):363-368.
    [53]Vester F, Ingvorsen K. Improved most-probable-number method to detectsulfate-reducing bacteria with natural media and a radiotracer[J]. Applied andenvironmental microbiology,1998,64(5):1700-1707.
    [54]Gaylarde C, Cook P. ELISA techniques for the detection of sulphate-reducingbacteria[J]. Immunological techniques in microbiology, SAB technical series,1987,24(231-244.
    [55]Gaylarde C, Cook P. New rapid methods for the identification ofsulphate-reducing bacteria[J]. International Biodeterioration,1990,26(5):337-345.
    [56]Smith A D. Immunofluorescence of sulphate-reducing bacteria[J]. Archives ofMicrobiology,1982,133(2):118-121.
    [57]Maukonen J, Saarela M, Raaska L. Desulfovibrionales-related bacteria in a papermill environment as detected with molecular techniques and culture[J]. Journal ofIndustrial Microbiology and Biotechnology,2006,33(1):45-54.
    [58]Cook K L, Whitehead T R, Spence C, et al. Evaluation of the sulfate-reducingbacterial population associated with stored swine slurry[J]. Anaerobe,2008,14(3):172-180.
    [59]Stubner S. Quantification of Gram-negative sulphate-reducing bacteria in ricefield soil by16S rRNA gene-targeted real-time PCR[J]. Journal of microbiologicalmethods,2004,57(2):219-230.
    [60]Tanaka Y, Sogabe M, Okumura K, et al. A highly selective direct method ofdetecting sulphate‐reducing bacteria in crude oil[J]. Letters in applied microbiology,2002,35(3):242-246.
    [61]Ben-Dov E, Brenner A, Kushmaro A. Quantification of sulfate-reducing bacteriain industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrAand apsA genes[J]. Microbial ecology,2007,54(3):439-451.
    [62]王明义,袁晓燕,宋雪珍等.荧光原位杂交法在检测硫酸盐还原菌中的应用[J].中国现代医学杂志,2008,18(3):302-304.
    [63]张伟,刘丛强,刘涛泽等.荧光原位杂交在喀斯特山地土壤硫酸盐还原菌检测中的应用[J].微生物学通报,2008,35(8):1273-1277.
    [64]Scheid D, Stubner S, Conrad R. Identification of rice root associated nitrate,sulfate and ferric iron reducing bacteria during root decomposition[J]. FEMSmicrobiology ecology,2004,50(2):101-110.
    [65]邵晖,吴玲玲,王伟等.食品中病原微生物检测方法进展及优缺点评价[J].中国食品工业,2008,4):40-43.
    [66]生物学,绍江.微生物学实验[M].科学出版社,2002.
    [67]张也,刘以祥.酶联免疫技术与食品安全快速检测[J].食品科学,2003,24(8):200-204.
    [68]Zourob M, Elwary S, Turner A P. Principles of Bacterial Detection: Biosensors,Recognition Receptors and Microsystems: Biosensors, Recognition Receptors, andMicrosystems[M]. Springer,2008.
    [69]Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbialpopulations by denaturing gradient gel electrophoresis analysis of polymerase chainreaction-amplified genes coding for16S rRNA[J]. Applied and environmentalmicrobiology,1993,59(3):695-700.
    [70]Schmid M, Schmitz‐Esser S, Jetten M, et al.16S‐23S rDNA intergenic spacerand23S rDNA of anaerobic ammonium‐oxidizing bacteria: implications forphylogeny and in situ detection[J]. Environmental Microbiology,2001,3(7):450-459.
    [71]Braker G, Fesefeldt A, Witzel K-P. Development of PCR primer systems foramplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteriain environmental samples[J]. Applied and environmental microbiology,1998,64(10):3769-3775.
    [72]Ivnitski D, Abdel-Hamid I, Atanasov P, et al. Biosensors for detection ofpathogenic bacteria[J]. Biosensors and Bioelectronics,1999,14(7):599-624.
    [73]士辉.生物传感器[M].化学工业出版社,2003.
    [74]Clark L C, Lyons C. Electrode systems for continuous monitoring incardiovascular surgery[J]. Annals of the New York Academy of sciences,1962,102(1):29-45.
    [75]Turner A P. Biosensors--sense and sensitivity[J]. Science,2000,290(5495):1315-1317.
    [76]Wang J. Glucose biosensors:40years of advances and challenges[J].Electroanalysis,2001,13(12):983.
    [77]Turner A. Biosensors: fundamentals and applications[J].1987,
    [78]Spichiger-Keller U E. Chemical sensors and biosensors for medical andbiological applications[M]. John Wiley&Sons,2008.
    [79]Rogers K. Recent advances in biosensor techniques for environmentalmonitoring[J]. Analytica Chimica Acta,2006,568(1):222-231.
    [80]Bu ko M, Mislovi ová D, Nahálka J, et al. Immobilization in biotechnology andbiorecognition: from macro-to nanoscale systems[J]. Chemical Papers,2012,66(11):983-998.
    [81]Chambers J P, Arulanandam B P, Matta L L, et al.: DTIC Document,2008.
    [1] Tan Y, Deng W, Li Y, et al. Polymeric Bionanocomposite Cast Thin Films withIn Situ Laccase-Catalyzed Polymerization of Dopamine for Biosensing and BiofuelCell Applications[J]. J Phys Chem B,2010,114(15):5016-5024.
    [2] Lee H, Scherer N F, Messersmith P B. Single-molecule mechanics of musseladhesion[J]. P Natl Acad Sci USA,2006,103(35):12999-13003.
    [3] Wei Q, Zhang F, Li J, et al. Oxidant-induced dopamine polymerization formultifunctional coatings[J]. Polym Chem,2010,1(9):1430-1433.
    [4] McCloskey B D, Park H B, Ju H, et al. Influence of polydopamine depositionconditions on pure water flux and foulant adhesion resistance of reverse osmosis,ultrafiltration, and microfiltration membranes[J]. Polymer,2010,51(15):3472-3485.
    [5] Lee H, Rho J, Messersmith P B. Facile Conjugation of Biomolecules ontoSurfaces via Mussel Adhesive Protein Inspired Coatings[J]. Adv Mater,2009,21(4):431-434.
    [6] Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry formultifunctional coatings[J]. Science,2007,318(5849):426-430.
    [7] Li M, Deng C, Xie Q, et al. Electrochemical quartz crystal impedance study onimmobilization of glucose oxidase in a polymer grown from dopamine oxidation at anAu electrode for glucose sensing[J]. Electrochim Acta,2006,51(25):5478-5486.
    [8] Li F, Feng Y, Yang L, et al. A selective novel non-enzyme glucose amperometricbiosensor based on lectin-sugar binding on thionine modified electrode[J]. BiosensBioelectron,2011,26(5):2489-2494.
    [9] Wan Y, Zhang D, Wang Y, et al. Direct immobilisation of antibodies on abioinspired architecture as a sensing platform[J]. Biosens Bioelectron,2011,26(5):2595-2600.
    [10]Morris T A, Peterson A W, Tarlov M J. Selective Binding of RNase BGlycoforms by Polydopamine-Immobilized Concanavalin A[J]. Anal Chem,2009,81(13):5413-5420.
    [11]Yu B, Wang D A, Ye Q, et al. Robust polydopamine nano/microcapsules andtheir loading and release behavior[J]. Chem Commun,2009,44(6789-6791.
    [12]Peng H, Liang R, Zhang L, et al. Facile preparation of novel core–shellenzyme–Au–polydopamine–Fe3O4magnetic bionanoparticles for glucose sensor[J].Biosens Bioelectron,2013,42(0):293-299.
    [13]Zhang M, He X, Chen L, et al. Preparation of IDA-Cu functionalizedcore-satellite Fe3O4/polydopamine/Au magnetic nanocomposites and theirapplication for depletion of abundant protein in bovine blood[J]. J Mater Chem,2010,20(47):10696-10704.
    [14]Wang Y, Liu L, Li M, et al. Multifunctional carbon nanotubes for directelectrochemistry of glucose oxidase and glucose bioassay[J]. Biosens Bioelectron,2011,30(1):107-111.
    [15]Fei B, Qian B, Yang Z, et al. Coating carbon nanotubes by spontaneous oxidativepolymerization of dopamine[J]. Carbon,2008,46(13):1795-1797.
    [16]Shen Z, Huang M, Xiao C, et al. Nonlabeled quartz crystal microbalancebiosensor for bacterial detection using carbohydrate and lectin recognitions[J]. AnalChem,2007,79(6):2312-2319.
    [17]Lu Q, Lin H, Ge S, et al. Wireless, Remote-Query, and High SensitivityEscherichia coli O157:H7Biosensor Based on the Recognition Action ofConcanavalin A[J]. Anal Chem,2009,81(14):5846-5850.
    [18]Bondurant B, Last J A, Waggoner T A, et al. Optical and scanning probe analysisof glycolipid reorganization upon concanavalin A binding to mannose-coated lipidbilayers[J]. Langmuir,2003,19(5):1829-1837.
    [19]Zhao Z, Liu J, Cui F, et al. One pot synthesis of tunable Fe3O4-MnO2core-shellnanoplates and their applications for water purification[J]. J Mater Chem,2012,22(18):9052-9057.
    [20]Barreto W J, Ponzoni S, Sassi P. A Raman and UV-Vis study of catecholaminesoxidized with Mn(III)[J]. Spectrochim Acta A,1999,55(1):65-72.
    [21]Lee B P, Dalsin J L, Messersmith P B. Synthesis and gelation of DOPA-Modifiedpoly(ethylene glycol) hydrogels[J]. Biomacromolecules,2002,3(5):1038-1047.
    [22]Dreyer D R, Miller D J, Freeman B D, et al. Elucidating the Structure ofPoly(dopamine)[J]. Langmuir,2012,28(15):6428-6435.
    [23]Osullivan D G. Vibrational frequency correlations in heterocyclic molecules.7.Spectral features of a range of compounds possessing a benzene ring fused to a5-membered ring[J]. J Chem Soc,1960, AUG):3278-3284.
    [24]Deinhammer R S, Ho M, Anderegg J W, et al. Electrochemical oxidation ofamine-containing compounds: a route to the surface modification of glassy carbonelectrodes[J]. Langmuir,1994,10(4):1306-1313.
    [25]Mann C K. Cyclic stationary electrode voltammetry of some aliphatic amines[J].Anal Chem,1964,36(13):2424-2426.
    [1] Ye L, Mosbach K. The technique of molecular imprinting-Principle, state of theart, and future aspects[J]. J Incl Phenom Macro,2001,41(1-4):107-113.
    [2] Cormack P A G, Mosbach K. Molecular imprinting: recent developments and theroad ahead[J]. React Funct Polym,1999,41(1-3):115-124.
    [3] Haupt K, Mosbach K. Molecularly imprinted polymers and their use inbiomimetic sensors[J]. Chem Rev2000,100(7):2495-2504.
    [4] Olsen J, Martin P, Wilson I D. Molecular imprints as sorbents for solid phaseextraction: potential and applications[J]. Anal Commun,1998,35(10):13h-14h.
    [5] Chen L X, Xu S F, Li J H. Recent advances in molecular imprinting technology:current status, challenges and highlighted applications[J]. Chem Soc Rev,2011,40(5):2922-2942.
    [6] Chianella I, Lotierzo M, Piletsky S A, et al. Rational design of a polymer specificfor microcystin-LR using a computational approach[J]. Anal Chem,2002,74(6):1288-1293.
    [7] Thoelen R, Vansweevelt R, Duchateau J, et al. A MIP-based impedimetric sensorfor the detection of low-MW molecules[J]. Biosensors&Bioelectronics,2008,23(6):913-918.
    [8] Syu M J, Chiu T C, Lai C Y, et al. Amperometric detection of bilirubin from amicro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA)film[J]. Biosens Bioelectron,2006,22(4):550-557.
    [9] Allender C J, Lavignac N, Brain K R. Concentration dependent atrazine-atrazinecomplex formation promotes selectivity in atrazine imprinted polymers[J]. BiosensBioelectron,2006,22(1):138-144.
    [10]Husson S M, Li X. Adsorption of dansylated amino acids on molecularlyimprinted surfaces: A surface plasmon resonance study[J]. Biosens Bioelectron,2006,22(3):336-348.
    [11] Ers z A, zcan A A, Say R, et al. L-histidine imprinted synthetic receptor forbiochromatography applications[J]. Anal Chem,2006,78(20):7253-7258.
    [12]Yang X R, Cheng Z L, Wang E K. Capacitive detection of glucose usingmolecularly imprinted polymers[J]. Biosens Bioelectron,2001,16(3):179-185.
    [13]Sreenivasan K, Manju S, Hari P R. Fluorescent molecularly imprinted polymerfilm binds glucose with a concomitant changes in fluorescence[J]. BiosensBioelectron,2010,26(2):894-897.
    [14]Jiang J Q, Yang Y Q, Yi C L, et al. Glucose sensors based on electrodeposition ofmolecularly imprinted polymeric micelles: A novel strategy for MIP sensors[J].Biosens Bioelectron,2011,26(5):2607-2612.
    [15]Hong C C, Chang P H, Lin C C, et al. A disposable microfluidic biochip withon-chip molecularly imprinted biosensors for optical detection of anestheticpropofol[J]. Biosens Bioelectron,2010,25(9):2058-2064.
    [16]Malitesta C, Mazzotta E, Picca R A, et al. Development of a sensor prepared byentrapment of MIP particles in electrosynthesised polymer films for electrochemicaldetection of ephedrine[J]. Biosens Bioelectron,2008,23(7):1152-1156.
    [17]Dickert F L, Hayden O, Bindeus R, et al. Bioimprinted QCM sensors for virusdetection-screening of plant sap[J]. Anal Bioanal Chem,2004,378(8):1929-1934.
    [18]Hayden O, Lieberzeit P A, Blaas D, et al. Artificial Antibodies for BioanalyteDetection—Sensing Viruses and Proteins[J]. Advanced Functional Materials,2006,16(10):1269-1278.
    [19]Schirhagl R, Lieberzeit P A, Dickert F L. Chemosensors for Viruses Based onArtificial Immunoglobulin Copies[J]. Advanced Materials,2010,22(18):2078-2081.
    [20]Dickert F L, Hayden O. Bioimprinting of polymers and sol-gel phases. Selectivedetection of yeasts with imprinted polymers[J]. Anal Chem2002,74(6):1302-1306.
    [21]Hayden O, Dickert F L. Selective microorganism detection with cell surfaceimprinted polymers[J]. Adv Mater2001,13(19):1480-1483.
    [22]Dickert F, Lieberzeit P, Hayden O. Sensor strategies for microorganismdetection—from physical principles to imprinting procedures[J]. Anal Bioanal Chem,2003,377(3):540-549.
    [23]Dickert F L, Lieberzeit P, Miarecka S G, et al. Synthetic receptors for chemicalsensors--subnano-and micrometre patterning by imprinting techniques[J]. Biosensorsand Bioelectronics,2004,20(6):1040-1044.
    [24]Hayden O, Bindeus R, Hadersp ck C, et al. Mass-sensitive detection of cells,viruses and enzymes with artificial receptors[J]. Sensors and Actuators B: Chemical,2003,91(1-3):316-319.
    [25]Bolisay L D, Culver J N, Kofinas P. Molecularly imprinted polymers for tobaccomosaic virus recognition[J]. Biomaterials,2006,27(22):4165-4168.
    [26]Aherne A, Alexander C, Payne M J, et al. Bacteria-mediated lithography ofpolymer surfaces[J]. J Am Chem Soc1996,118(36):8771-8772.
    [27]Namvar A, Warriner K. Microbial imprinted polypyrrole/poly(3-methylthiophene)composite films for the detection of Bacillus endospores[J]. Biosensors andBioelectronics,2007,22(9-10):2018-2024.
    [28]Rinaudo M. Chitin and chitosan: Properties and applications[J]. Prog Polym Sci2006,31(7):603-632.
    [29]Wan Y, Lin Z, Zhang D, et al. Impedimetric immunosensor doped with reducedgraphene sheets fabricated by controllable electrodeposition for the non-labelleddetection of bacteria[J]. Biosensors and Bioelectronics,2011,26(5):1959-1964.
    [30]Prodromidis M I. Impedimetric immunosensors--A review[J]. ElectrochimicaActa,2010,55(14):4227-4233.
    [31]Guan J-G, Miao Y-Q, Zhang Q-J. Impedimetric biosensors[J]. Journal ofBioscience and Bioengineering,2004,97(4):219-226.
    [32]Saum A G E, Cumming R H, Rowell F J. Use of substrate coated electrodes andAC impedance spectroscopy for the detection of enzyme activity[J]. Biosensors andBioelectronics,1998,13(5):511-518.
    [33]Diniz F B, Oliveira M D L, Correia M T S, et al. Electrochemical evaluation oflectin-sugar interaction on gold electrode modified with colloidal gold and polyvinylbutyral[J]. Colloid Surface B,2008,66(1):13-19.
    [34]Oliveira M D L, Correia M T S, Coelho L C B B, et al. Electrochemicalevaluation of lectin-sugar interaction on gold electrode modified with colloidal goldand polyvinyl butyral[J]. Colloids and Surfaces B: Biointerfaces,2008,66(1):13-19.
    [35]Bogomolova A, Komarova E, Reber K, et al. Challenges of ElectrochemicalImpedance Spectroscopy in Protein Biosensing[J]. Anal Chem2009,81(10):3944-3949.
    [36]Naumann R, Schmidt E K, Jonczyk A, et al. The peptide-tethered lipid membraneas a biomimetic system to incorporate cytochrome c oxidase in a functionally activeform[J]. Biosensors and Bioelectronics,1999,14(7):651-662.
    [37]La Belle J T, Gerlach J Q, Svarovsky S, et al. Label-Free Impedimetric Detectionof Glycan Lectin Interactions[J].Anal Chem,2007,79(18):6959-6964.
    [38]Xiao Y, Li C M, Liu Y. Electrochemical impedance characterization ofantibody-antigen interaction with signal amplification based onpolypyrrole-streptavidin[J]. Biosensors and Bioelectronics,2007,22(12):3161-3166.
    [39]Barton A C, Davis F, Higson S a P J. Labeless Immunosensor Assay for theStroke Marker Protein Neuron Specific Enolase Based upon an Alternating CurrentImpedance Protocol[J]. Anal Chem,2008,80(24):9411-9416.
    [40]Rezaei B, Khayamian T, Majidi N, et al. Immobilization of specific monoclonalantibody on Au nanoparticles for hGH detection by electrochemical impedancespectroscopy[J]. Biosensors and Bioelectronics,2009,25(2):395-399.
    [41]Katz E, I W. Probing biomolecular interactions at conductive and semiconductivesurfaces by impedance spectroscopy: Routes to impedimetric immunosensors,DNA-Sensors, and enzyme biosensors[J]. Electroanal,2003,15(11):913-947.
    [42]Hu Y, Hua S, Li F, et al. Green-synthesized gold nanoparticles decoratedgraphene sheets for label-free electrochemical impedance DNA hybridizationbiosensing[J]. Biosensors and Bioelectronics,2011,26(11):4355-4361.
    [43]Zhang W, Yang T, Zhuang X, et al. An ionic liquid supported CeO2nanoshuttles-carbon nanotubes composite as a platform for impedance DNAhybridization sensing[J]. Biosensors and Bioelectronics,2009,24(8):2417-2422.
    [44]Wang Y, Li C, Li X, et al. Unlabeled Hairpin-DNA Probe for the Detection ofSingle-Nucleotide Mismatches by Electrochemical Impedance Spectroscopy[J]. AnalChem,2008,80(6):2255-2260.
    [45]Basuray S, Senapati S, Aijian A, et al. Shear and AC Field Enhanced CarbonNanotube Impedance Assay for Rapid, Sensitive, and Mismatch-Discriminating DNAHybridization[J]. ACS Nano,2009,3(7):1823-1830.
    [46]Keighley S D, Estrela P, Li P, et al. Optimization of label-free DNA detectionwith electrochemical impedance spectroscopy using PNA probes[J]. Biosensors andBioelectronics,2008,24(4):906-911.
    [47]Wan Y, Zhang D, Hou B. Monitoring microbial populations of sulfate-reducingbacteria using an impedimetric immunosensor based on agglutination assay[J].Talanta,2009,80(1):218-223.
    [48]Wan Y, Zhang D, Wang Y, et al. Direct immobilisation of antibodies on abioinspired architecture as a sensing platform[J]. Biosensors and Bioelectronics,2011,26(5):2595-2600.
    [49]Wan Y, Zhang D, Wang Y, et al. A3D-impedimetric immunosensor based onfoam Ni for detection of sulfate-reducing bacteria[J]. Electrochem Commun2010,12(2):288-291.
    [50]Su X J, Zhao Q, Wang S, et al. Modification of diamond-like carbon coatingswith fluorine to reduce biofouling adhesion[J]. Surface and Coatings Technology,2010,204(15):2454-2458.
    [51]Alexander C, Vulfson E N. Spatially functionalized polymer surfaces producedvia cell-mediated lithography[J]. Advanced Materials,1997,9(9):751-755.
    [52]Pasparakis G, Alexander C. Synthetic polymers for capture and detection ofmicroorganisms[J]. Analyst,2007,132(11):1075-1082.
    [53]Fernandes R, Wu L-Q, Chen T, et al. Electrochemically Induced Deposition of aPolysaccharide Hydrogel onto a Patterned Surface[J]. Langmuir,2003,19(10):4058-4062.
    [54]Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, et al. Development ofantibody array for simultaneous detection of foodborne pathogens[J]. Biosensors&Bioelectronics,2009,24(6):1641-1648.
    [55]Wan Y, Lin Z, Zhang D, et al. Impedimetric immunosensor doped with reducedgraphene sheets fabricated by controllable electrodeposition for the non-labelleddetection of bacteria[J]. Biosensors&Bioelectronics,2011,26(5):1959-1964.
    [56]Shen Z, Huang M, Xiao C, et al. Nonlabeled quartz crystal microbalancebiosensor for bacterial detection using carbohydrate and lectin recognitions[J]. AnalChem2007,79(6):2312-2319.
    [57]Gu H W, Ho P L, Tsang K W T, et al. Using biofunctional magnetic nanoparticlesto capture vancomycin-resistant enterococci and other gram-positive bacteria atultralow concentration[J]. J Am Chem Soc2003,125(51):15702-15703.
    [58]Gu H W, Ho P L, Tong E, et al. Presenting vancomycin on nanoparticles toenhance antimicrobial activities[J]. Nano Lett2003,3(9):1261-1263.
    [59]Torres-Chavolla E, Alocilja E C. Aptasensors for detection of microbial and viralpathogens[J]. Biosensors&Bioelectronics,2009,24(11):3175-3182.
    [1] Fang X, Zhai T, Gautam U K, et al. ZnS nanostructures: From synthesis toapplications[J]. Progress in Materials Science,2011,56(2):175-287.
    [2] Fang X, Wu L, Hu L. ZnS Nanostructure Arrays: A Developing Material Star[J].Advanced Materials,2011,23(5):585-598.
    [3] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowirenanolasers[J]. Science,2001,292(5523):1897-1899.
    [4] Pradhan B, Batabyal S K, Pal A J. Vertically aligned ZnO nanowire arrays inRose Bengal-based dye-sensitized solar cells[J]. Solar Energy Materials and SolarCells,2007,91(9):769-773.
    [5] Zhang Q, Dandeneau C S, Zhou X, et al. ZnO Nanostructures for Dye-SensitizedSolar Cells[J]. Advanced Materials,2009,21(41):4087-4108.
    [6] Zeng H, Xu X, Bando Y, et al. Template Deformation-Tailored ZnONanorod/Nanowire Arrays: Full Growth Control and Optimization ofField-Emission[J]. Advanced Functional Materials,2009,19(19):3165-3172.
    [7] Tang H, Meng G, Huang Q, et al. Arrays of Cone-Shaped ZnO NanorodsDecorated with Ag Nanoparticles as3D Surface-Enhanced Raman ScatteringSubstrates for Rapid Detection of Trace Polychlorinated Biphenyls[J]. AdvancedFunctional Materials,2012,22(1):218-224.
    [8] Yeh P-H, Li Z, Wang Z L. Schottky-Gated Probe-Free ZnO NanowireBiosensor[J]. Advanced Materials,2009,21(48):4975-4978.
    [9] Park H-Y, Go H-Y, Kalme S, et al. Protective Antigen Detection UsingHorizontally Stacked Hexagonal ZnO Platelets[J]. Analytical Chemistry,2009,81(11):4280-4284.
    [10]Adalsteinsson V, Parajuli O, Kepics S, et al. Ultrasensitive detection of cytokinesenabled by nanoscale ZnO arrays[J]. Analytical Chemistry,2008,80(17):6594-6601.
    [11] Byun K M, Kim N-H, Ko Y H, et al. Enhanced surface plasmon resonancedetection of DNA hybridization based on ZnO nanorod arrays[J]. Sensors andActuators B-Chemical,2011,155(1):375-379.
    [12]Hu W, Liu Y, Yang H, et al. ZnO nanorods-enhanced fluorescence for sensitivemicroarray detection of cancers in serum without additional reporter-amplification[J].Biosensors&Bioelectronics,2011,26(8):3683-3687.
    [13]Ahn K-Y, Kwon K, Huh J, et al. A sensitive diagnostic assay of rheumatoidarthritis using three-dimensional ZnO nanorod structure[J]. Biosensors&Bioelectronics,2011,28(1):378-385.
    [14]Badadhe S S, Mulla I S. H2S gas sensitive indium-doped ZnO thin films:Preparation and characterization[J]. Sensors and Actuators B: Chemical,2009,143(1):164-170.
    [15]Hamedani N F, Mahjoub A R, Khodadadi A A, et al. Microwave assisted fastsynthesis of various ZnO morphologies for selective detection of CO, CH4andethanol[J]. Sensors and Actuators B-Chemical,2011,156(2):737-742.
    [16]Gurav K V, Deshmukh P R, Lokhande C D. LPG sensing properties ofPd-sensitized vertically aligned ZnO nanorods[J]. Sensors and Actuators B: Chemical,2011,151(2):365-369.
    [17]Cui J B, Soo Y C, Chen T P, et al. Low-temperature growth and characterizationof Cl-doped ZnO nanowire arrays[J]. Journal of Physical Chemistry C,2008,112(12):4475-4479.
    [18]Cheng C, Liu B, Yang H, et al. Hierarchical Assembly of ZnO Nanostructures onSnO2Backbone Nanowires: Low-Temperature Hydrothermal Preparation and OpticalProperties[J]. ACS Nano,2009,3(10):3069-3076.
    [19]Xu F, Lu Y, Xie Y, et al. Seed layer-free electrodeposition and characterization ofvertically aligned ZnO nanorod array film[J]. Journal of Solid State Electrochemistry,2010,14(1):63-70.
    [20]Yin L W, Bando Y. Semiconductor morphology: Optimizing properties by tuningmorphology[J]. Nature Materials,2005,4(12):883-884.
    [21]Sun Q, Wang Y A, Li L S, et al. Bright, multicoloured light-emitting diodes basedon quantum dots[J]. Nature Photonics,2007,1(12):717-722.
    [22]Sou I K, Ma Z H, Zhang Z Q, et al. Temperature dependence of the responsivityof II-VI ultraviolet photodiodes[J]. Applied Physics Letters,2000,76(9):1098-1100.
    [23]Zhao Y W, Zhang Y, Zhu H, et al. Low-temperature synthesis of hexagonal(wurtzite) ZnS nanocrystals[J]. Journal of the American Chemical Society,2004,126(22):6874-6875.
    [24]Zheng X J, Chen Y Q, Zhang T, et al. Photoconductive semiconductor switchbased on ZnS nanobelts film[J]. Sensors and Actuators B-Chemical,2010,147(2):442-446.
    [25]Yi C H, Yasui I, Shigesato Y. Oriented tin-doped indium oxide films on<001>preferred oriented polycrystalline ZnO films[J]. Japanese Journal of Applied Physics,1995,34(3):1638-1642.
    [26]Mamas I P. Impedimetric immunosensors—A review[J]. Electrochimica Acta,2010,55(14):4227-4233.
    [27]Greeff A P, Swart H C. Quantifying the cathodoluminescence generated inZnS-based phosphor powders[J]. Surface and Interface Analysis,2002,34(1):593-596.
    [28]Liu H, Liu D, Fang G, et al. A novel dual-function molecularly imprinted polymeron CdTe/ZnS quantum dots for highly selective and sensitive determination ofractopamine[J]. Analytica Chimica Acta,2013,762(76-82.
    [29]Yan Y, Wang S, Liu Z, et al. CdSe-ZnS Quantum Dots for Selective and SensitiveDetection and Quantification of Hypochlorite[J]. Analytical Chemistry,2010,82(23):9775-9781.
    [30]Sotelo-Gonzalez E, Fernandez-Argueelles M T, Costa-Fernandez J M, et al.Mn-doped ZnS quantum dots for the determination of acetone by phosphorescenceattenuation[J]. Analytica Chimica Acta,2012,712(120-126.
    [31]Wu P, Miao L-N, Wang H-F, et al. A Multidimensional Sensing Device for theDiscrimination of Proteins Based on Manganese-Doped ZnS Quantum Dots[J].Angewandte Chemie International Edition,2011,50(35):8118-8121.
    [32]Hu J S, Ren L L, Guo Y G, et al. Mass production and high photocatalytic activityof ZnS nanoporous nanoparticles[J]. Angewandte Chemie International Edition,2005,44(8):1269-1273.
    [33]Porambo M W, Howard H R, Marsh A L. Dopant Effects on the PhotocatalyticActivity of Colloidal Zinc Sulfide Semiconductor Nanocrystals for the Oxidation of2-Chlorophenol[J]. Journal of Physical Chemistry C,2010,114(3):1580-1585.
    [34]Xie Y, Zhang C, Miao S, et al. One-pot synthesis of ZnS/polymer composites insupercritical CO2-ethanol solution and their applications in degradation of dyes[J].Journal of Colloid and Interface Science,2008,318(1):110-115.
    [35]Pouretedal H R, Norozi A, Keshavarz M H, et al. Nanoparticles of zinc sulfidedoped with manganese, nickel and copper as nanophotocatalyst in the degradation oforganic dyes[J]. Journal of Hazardous Materials,2009,162(2-3):674-681.
    [36]Grases F, March J G. Determination of technetium by reduction of methylene bluewith tin(II)[J]. Analytical Chemistry,1985,57(7):1419-1422.
    [37]Knowles A, Gurnani S. A study of the methylene blue-sensitized oxidation ofamino acids[J]. Photochemistry and Photobiology,1972,16(2):95-108.
    [38]Kuang F, Wang J, Yan L, et al. Effects of sulfate-reducing bacteria on thecorrosion behavior of carbon steel[J]. Electrochimica Acta,2007,52(20):6084-6088.
    [39]Krulwich T A, Guffanti A A. Alkalophilic bacteria[J]. Annual Review ofMicrobiology,1989,43(435-463.
    [40]Masalha M, Borovok I, Schreiber R, et al. Analysis of transcription of theStaphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotidereductase genes in response to oxygen[J]. Journal of Bacteriology,2001,183(24):7260-7272.
    [41]D'Souza S F. Microbial biosensors[J]. Biosensors&Bioelectronics,2001,16(6):337-353.
    [42]Byfield M P, Abuknesha R A. Biochemical aspects of biosensors[J]. Biosensors&Bioelectronics,1994,9(4-5):373-400.
    [43]Su L, Jia W, Hou C, et al. Microbial biosensors: A review[J]. Biosensors&Bioelectronics,2011,26(5):1788-1799.
    [44]Yagi K. Applications of whole-cell bacterial sensors in biotechnology andenvironmental science[J]. Appl Microbiol Biot,2007,73(6):1251-1258.
    [45]Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: A promisingtechnology for wastewater treatment and bioenergy[J]. Biotechnology Advances,2007,25(5):464-482.
    [46]Ding L, Du D, Zhang X, et al. Trends in Cell-Based ElectrochemicalBiosensors[J]. Current Medicinal Chemistry,2008,15(30):3160-3170.
    [47]Borisov S M, Wolfbeis O S. Optical biosensors[J]. Chemical Reviews,2008,108(2):423-461.
    [48]Visser J M, deJong G A H, Robertson L A, et al. A novel membrane-boundflavocytochrome c sulfide dehydrogenase from the colourless sulfur bacteriumThiobacillus sp. W5[J]. Archives of Microbiology,1997,167(5):295-301.
    [49]Kuenen J G, Tuovinen O H. The genera Thiobacillus and Thiomicrospira[M].Springer,1981.
    [50]Oyarzun P, Arancibia F, Canales C, et al. Biofiltration of high concentration ofhydrogen sulphide using Thiobacillus thioparus[J]. Process Biochemistry,2003,39(2):165-170.
    [51]Ramirez M, Manuel Gomez J, Aroca G, et al. Removal of hydrogen sulfide byimmobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethanefoam[J]. Bioresource Technology,2009,100(21):4989-4995.
    [52]Chung Y C, Huang C P, Tseng C P. Operation optimization of Thiobacillusthioparus CH11biofilter for hydrogen sulfide removal[J]. Journal of Biotechnology,1996,52(1):31-38.
    [53]Akyilmaz E, Turemis M, Yasa I. Voltammetric determination of epinephrine byWhite rot fungi (Phanerochaete chrysosporium ME446) cells based microbialbiosensor[J]. Biosensors&Bioelectronics,2011,26(5):2590-2594.
    [54]Arip M N M, Heng L Y, Ahmad M, et al. A cell-based potentiometric biosensorusing the fungus Lentinus sajor-caju for permethrin determination in treated wood[J].Talanta,2013,116(776-781.
    [55]Mulchandani A, Mulchandani P, Kaneva I, et al. Biosensor for directdetermination of organophosphate nerve agents using recombinant Escherichia coliwith surface-expressed organophosphorus hydrolase.1. Potentiometric microbialelectrode[J]. Analytical Chemistry,1998,70(19):4140-4145.
    [56]Giovanelli D, Lawrence N S, Jiang L, et al. Amperometric determination ofsulfide at a pre-oxidised nickel electrode in acidic media[J]. Analyst,2003,128(2):173-177.
    [57]Giovanelli D, Lawrence N S, Jiang L, et al. Electrochemical determination ofsulphide at nickel electrodes in alkaline media: a new electrochemical sensor[J].Sensors and Actuators, B: Chemical,2003,88(3):320-328.
    [58]Salimi A, Roushani M, Hallaj R. Micromolar determination of sulfur oxoanionsand sulfide at a renewable sol-gel carbon ceramic electrode modified with nickelpowder[J]. Electrochimica Acta,2006,51(10):1952-1959.
    [59]Lawrence N S, Deo R P, Wang J. Electrochemical determination of hydrogensulfide at carbon nanotube modified electrodes[J]. Analytica Chimica Acta,2004,517(1-2):131-137.
    [60]Paim L L, Stradiotto N R. Electrooxidation of sulfide by cobaltpentacyanonitrosylferrate film on glassy carbon electrode by cyclic voltammetry[J].Electrochimica Acta,2010,55(13):4144-4147.
    [61]Lawrence N S, Thompson M, Prado C, et al. Amperometric detection of sulfide ata boron doped diamond electrode: The electrocatalytic reaction of sulfide withferricyanide in aqueous solution[J]. Electroanalysis,2002,14(7-8):499-504.
    [62]Savizi I S P, Kariminia H-R, Ghadiri M, et al. Amperometric sulfide detectionusing Coprinus cinereus peroxidase immobilized on screen printed electrode in anenzyme inhibition based biosensor[J]. Biosensors&Bioelectronics,2012,35(1):297-301.
    [63]Dilgin Y, K z lkaya B, Ertek B, et al. Electrocatalytic oxidation of sulphide usinga pencil graphite electrode modified with hematoxylin[J]. Sensors and ActuatorsB-Chemical,2012,171–172(0):223-229.
    [64]Milby T H, Baselt R C. Hydrogen sulfide poisoning: Clarification of somecontroversial issues[J]. American Journal of Industrial Medicine,1999,35(2):192-195.
    [65]Coletta C, Papapetropoulos A, Erdelyi K, et al. Hydrogen sulfide and nitric oxideare mutually dependent in the regulation of angiogenesis and endothelium-dependentvasorelaxation[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2012,109(23):9161-9166.
    [66]d'Emmanuele di Villa Bianca R, Sorrentino R, Maffia P, et al. Hydrogen sulfideas a mediator of human corpus cavernosum smooth-muscle relaxation[J]. Proceedingsof the National Academy of Sciences of the United States of America,2009,106(11):4513-4518.
    [67]d'Emmanuele di Villa Bianca R, Sorrentino R, Mirone V, et al. Hydrogen sulfideand erectile function: a novel therapeutic target[J]. Nature Reviews Urology,2011,8(5):286-289.
    [68]Paul B D, Snyder S H. H2S signalling through protein sulfhydration andbeyond[J]. Nature Reviews Molecular Cell Biology,2012,13(8):499-507.
    [69]Kimura H, Shibuya N, Kimura Y. Hydrogen Sulfide Is a Signaling Molecule anda Cytoprotectant[J]. Antioxidants&Redox Signaling,2012,17(1):45-57.
    [70]Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenousneuromodulator[J]. Journal of Neuroscience,1996,16(3):1066-1071.
    [71]Nagai Y, Tsugane M, Oka J I, et al. Hydrogen sulfide induces calcium waves inastrocytes[J]. Faseb Journal,2004,18(1):557-559.
    [72]Peers C, Bauer C C, Boyle J P, et al. Modulation of Ion Channels by HydrogenSulfide[J]. Antioxidants&Redox Signaling,2012,17(1):95-105.
    [73]Kaneko Y, Kimura Y, Kimura H, et al. L-cysteine inhibits insulin release from thepancreatic beta-cell-Possible involvement of metabolic production of hydrogensulfide, a novel gasotransmitter[J]. Diabetes,2006,55(5):1391-1397.
    [74]Yang G. Hydrogen sulfide in cell survival: a double-edged sword[J]. Expert RevClin Pharmacol,2011,4(1):33-47.
    [75]Wallace J L. Hydrogen sulfide-releasing anti-inflammatory drugs[J]. Trends inPharmacological Sciences,2007,28(10):501-505.
    [76]Krishnan N, Fu C, Pappin D J, et al. H2S-Induced Sulfhydration of thePhosphatase PTP1B and Its Role in the Endoplasmic Reticulum Stress Response[J].Science Signaling,2011,4(203):1-13.
    [77]Solomon M, Belenghi B, Delledonne M, et al. The involvement of cysteineproteases and protease inhibitor genes in the regulation of programmed cell death inplants[J]. Plant Cell,1999,11(3):431-443.
    [78]Leroy C, Delbarre-Ladrat C, Ghillebaert F, et al. Effects of commercial enzymeson the adhesion of a marine biofilm-forming bacterium[J]. Biofouling,2008,24(1):11-22.
    [79]Lopez-Garcia B, Hernandez M, Segundo B S. Bromelain, a cysteine proteasefrom pineapple (Ananas comosus) stem, is an inhibitor of fungal plant pathogens[J].Letters in Applied Microbiology,2012,55(1):62-67.
    [80]Mueller C, Leithner K, Hauptstein S, et al. Preparation and characterization ofmucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug deliveryapplications[J]. J Nanopart Res,2013,15(1):1-13.
    [81]Guo Y, Wang Z, Qu W, et al. Colorimetric detection of mercury, lead and copperions simultaneously using protein-functionalized gold nanoparticles[J]. Biosensors&Bioelectronics,2011,26(10):4064-4069.
    [82]Mueller E G. Trafficking in persulfides: delivering sulfur in biosyntheticpathways[J]. Nature Chemical Biology,2006,2(4):185-194.
    [83]Francoleon N E, Carrington S J, Fukuto J M. The reaction of H2S with oxidizedthiols: Generation of persulfides and implications to H2S biology[J]. Archives ofBiochemistry and Biophysics,2011,516(2):146-153.
    [84]Bian W, Lou L-L, Yan B, et al. Immobilization of papain by carboxyl-modifiedSBA-15: Rechecking the carboxyl after excluding the contribution of H2SO4treatment[J]. Microporous and Mesoporous Materials,2011,143(2-3):341-347.
    [85]Bradford M M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding[J]. AnalyticalBiochemistry,1976,72(1-2):248-254.
    [86]Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate ofthe sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp[J].Microbiology-Sgm,2003,149(1699-1709.
    [87]Rao G S, Gorin G. Reaction of Cystine with Sodium Sulfide in SodiumHydroxide Solution[J]. Journal of Organic Chemistry,1959,24(6):749-753.
    [88]Benesch R E, Benesch R. The acid strength of the-SH group in cysteine andrelated compounds[J]. Journal of the American Chemical Society,1955,77(22):5877-5881.
    [89]Lawrence N S, Davis J, Compton R G. Analytical strategies for the detection ofsulfide: a review[J]. Talanta,2000,52(5):771-784.
    [90]Allen M J, Tung V C, Kaner R B. Honeycomb Carbon: A Review of Graphene[J].Chemical Reviews,2010,110(1):132-145.
    [91]Kang X H, Wang J, Wu H, et al. A graphene-based electrochemical sensor forsensitive detection of paracetamol[J]. Talanta,2010,81(3):754-759.
    [92]Du H J, Ye J S, Zhang J Q, et al. Graphene Nanosheets Modified Glassy CarbonElectrode as a Highly Sensitive and Selective Voltammetric Sensor for Rutin[J].Electroanalysis,2010,22(20):2399-2406.
    [93]Kim Y R, Bong S, Kang Y J, et al. Electrochemical detection of dopamine in thepresence of ascorbic acid using graphene modified electrodes[J]. Biosensors&Bioelectronics,2010,25(10):2366-2369.
    [94]Zhu M F, Zeng C Q, Ye J S. Graphene-Modified Carbon Fiber Microelectrode forthe Detection of Dopamine in Mice Hippocampus Tissue[J]. Electroanalysis,2011,23(4):907-914.
    [95]Wang Y, Wan Y, Zhang D. Reduced graphene sheets modified glassy carbonelectrode for electrocatalytic oxidation of hydrazine in alkaline media[J].Electrochemistry Communications,2010,12(2):187-190.
    [96]Huanshun Yin Y Z, Qiang Ma, Shiyun Ai, Peng Ju, Lusheng Zhu, Linan Lu.Electrochemical oxidation behavior of guanine and adenine on graphene-Nafioncomposite film modified glassy carbon electrode and the simultaneousdetermination[J]. Process Biochemistry,2010,45(1707-1712.
    [97]Zhou K F, Zhu Y H, Yang X L, et al. A novel hydrogen peroxide biosensor basedon Au-graphene-HRP-chitosan biocomposites[J]. Electrochimica Acta,2010,55(9):3055-3060.
    [98]Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. Journal of theAmerican Chemical Society,1958,80(6):1339-1339.
    [99]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphenenanosheets[J]. Nature Nanotechnology,2008,3(2):101-105.
    [100] Paredes J I, Villar-Rodil S, Solis-Fernandez P, et al. Atomic Force andScanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived fromGraphite Oxide[J]. Langmuir,2009,25(10):5957-5968.
    [101] Shen J F, Hu Y Z, Shi M, et al. Fast and Facile Preparation of GrapheneOxide and Reduced Graphene Oxide Nanoplatelets[J]. Chem Mater,2009,21(15):3514-3520.
    [102] Laviron E. Adsorption, Autoinhibition and Autocatalysis in Polarography andin Linear Potential Sweep Voltammetry[J]. J Electroanal Chem,1974,52(3):355-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700