V_2O_5/TiO_2催化剂中毒及新型抗中毒催化剂的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以NH3为还原剂的选择性催化还原(SCR)烟气脱硝技术是目前应用最广最有效的燃煤烟气脱硝技术。作为SCR烟气脱硝技术的核心,SCR催化剂是影响整个SCR系统脱硝效率和经济性的决定因素。而中毒是SCR催化剂在实际应用过程中不可避免的问题,它与燃料特性密切相关。我国火电厂燃用煤种类复杂、多样,内含多种会导致催化剂中毒失活的组份。因此,研究我国典型燃煤中各种组份对SCR催化剂的中毒规律具有重要的实际意义。
     本文工作的主要研究思路是以钒钛SCR催化剂为研究对象,研究我国火电厂燃煤中检测出的几种典型毒物单独存在对催化剂的中毒规律以及多种组份同时存在对催化剂的复合中毒规律,并在此基础上对钒钛SCR进行改良,得到一种具有良好抗中毒性能的新型催化剂。研究得到主要结果如下:
     1.研究了相同含量下K、Na、Ca、Pb的氧化物和盐对钒钛催化剂NO转化率的影响。无论是以氧化物形式还是以盐的形式存在催化剂上,碱金属K对钒钛催化剂的钝化作用都是最强。K2O和Na2O的掺入会抑制钒钛催化剂上V205的还原能力,而CaO和PbO的掺入对钒钛催化剂上V205的还原能力没有影响或影响较小。当K或Na以氯盐的形态存在于催化剂上时,其对钒钛催化剂的钝化作用比以硫酸盐的形态存在于催化剂上时强很多。K2SO4和Na2SO4的掺入造成钒钛催化剂NO转化率下降的程度接近,这是因为SO42-对催化剂的影响占据了主导作用。
     2.研究了K、Na、Ca、Pb的四种氧化物以及三种氯盐两两同时存在对钒钛催化剂复合中毒规律。在中毒元素总量一定的情况下,K、Na、Ca、Pb四种氧化物两两同时存在时,两种组份之间的相互作用会弱化单组份对催化剂的钝化,其中Ca的氧化物对弱化K、Na、Pb氧化物钝化催化剂的作用最大。Ca、Pb氧化物组合中毒后的催化剂,400℃以上可以达到与新鲜钒钛催化剂相同的活性。与氧化物复合中毒规律不同的是,KCl、NaCl、CaCl2三种氯盐单组份或是两种组份对催化剂的钝化程度取决于KCl掺入的含量,掺入KCl越多,催化剂失活越严重。
     3.研究了单独添加不同含量的Nb氧化物和单独添加不同含量的Sb氧化物对钒钛催化剂NO转化率和反应中N2O生成量的影响。结果表明添加Nb可有效提高催化剂的活性和高温(350℃以上)选择性,拓宽催化剂温度窗口。Nb/V最佳原子比为6,在此含量以下,催化剂的活性随着Nb含量的增加而提高,超过此含量,催化剂活性开始下降。Sb的添加能有效提高催化剂的低温(350℃以下)活性,拓展催化剂低温窗口。但是随着Sb含量的增加,活性提高不明显,反而会增加高温下(350℃以上)N2O的生成,降低了催化剂的选择性,综合NO转化率和选择性考虑,Sb/V最佳原子比为0.5。
     4.创新性研究了同时添加Sb和Nb氧化物对钒钛催化剂活性和选择性的影响。结果表明在钒钛催化剂上同时添加Sb和Nb可以大幅度提高催化剂脱硝活性,同时还能保证催化剂在高温下的选择性,通过少量Sb和Nb的同时添加达到大量Nb添加的效果,有利于催化剂的经济性。利用XPS手段分析表明Sb和Nb的添加增加了催化剂表面的化学吸附氧和弱结合的氧物种,这应该是催化剂活性提高的原因之一。
     5.研究了几种典型中毒物质对改良得到的V-Sb-Nb/TiO2催化剂脱硝活性的影响。比较V2O5/TiO2催化剂和V-Sb-Nb/TiO2催化剂中毒后的脱硝活性发现,V-Sb-Nb/TiO2催化剂中毒后活性下降幅度远低于V2O5/TiO2催化剂中毒后活性下降幅度,且V-Sb-Nb/TiO2催化剂中毒后的脱硝活性仍高于新鲜V2O5/TiO2催化剂脱硝活性,表明V-Sb-Nb/TiO2催化剂具有良好的抗金属氧化物及盐中毒的能力。
The selective catalytic reduction of NOx with NH3 as reductant is most efficient and widely technology for abating NOx emitted from stationary power stations at present. As the core of SCR technology, catalysts are the main factor affecting the NOx removal efficiency and economical efficiency of the whole SCR system. Poisoning is inevitable for SCR catalysts in the actual application process and relates with the fuel characteristics intimately. The burning coal in power plant of our country is complex and diverse, containing a variety of components which may lead to poisoning and deactivation of catalysts. Therefore, the study on the poisoning order of components containing in coal for SCR catalysts is important and meaningful.
     The key research point of the present work is taking V2O5/TiO2 SCR catalyst as research object, studying the single poisoning order as were as the compound poisoning order of some representative components detected in the burning coal of power plant in our country. The SCR catalyst was improved to be a novel catalyst with good resistance to poisoning. The main results are shown as following:
     1. The effect of K, Na, Ca, Pb oxides and salts on the NO conversion of V2O5/TiO2 catalyst was studied. The results show that potassium has the strongest poisoning effect on the catalysts among all four metals whatever in form of oxides or salts. K2O and Na2O may inhibit the reducing capability of V2O5 on the surface of V2O5/TiO2 catalyst, while CaO and PbO have little effect on the reducing capability of V2O5. The deactivation of V2O5/TiO2 catalyst by KCl and NaCl are much stronger than K2SO4and Na2SO4. The decreases of NO conversion for catalysts doped with K2SO4and Na2SO4 are approximate, which is according to the leading role of the effect of SO42- on catalysts.
     2. The compound poisoning order of K, Na, Ca, Pb oxides and chlorides on V2O5/TiO2 catalystwas investigated. When two kinds of oxides were doped on the catalysts simultaneously, the interaction between the two components will weaken the role of one component on catalyst deactivation, especially when CaO was doped. PbO has the same. The catalyst doped with CaO and PbO has the same activity as fresh V2O5/TiO2 catalyst above 400℃. Unlike the compound poisoning order of metal oxides, the deactivation level of catalysts by salts depends on the contents of KCl, higher KCl content leads stronger catalyst deactivation.
     3. The effect of the Sb and Nb additives on the V2O5/TiO2 catalyst for the selective catalytic reduction (SCR) of NO with NH3 was investigated. The experimental results show that Nb can improve the activity of V2O5/TiO2 catalyst. Higher Nb loading led to higher N2 selectivity at high temperature above 350℃. The optimal Nb loading is 6 (atomic ratio to V). Sb can improve the activity of V2O5/TiO2 catalyst at low below 350℃. Higher Sb loading cannot improve the activity but lead to more N2O generated from the reaction at high temperature above 350℃. As both of the catalyst activity and the value of N2 selectivity were considered, the optimal Sb loading is 0.5 (atomic ratio to V).
     4. The effect of simul-doping of Sb and Nb on the V2O5/TiO2 catalyst for the selective catalytic reduction (SCR) of NO with NH3 was investigated. The experimental results show that simul-doping of Sb and Nb can improve the activity of V2O5/TiO2 catalyst highly, while ensuring the N2 selectivity of the catalyst at high temperature above 350℃. The simul-doping of a bit of Sb and Nb can gain the same effectiveness as a lot of Nb was doped, which is conductive to the economical efficiency of catalyst. According to the means of XPS, the doping of Sb and Nb may increase the chemisorbed oxgen and weakly boned oxygen species on the surface of catalyst, which might be one of the reasons to improve the catalytic activity.
     5. The effect of some representative poisoning components on catalytic activity of V-Sb-Nb/TiO2 catalyst improved form V2O5/TiO2 catalyst was investigated. According to the comparison of V2O5/TiO2 catalyst and V-Sb-Nb/TiO2 catalyst, it can be seen that the decrease of catalytic activity for V-Sb-Nb/TiO2 catalyst doped with poisoning components is much lower than the decrease of catalytic activity for V2O5/TiO2 catalyst doped with poisoning components. The catalytic activity of V-Sb-Nb/TiO2 catalyst doped with poisoning components is still higher than the fresh V2O5/TiO2 catalyst. This means that the V-Sb-Nb/TiO2 catalyst has good anti-poisoning ability from metal oxides and salts.
引文
[1].中华人民共和国国家统计局.中国统计年鉴一2009[M].北京:中国统计出版社.2009.
    [2].郝吉明,田贺忠,中国氮氧化物排放现状、趋势及控制对策建议[A].2004中国国际脱硫脱硝技术与设备展览会暨技术研讨会论文集[C].2004.
    [3].段传和,夏怀详等,燃煤电站SCR烟气脱硝工程技术[M].北京:中国电力出版社:2009.
    [4].《火电厂大气污染排放标准》编制组,《火电厂大气污染排放标准》编制说明[M].2009.6.
    [5].《工业三废排放暂行标准》(GBJ 4-1973)[S].
    [6].《燃煤电厂大气污染物排放标准》(GB 13223-1992)[S].
    [7].《火电厂大气污染物排放标准》(GB 13223-1996)[S].
    [8].《火电厂大气污染物排放标准》(GB 13223-2003)[S].
    [9].岑可法,姚强,骆仲泱等,燃烧理论与污染控制[M].北京:机械工业出版社:2004.
    [10].Lietti, L.,Alemany, J. L.,Forzatti, P., etc., Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia[J]. Catalysis Today, May 31,1996,29 (1-4),pp 143-148.
    [11].Lietti, L., Reactivity of V2O5-WO3/TiO2 de-NOx catalysts by transient methods[J]. Applied Catalysis B-Environmental, Dec 3,1996,10 (4),pp 281-297.
    [12].Krocher, O.,Elsener, M., Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution-Ⅰ. Catalytic studies[J]. Applied Catalysis B-Environmental, Jan 10,2008,77 (3-4),pp 215-227.
    [13].Cohn, J. G.,Steele, D. R.,Andersen, H. C. US Patent 2975025[P],1961.
    [14].Janssen, F.,Meijer, R., Quality-Control of DeNOx Catalysts-Performance Testing, Surface-Analysis and Characterization of DeNOx Catalysts[J]. Catalysis Today, Mar 22,1993,16 (2),pp 157-185.
    [15].Beeckman, J. W.,Hegedus, L. L., Design of Monolith Catalysts for Power-Plant NOx Emission Control [J]. Industrial & Engineering Chemistry Research, May,1991,30 (5),pp 969-978.
    [16].张鹏,姚强,用于选择性催化还原法烟气脱硝的催化剂[J].煤炭转化,2005,28(2),pp18-24.
    [17]. Wang, Y. H.,Zhu, J. L.,Ma, R. Y., Macrodynamic study and catalytic reduction of NO by ammonia under mild conditions over Pt-La-Ce-O/Al2O3 catalysts[J]. Energy Conversion and Management, Jul,2007,48 (7),pp 1936-1942.
    [18].Gongshin, Q. S.,Yang, R. T.,Thompson, L. T., Catalytic reduction of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen by Pd supported on pillared clays[J]. Applied Catalysis a-General, Mar 15,2004,259 (2),pp 261-267.
    [19].Carja, G.,Kameshima, Y.,Okada, K., etc., Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3[J]. Applied Catalysis B-Environmental, Apr 24,2007,73 (1-2),pp 60-64.
    [20].Schwidder, M.,Grunert, W.,Bentrup, U., etc., Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content:Part II. Assessing the function of different Fe sites by spectroscopic in situ studies[J]. Journal of Catalysis, Apr 1,2006,239 (1),pp 173-186.
    [21].Richter, M.,Trunschke, A.,Bentrup, U., etc., Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts[J]. Journal of Catalysis, Feb 15,2002, 206(1),pp98-113.
    [22].Sjovall, H.,Olsson, L.,Fridell, E., etc., Selective catalytic reduction of NO, with NH3 over Cu-ZSM-5-The effect of changing the gas composition[J]. Applied Catalysis B-Environmental, May 2,2006,64 (3-4),pp 180-188.
    [23].Traa, Y.,Burger, B.,Weitkamp, J., Zeolite-based materials for the selective catalytic reduction of NO, with hydrocarbons[J]. Microporous and Mesoporous Materials, Aug,1999,30 (1),pp 3-41.
    [24].陈进生,火电厂烟气脱硝技术-选择性催化还原法[M].北京:中国电力出版社:2008.
    [25].Parvulescu, V. I.,Grange, P.,Delmon, B., Catalytic removal of NO[J]. Catalysis Today, Dec 18, 1998,46 (4),pp 233-316.
    [26].Nakajima, F.,Hamada, I., The state-of-the-art technology of NO, control[J]. Catalysis Today, May 31,1996,29(1-4),pp 109-115.
    [27].Shikada, T.,Fujimoto, K.,Kunugi, T., etc., Reduction of Nitric-Oxide with Ammonia on Vanadium-Oxide Catalysts Supported on Homogeneously Precipitated Silica-Titania[J]. Industrial & Engineering Chemistry Product Research and Development,1981,20 (1),pp 91-95.
    [28].Mussatti, D. C.,Srivastava, R.,Hemmer, P. M., et al. Section 4.2 Chaper 2:Selective catalytic reduction [M]. EPA/452/B-02-001.
    [29].Chen, J. P.,Yang, R. T., Mechanism of Poisoning of the V2O5/TiO2 Catalyst for the Reduction of NO by NH3[J]. Journal of Catalysis, Oct,1990,125 (2),pp 411-420.
    [30].Cichanowicz, J. E.,Broske, D. R. An assessment of European experience with selective catalytic reduction in Germany and Denmark[A]. Proceedings of the EPRI-DOE-EPA Air Pollution Control Symposium[C]. Atlanta, GA, Aug,16-20,1999.
    [31].Benson, S. A.,Laumb, J. D.,Crocker, C. R., etc., SCR catalyst performance in flue gases derived from subbituminous and lignite coals[J]. Fuel Processing Technology, Feb 25,2005,86 (5),pp 577-613.
    [32].Takagi, M.,Kawai, T.,Soma, M., etc., Mechanism of Reaction between NO, and NH3 on V2O5 in Presence of Oxygen[J]. Journal of Catalysis,1977,50 (3),pp 441-446.
    [33].Inomata, M.,Miyamoto, A.,Murakami, Y., Mechanism of the Reaction of NO and NH3 on Vanadium-Oxide Catalyst in the Presence of Oxygen under the Dilute Gas Condition[J]. Journal of Catalysis,1980,62(1),pp 140-148.
    [34].Ramis, G.,Yi, L.,Busca, G., Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study[J]. Catalysis Today, Sep 2,1996,28 (4),pp 373-380.
    [35].Topsoe, N. Y., Characterization of the Nature of Surface Sites on Vanadia Titania Catalysts by Ftir[J]. Journal of Catalysis, Apr,1991,128 (2),pp 499-511.
    [36].Topsoe, N. Y.,Topsoe, H.,Dumesic, J. A., Vanadia-Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia.1. Combined Temperature-Programmed in-Situ Ftir and Online Mass-Spectroscopy Studies[J]. Journal of Catalysis, Jan,1995,151 (1),pp 226-240.
    [37].Topsoe, N. Y.,Dumesic, J. A.,Topsoe, H., Vanadia-Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia.2. Studies of Active-Sites and Formulation of Catalytic Cycles[J]. Journal of Catalysis, Jan,1995,151 (1),pp 241-252.
    [38].Olthof, B.,Khodakov, A.,Bell, A. T., etc., Effects of support composition and pretreatment conditions on the structure of vanadia dispersed on SiO2, A12O3, TiO2, ZrO2, and HfO2[J]. Journal of Physical Chemistry B, Feb 24,2000,104 (7),pp 1516-1528.
    [39].Bauerle, G. L.,Wu, S. C.,Nobe, K., Parametric and Durability Studies of NOx Reduction with NH3 on V2O5 Catalysts[J]. Industrial & Engineering Chemistry Product Research and Development,1978,17 (2),pp 117-122.
    [40].Busca, G.,Lietti, L.,Ramis, G., etc., Chemical and mechanistic aspects of the selective catalytic reduction of NO* by ammonia over oxide catalysts:A review[J]. Applied Catalysis B-Environmental, Sep 21,1998,18 (1-2),pp 1-36.
    [41].Zhu, Z. P.,Liu, Z. Y.,Liu, S. J., etc., A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3 at low temperatures[J]. Applied Catalysis B-Environmental, Dec 6,1999, 23 (4),pp L229-L233.
    [42].Zhu, Z. P.,Liu, Z. Y.,Liu, S. J., etc., NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures[J]. Applied Catalysis B-Environmental, Apr 10,2000,26 (1),pp 25-35.
    [43].Zhu, Z. P.,Liu, Z. Y.,Liu, S. J., etc., Adsorption and reduction of NO over activated coke at low temperature[J]. Fuel, May,2000,79 (6),pp 651-658.
    [44].Zhu, Z. P.,Liu, Z. Y.,Niu, H. X., etc., Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J]. Journal of Catalysis, Jan 1,2001, 197 (1),pp 6-16.
    [45]. Amiridis, M. D.,Duevel, R. V.,Wachs, I. E., The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia[J]. Applied Catalysis B-Environmental, Feb 8,1999,20 (2),pp 111-122.
    [46].Yang, R. T.,Chen, J. P.,Kikkinides, E. S., etc., Pillared Clays as Superior Catalysts for Selective Catalytic Reduction of NO with NH3[J]. Industrial & Engineering Chemistry Research, Jun,1992,31 (6),pp 1440-1445.
    [47].Paganini, M. C.,DallAcqua, L.,Giamello, E., etc., An EPR study of the surface chemistry of the V2O5-WO3/TiO2 catalyst:Redox behaviour and state of V(Ⅳ)[J]. Journal of Catalysis, Mar, 1997,166 (2),pp 195-205.
    [48].Lietti, L.,Nova, I.,Forzatti, P., Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5-WO3 and V2O5-MoO3 catalysts[J]. Topics in Catalysis,2000,11 (1-4),pp 111-122.
    [49].Vikulov, K. A.,Andreini, A.,Poels, E. K., etc., Selective Catalytic Reduction of NO with NH3 over Nb2O5-Promoted V2O5/TiO2 Catalysts[J]. Catalysis Letters,1994,25 (1-2),pp 49-54.
    [50]. Ha, H. P.,Chung, S. H.,Oh, Y. J., Selective catalytic NOx reduction on Antimony promoted V2O5-Sb/TiO2 catalyst[J]. Rare Metals, Dec,2006,25 pp 84-88.
    [51].Phil, H. H.,Reddy, M. P.,Kumar, P. A., etc., SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Applied Catalysis B-Environmental, Feb 7, 2008,78 (3-4),pp 301-308.
    [52].Chen, L.,Li, J. H.,Ge, M. F., Promotional Effect of Ce-doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3[J]. Journal of Physical Chemistry C, Dec 17,2009,113 (50),pp 21177-21184.
    [53].Kamata, H.,Takahashi, K.,Odenbrand, C. U. I., The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst[J]. Journal of Molecular Catalysis a-Chemical, Mar 5,1999,139 (2-3),pp 189-198.
    [54].Zheng, Y. J.,Jensen, A. D.,Johnsson, J. E., Laboratory investigation of selective catalytic reduction catalysts:Deactivation by potassium compounds and catalyst regeneration[J]. Industrial & Engineering Chemistry Research, Feb 18,2004,43 (4),pp 941-947.
    [55].Due-Hansen, J.,Boghosian, S.,Kustov, A., etc., Vanadia-based SCR catalysts supported on tungstated and sulfated zirconia:Influence of doping with potassium[J]. Journal of Catalysis, Oct 25,2007,251 (2),pp 459-473.
    [56].Due-Hansen, J.,Kustov, A. L.,Christensen, C. H., etc., Impact of support and potassium-poisoning on the V2O5-WO3/ZrO2 catalyst performance in ammonia oxidation[J]. Catalysis Communications, Feb 15,2009,10 (6),pp 803-806.
    [57].Khodayari, R.,Odenbrand, C. U. I., Deactivating effects of lead on the selective catalytic reduction of nitric oxide with ammonia over a V2O5/WO3/TiO2 catalyst for waste incineration applications[J]. Industrial & Engineering Chemistry Research, Apr,1998,37 (4),pp 1196-1202.
    [58].Nicosia, D.,Czekaj, I.,Krocher, O., Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels lubrication oils and urea solution-Part Ⅱ. Characterization study of the effect of alkali and alkaline earth metals[J]. Applied Catalysis B-Environmental, Jan 10,2008,77 (3-4),pp 228-236.
    [59].姜烨,钛基SCR催化剂及其钾、铅中毒机理研究[D].杭州:浙江大学:2010.
    [60].Alemany, L. J.,Berti, F.,Busca, G., etc., Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts[J]. Applied Catalysis B-Environmental, Dec 3,1996,10 (4),pp 299-311.
    [61].唐修义,黄文辉,中国煤种微量元素[M].北京:商务印书社:2004.
    [62].Lisi, L.,Lasorella, G.,Malloggi, S., etc., Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Applied Catalysis B-Environmental, Jul 15,2004, 50 (4),pp 251-258.
    [63].Rigby, K.,Johnson, R.,Ronald Neufert, e. Catalyst Design Issue and Operating Experience: Coals with High Arsenic Concentrations and Coals from the Powder River Basin[A], In Proceedings of 2000 International Joint Power Generation Conference[C], Miami Beach, Florida, July 23-26,2000.
    [64].Zheng, Y. J.,Jensen, A. D.Johnsson, J. E., Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Applied Catalysis B-Environmental, Oct 3,2005, 60 (3-4),pp 253-264.
    [65].Lietti, L.,Forzatti, P.,Ramis, G., etc., Potassium Doping of Vanadia/Titania De-NO(X)Ing Catalysts-Surface Characterization and Reactivity Study [J]. Applied Catalysis B-Environmental, Dec 15,1993,3 (1),pp 13-35.
    [66].Moradi, F.,Brandin, J.,Sohrabi, M., etc., Deactivation of oxidation and SCR catalysts used in flue gas cleaning by exposure to aerosols of high-and low melting point salts, potassium salts and zinc chloride[J]. Applied Catalysis B-Environmental, Oct 31,2003,46 (1),pp 65-76.
    [67].Kling, A.,Andersson, C.,Myringer, A., etc., Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers: Influence of flue gas composition[J]. Applied Catalysis B-Environmental, Jan 15,2007,69 (3-4),pp 240-251.
    [68].Lange, F. C.,Schmelz, H.,Knozinger, H., Infrared-spectroscopic investigations of selective catalytic reduction catalysts poisoned with arsenic oxide[J]. Applied Catalysis B-Environmental, Apr 11,1996,8 (2),pp 245-265.
    [69].Gutberlet, H.,Schallert, B., Selective Catalytic Reduction of NOx from Coal Fired Power-Plants[J]. Catalysis Today, Mar 22,1993,16 (2),pp 207-236.
    [70].Pritchard, S.,Kaneko, S.,Kohei Suyama, e. a. OPTIMIZING SCR CATALYST DESIGN AND PERFORMANCE FOR COAL-FIRED BOILERS.[A], In EPA/EPRI 1995 Joint Symposium Stationary Combustion NOx Control.[C], May 16-19,1995.
    [71].Prins, W. L.,Nuninga, Z. L., Design and Experience with Catalytic Reactors for SCR-DeNOx[J]. Catalysis Today, Mar 22,1993,16 (2),pp 187-205.
    [72].Blanco, J.,Avila, P.,Barthelemy, C., etc., Influence of Phosphorus in Vanadium-Containing Catalysts for NOx Removal[J]. Applied Catalysis, Nov 1,1989,55 (1),pp 151-164.
    [73].Beck, J.,Muller, R.,Brandenstein, R., etc., The behaviour of phosphorus in flue gases from coal and secondary fuel co-combustion[J]. Fuel, Oct,2005,84 (14-15),pp 1911-1919.
    [74]. Beck, J.,Unterberger, E., The behaviour of phosphorus in the flue gas during the combustion of high-phosphate fuels[J]. Fuel, Jul-Aug,2006,85 (10-11),pp 1541-1549.
    [75].Beck, J.,Brandenstein, J.,Unterberger, S., etc., Effects of sewage sludge and meat and bone meal co-combustion on SCR catalysts[J]. Applied Catalysis B-Environmental, Apr 20,2004,49 (1),pp 15-25.
    [76].Topsoe, N. Y.,Slabiak, T.,Clausen, B. S., etc., Influence of Water on the Reactivity of Vanadia Titania for Catalytic Reduction of NOx[J]. Journal of Catalysis, Apr,1992,134 (2),pp 742-746.
    [77].Turco, M.,Lisi, L.,Pirone, R., etc., Effect of Water on the Kinetics of Nitric-Oxide Reduction over a High-Surface-Area V2O5/TiO2 Catalyst[J]. Applied Catalysis B-Environmental, Feb 1,1994, 3 (2-3),pp 133-149.
    [78].Chen, J. P.,Yang, R. T., Selective Catalytic Reduction of NO with NH3 on SO4(-2)/TiO2 Superacid Catalyst[J]. Journal of Catalysis, Jan,1993,139 (1),pp 277-288.
    [79].Liu, J.,Zhao, Z.,Wang, J. Q., etc., The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion[J]. Applied Catalysis B-Environmental, Oct 25,2008,84 (1-2),pp 185-195.
    [80].Reiche, M. A.,Ortelli, E.,Baiker, A., Vanadia grafted on TiO2-SiO2, TiO2 and SiO2 aerogels-Structural properties and catalytic behaviour in selective reduction of NO by NH3[J]. Applied Catalysis B-Environmental, Nov 1,1999,23 (2-3),pp 187-203.
    [81].Reiche, M. A.,Maciejewski, M.,Baiker, A., Characterization by temperature programmed reduction[J]. Catalysis Today, Mar 13,2000,56 (4),pp 347-355.
    [82].姜烨,高翔,杜学森,etc.,钾盐对V2O5/TiO2催化剂NH3选择性催化还原NO反应的影响[J]. 中国电机工程学报,Dec.15,2008,28(35),pp 21-26.
    [83].Choo, S. T.,Lee, Y. G.,Nam, I. S., etc., Characteristics of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3[J]. Applied Catalysis a-General, Aug 28,2000,200 (1-2),pp 177-188.
    [84].Zhao, H.,Bennici, S.,Shen, J., etc., The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42- catalysts[J]. Applied Catalysis a-General, Mar 15, 2009,356 (2),pp 121-128.
    [85].Mitadera, J.,Hinode, H., Catalytic reduction of nitric monoxide by ethene over Nb/TiO2 in the presence of excess oxygen[J]. Applied Catalysis B-Environmental, Dec 6,2002,39 (3),pp 205-210.
    [86].Shiba, K.,Hinode, H.,Wakihara, M., Catalytic reduction of nitric monoxide by ethene over Ag/TiO2 in the presence of excess oxygen[J]. Reaction Kinetics and Catalysis Letters, Jul,1998, 64 (2),pp 281-288.
    [87].Sazonova, N. N.,Tsykoza, L. T.,Simakov, A. V., etc., Relationship between Sulfur-Dioxide Oxidation and Selective Catalytic No Reduction by Ammonia on V2O5-TiO2 Catalysts Doped with WO3 and Nb2O5[J]. Reaction Kinetics and Catalysis Letters, Apr,1994,52 (1),pp 101-106.
    [88].Tanabe, K., Catalytic application of niobium compounds[J]. Catalysis Today, Feb 28,2003, 78(1-4),pp 65-77.
    [89].Passos, F. B.,Aranda, D. A. G.,Soares, R. R., etc., Effect of preparation method on the properties of Nb2O5 promoted platinum catalysts[J]. Catalysis Today, Aug 13,1998,43 (1-2),pp 3-9.
    [90].Nowak, I.,Ziolek, M., Niobium compounds:Preparation, characterization, and application in heterogeneous catalysis[J]. Chemical Reviews, Dec,1999,99 (12),pp 3603-3624.
    [91].Reddy, B. M.,Khan, A.,Yamada, Y., etc., Raman and X-ray photoelectron spectroscopy study of CeO2-ZrO2 and V205/Ce02-ZrO2 catalysts[J]. Langmuir, Apr 1,2003,19 (7),pp 3025-3030.
    [92].Reddy, B. M.,Rao, K. N.,Reddy, G. K., etc., Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole[J]. Journal of Molecular Catalysis a-Chemical, Jul 1,2006,253 (1-2),pp 44-51.
    [93].Wagner., C. D.,Riggs., W. M.,Davis., L. E., etc., Handbook of X-ray Photoelectron Spectroscopy [M]. In Perkin-Elmer Corporation, Eden Prairie,Minnesota,:1979.
    [94].Dupin, J. C.,Gonbeau, D.,Vinatier, P., etc., Systematic XPS studies of metal oxides, hydroxides and peroxides[J]. Physical Chemistry Chemical Physics,2000,2 (6),pp 1319-1324.
    [95].Hong, S.-H.,Hong, S.-J.,S.-C. Hong, e. a. Vanadium/Titania-based catalyst for removing nitrogen oxide at low temperature window, and process of removing nitrogen oxide using the same (No.WO2005/030389 Al) [P]. Korea Int. Patent,2005.
    [96]. Wang, Y. D.,Mu, Q. Y.,Wang, G. F., etc., Sensing characterization to NH3 of nanocrystalline Sb-doped SnO2 synthesized by a nonaqueous sol-gel route[J]. Sensors and Actuators B-Chemical, Mar 19,2010,145 (2),pp 847-853.
    [97].Montilla, F.,Morallon, E.,De Battisti, A., etc., Preparation and characterization of antimony-doped tin dioxide electrodes.3. XPS and SIMS characterization[J]. Journal of Physical Chemistry B, Oct 14,2004,108 (41),pp 15976-15981.
    [98].Eom, Y,Jeon, S. H.,Ngo, T. A., etc., Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catalysis Letters, Mar,2008,121 (3-4),pp 219-225.
    [99].Gao, X.,Jiang, Y.,Zhong, Y, etc., The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials, Feb 15,2010,174 (1-3),pp 734-739.
    [100].Guerrero-Perez, M. O.,Fierro, J. L. G.,Vicente, M. A., etc., Effect of Sb/V ratio and of Sb+V coverage on the molecular structure and activity of alumina-supported Sb-V-O catalysts for the ammoxidation of propane to acrylonitrile[J]. Journal of Catalysis, Mar 10,2002,206 (2),pp 339-348.
    [101].Pieck, C. L.,Banares, M. A.,Vicente, M. A., etc., Chemical structures of ZrO2-supported V-Sb oxides[J]. Chemistry of Materials, Apr,2001,13 (4),pp 1174-1180.
    [102].Kawai, H.,Hinode, H., Catalytic reduction of nitrogen monoxide with propene over Nb/TiO2 mixed mechanically with Mn2O3[J]. Reaction Kinetics and Catalysis Letters,2008,93 (1),pp 67-73.
    [103].Lewandowska, A. E.,Banares, M. A.,Ziolek, M., etc., Structural and reactive relevance of V+Nb coverage on alumina of V-Nb-O/Al2O3 catalytic systems[J]. Journal of Catalysis, Apr 1, 2008,255 (1),pp 94-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700