CO低温催化氧化Pd-Fe催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Pd-Fe催化剂为主要研究对象,1采用共沉淀法,优化制备条件后制得的Pd/Fe(OH)x催化剂;2采用共沉淀法,掺杂其他过渡金属,制得Pd-M/Fe(OH)x催化剂;3采用浸渍法和溶胶-凝胶法制备Pd-Fe-Ox/Al2O3催化剂。考察结果显示,载体Fe(OH)x的形成非常重要,它对Pd/Fe(OH)x-R催化剂活性的影响最大。利用共沉淀法掺杂Ce, La, Cu, Mn, Sn,形成Pd-M/Fe(OH)x-R催化剂(M=Ce, La, Cu, Mn, Sn),研究考察了稀土元素Ce,La和过渡元素Cu, Mn, Sn等掺杂之后对CO催化活性的影响。考察结果显示,Ce掺杂后性能最佳。
     本文使用共浸渍法和柠檬酸溶胶-凝胶法制备的Pd-Fe-Ox/Al2O3催化剂活性差异最大。为此对这两种催化剂进行BET,XRD,H2-TPR, XPS表征,发现制备方法会影响PdO颗粒尺寸,以及Pd与Fe之间的相互作用力,和Pd2+/Pd0不同比值,从而导致了CO催化氧化的不同活性。
     同时,我们还对sol-gel-Pd-Fe-Ox/Al2O3-R催化剂进行了不同Pd-Fe比的考察。从考察结果中发现,催化剂活性随着Fe含量的增加而增加,但是当Fe含量达到15%时,活性开始下降。通过对这一系列不同Pd-Fe比的sol-gel-Pd-Fe-Ox/Al2O3-R催化剂进行BET,XRD, H2-TPR表征后发现,Fe含量的增加,加强了Pd-Fe之间的相互作用力,增加了PdO的氧化性。
The Pd-M/Fe(OH)x (M=Ce, La, Cu, Mn, Sn) catalysts were prepared by co-precipitation menthod. The results reveal that the catalytic activity of Pd/Fe(OH)x catalyst is the best. Then Pd-Fe-Ox/Al2O3 catalysts were prepared by co-impregnation (co-Pd-Fe-Ox/Al2O3) and sol-gel method (sol-gel-Pd-Fe-Ox/Al2O3), and characterized by BET, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The temperatures of 100% conversion for CO oxidation (T100) over reduced co-Pd-Fe-Ox/Al2O3 and sol-gel-Pd-Fe-Ox/Al2O3 are 90 and 25℃for 1% CO/Air, respectively. XRD results indicate that the sol-gel method is favorable for the more highly dispersion of PdO particles compared with simultaneous wet impregnation method. H2-TPR results suggest that the interaction between Pd and Fe is existent over both sol-gel-Pd-Fe-Ox/Al2O3 and co-Pd-Fe-Ox/Al2O3 catalysts, and the interaction over former catalyst is stronger than that over latter catalyst. The XPS results show that the surface Pd species are the mixture of oxide and metal state for reduced sol-gel-Pd-Fe-Ox/Al2O3 and reduced co-Pd-Fe-Ox/Al2O3 catalysts, leading to the high activity for CO oxidation. Furthermore, the different Pd2+/Pd0 value accounts for the different activity of reduced and reduced co-Pd-Fe-Ox/Al2O3 catalysts.
     The influce of Fe content over sol-gel-Pd-Fe-Ox/Al2O3 catalysts for CO oxidation was also investigated in this paper. T100 over sol-gel-Pd-Fe-Ox/Al2O3 (Pd wt.%=1%, Fe wt.%=13.86%)catalyst is 25℃for 1% CO/Air. The characterized results indicate the introducing Fe would increase the interaction between Pd and Fe, and stabilize PdO species.
引文
[1]董国利.超细钛基催化剂的制备、反应与表征[D].中国科学院山西煤炭化学研究所博士论文.1998.
    [2]J.S. Lee, E.D. Park, B.J. Song. Process development for low temperature CO oxidation in the presence of water and halogen compounds. Catal. Today.1999,54(1):57-64
    [3]Z.P. Qu, M.J. Cheng, C. Shi, X.H. Bao. Low-temperature selective oxidation of CO in H2-rich gases over Ag/SiO2 catalysts. J. Mole. Catal. A:Chem.2005,239(2):22-31.
    [4]朱华青.铈钛氧化物负载钯催化剂上一氧化碳低温氧化[D].中国科学院山西煤炭化学研究所博士论文,2004.
    [5]N. Lopez, T. V. W. Janssens, B. S. Clausen. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal.2004,223(2):232-235.
    [6]M. Haruta, N. Yamada, T. Kobayashi. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J.Catal.1989,115(3): 301-309.
    [7]I. Andreeva, T. Tabakova, A. Andreev. Low-temperature water-gas shift reaction over Au/α-Fe2O3. J. Catal.1996,158(3):354-357.
    [8]Q. Fu, H. Saltsburg. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science,2003,301:935-945.
    [9]E. E. Stangland, K. B. Stavens, W. N. Delgass. Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide. J. Catal.2000,191(1):332-347.
    [10]C. Qi, M. Okumura, T. Akita, M. Haruta. Vapor-phase epoxidation of propyene using H2/O2 mixture over gold catalysts supported on non-porous and mesoporous titania-silica:effect of preparation conditions and pretreatments prior to reaction. Appl. Catal. A 2004,263(1-2):19-26.
    [11]A. Corma, P. Serna. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science,2006,313:332-334.
    [12]C. Milone, R. Ingoglia, L. Schipillitt, C. Crisafulli, G. Neri, S. Galvagno. Selective hydrogenation of α,β-unsaturated ketone to α,β-unsaturated alcohol on gold-supported iron oxide catalysts:Role of the supoort. J. Catal.2005,236(1):80-90.
    [13]V. I. Parvulescu, V. Parvulescu, U. Endruschat, G. Filoti, F. E. Wagner, C. Kubel, R. Richards. Characterization and catalytic-hydrogenation behavior of SiO2-embedded nanoscopic Pd, Au, and Pd-Au alloy colloids. Chem. Eur. J.2006,12(3):2343-2357.
    [14]C. Milone, R. Ingoglia,, M. L. Tropeano, G. Neri, S. Galvagno. First example of selective hydrogenation of unconstrained α,β-unsaturated ketone to a,(3-unsaturated alcohol by molecular hydrogen. Chem. Commun.2003(3-4),868-869.
    [15]G.K. Bethke, H. H. Kung. Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts. Appl. Catal. A.2000,194(1):43-53.
    [16]B. Nkosi, M.D. Adams, N.J. Coville, G.J. Hutchings. Hydrochlorination of acetylene using carbon-supported gold catalysts:A study of catalyst reactivation. J. Catal.1991, 128(1):378-386.
    [17]L. Prati, F. Porta. Oxidation of alcohol and sugars using Au/C catalysts:Part 1. Alcohols. Appl. Catal. A.2005,291(2):199-203.
    [18]M. Comotti, C.D. Pina, E. Falletta, M. Rossi. Is the biochemical rout always advantage to us? The case of glucose oxidation. J. Catal.2006,244(2):122-125.
    [19]D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2. Science.2006,311:362-365.
    [20]M.D. Hughes, Y.-J. Xu, P. Jenkins, P.I. McMorn, P. Landon, D.I. Enache, A.F. Carley, G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature. 2005,437(2):1132-1135.
    [21]T. Hayashi, K. Tanaka, M. Haruta. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal.1998,178(2): 566-575.
    [22]R.A. Sheldon, M.C.A. Van Vliet. In fine chemicals through heterogeneous catalysis. Wiley-VCH:Weinheim, Germany,2001:p 474.
    [23]S. Biella, L. Prati, M. Rossi. Selective oxidation of D-Glucose on gold catalyst. J. Catal. 2002,206(3):242-247.
    [24]M.C. Kung, R.J. Davis, H. H. Kung. Understanding Au-catalyzed low-temperature CO oxidation. J. Phys. Chem. C.2007,111(1):11767-11775.
    [25]D. Purdie,H. Bernhoff, B. Reihl. The electronic structure of Ag(110)c(4×4)C6o and Au(110)(6×5)C60. Surf. Sci.1996,364(1):279-286.
    [26]R.D. Waters, J.J. Weimer, J.E. Smith. An investigation of the activity of coprecipitated gold catalysts for methane oxidation. Catal. Lett.1995,30(3-4):181-188.
    [27]A. Baiker, M. Maciejewski, S. Tagliaferri, P. Hug. Carbon-monoxide oxidation over catalysts prepared by in-Situ activation of amorphous gold-silver-zirconium and gold-iron-zirconium alloys. J. Catal.1995,151(2):407-419
    [28]G. Y. Cha, G. Parravano. Surface reactivity of supported gold:I. oxygen transfer between CO and CO2. J. Catal.1970,18(2):200-211.
    [29]J.D. Grunwaldt, M. Maciejewski, B. Becker, S. Olav, P. Fabrizioli, A.Baiker. Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids. J. Catal.1999,181(1):223-232.
    [30]M. Comotti, W.C. Li, B. Spliethoff, F. Schiith. Support effect in high activity gold ctalysts for CO oxidation. J. Am. Chem. Soc.2006,128(1):917-924.
    [31]A. Wolf, F. Schuth. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal. A 2002,226(1):1-13.
    [32]G.J. Hutchings, M. Sideiqi, H. Rafiq, Burrows A., Kiely C. J.,Whyman R. J. High-activity Au/CuO-ZnO catalysts for the oxidation of carbon monoxide at ambient temperature. J. Chem. Soc., Faraday Trans.1997,93(1):187-188.
    [33]H.H. Kung, M.C. Kung, C.K. Costello. Supported Au catalysts for low-temperature CO oxidation. J. Catal.2003,216(1):425-432.
    [34]A.M. Venezia, G. Pantaleo, A. Longo, G. Di Carlo, M.P. Casaletto, F.L. Liotta, G. Deganello. Relationship between structure and CO oxidation activity of ceria-supported gold catalysts. J. Phys. Chem. B 2005,109(1):2821-2827.
    [35]R.D. Monte, J. Kaspar. On the role of oxygens storage in three-way catalysis. Top. Catal. 2004,28(1):47-57.
    [36]A. Laachir, V. Perrichone, S. Bernal, J.J. Calvaino, G.A. Cifredo. Study of the CO-CeO2 interaction in presence of highly dispersed rhodium. J. Mol. Catal.1994,89(1):391-396.
    [37]N. Hickey, P. Fornasiero, J. Kaspar, J.M. Gatica, S. Bernal. Effects of the nature of the reducing agent on the transient redox behavior of NM/Ce0.68Zr0.32O2 (NM=Pt, Pd, and Rh). J.Catal.2001,200(1),181-193.
    [38]D.A.H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota, M. Haruta. The relationship between the structure and activity of nanometer size gold when supported on Mg(OH)2. J. Catal.1998,177(2):1-10.
    [39]A. Knell, P. Barnickel, A. Baiker, A. Wokaum. CO oxidation over Au/ZrO2 catalysts: Activity, deactivation behavior, and reaction mechanism. J. Catal.1992,137(2):306-321.
    [40]M. Haruta Novel catalysis of gold deposited on metal oxides. Catal. Surveys Japan.1997, 1(2):61-73.
    [41]M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal.1993,144(2):175-192.
    [42]Buffat Ph., Borel J.P. Size effect on melting temperature of gold particles. Phys. Rev. A. 1976,13(2):2287-2298.
    [43]N.W. Cant, P.W. Fredrickson. Silver and gold catalyzed reactions of carbon monoxide with nitric oxide and with oxygen. J. Catal.1975,37(2):531-539.
    [44]G.C. Bond,L.R. Molloy, M.J. Fuller, G.C. Bond, F.C. Tompkins, P.B. Wells (eds). Proceedings of 6th International Congress on Catalysis 1976,1:356. Chemical Society, London,
    [45]M.Haruta. Size-and supported-dependency in the catalysis of gold. Catal. Today 1997, 36(2):153-166
    [46]G.Grunwaldt, A.Balker. Gold/titania interfaces and their role in carbon monoxide oxidation. J.Phys.Chem.B.1999,103(2):1002-101
    [47]A.C. Chen, P.H. Hindle. Platinum-based nanostructured materials:synthesis, properties, and applications. Chem. Rev.2000,10(2):143-181.
    [48]A. Siani, O.S. Alexeev, G. Lafaye, M.D. Amiridis. The effect of Fe on SiO2-supported Pt catalysts:Structure, chemisorptive, and catalytic properties. J. Catal.2009,266(2):26-38.
    [49]S.Y. Li, G. Liu, H.L. Lian, M.J. Jia, G.M. Zhao, D.Z. Jiang, W. X. Zhang. Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method. Catal. Comm.2008,9(2):1045-1049.
    [50]J.L. Margitfalvi, I. Borbath, M. Hegedus, E. Tfirst, S. Gobolos, K. Lazar. Low-temperature CO oxidation over new types of Sn-Pt/SiO2 catalysts. J. Catal. 2000,196(2):200-204.
    [51]T.Lopez, M.Moran, J. Navarrete, L. Herrera,et al. Synthesis and spectroscopic characterization of Pt and Pd silica supported catalysts. J. Non-Cryst. Solids.1992, 147/148(2):753-757.
    [52]T. Lopez, M. Asomoza, P. Bosch, et al. Spectroscopic characterization and catalytic properties of sol-gel Pd/SiO2 catalysts. J. Catal.1992,138 (2):463-473.
    [53]D.H. Kim, S.I. Woo, O. Yang. Effect of pH in a sol-gel synthesis on the physicochemical properties of Pd-alumina three-way catalyst. Appl. Catal. B.2000,26 (4): 285-289.
    [54]R.L. Augustine, S.T. O'Leary. Heterogeneous catalysis in organic chemistry. Part 101. Effect of the catalyst support on the regiochemistry of the heck arylation reaction. J.Mol.Catal.1995,95(3):277-285.
    [55]W.J. Shen, Y. Matsumura. Interaction between palladium and the support in Pd/CeO2 prepared by deposition-precipitation method and the catalytic activity for methanol decomposition. J. Mol. Catal. A.2000,154 (1-2):165-168.
    [56]G. Farkas, L. Hegedus, A. Tungler, et al. Effect of carbon support properties on enantioselective hydrogenation of isophorone over palladium catalysts modified with (-)-dihydroapovincaminic acid ethyl ester J. Mol. Catal A:Chem.2000,153 (1-2): 215-219.
    [57]M. Gurrath, T. Kuretzky, H.P. Boehm, et al. Palladium catalysts on activated carbon supports:Influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon.2000,38 (8):1241-1255.
    [58]J.P. Brunelle. Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl. Chem.1978,50 (9-10):1211-1229.
    [59]A.I. Boronium, E.M. Slavinskaya, I.G. Danilova, R.V. Gulyaev, Y.I. Amosov, P.A. Kuznetsov, I.A. Polukhina, S.V. Koscheev, V.I. Zaikovskii, A.S. Noskov. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catalysis Today 2009,144(2):201-211.
    [60]G.L. Dong, J.G. Wang, Y.B. Gao, S.Y. Chen. A novel catalyst for CO oxidation at low temperature. Catal. Lett.1999,58(2):37-41.
    [61]H.Q. Zhu, Z.F. Qin, W.J. Shan, W.J. Shen, J.G. Wang. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments. J. Catal.2005,233(2):41-50.
    [62]F.X. Liang, H.Q. Zhu, Z.F. Qin, G.F. Wang, J.G. Wang. Effects of CO2 on the stability of Pd/CeO2-TiO2 catalysts for low-temperature CO oxidation. Catal. Comm. 2009,10(2):737-740.
    [63]J.Y. Luo, M. Meng, J.S. Yao, X.G. Li, Y.Q. Zha, A.T. Wang, T.Y. Zhang. One-step synthesis of nanostructured Pd-doped mixed oxides MOx-CeO2 (M= Mn, Fe, Co, Ni, Cu) for efficient CO and C3H8 total oxidation. Appl. Catal. B:Environ.2009,87(2):92-103.
    [64]D. Ciuparu, A. Bensalem, L. Pfefferle. Pd-Ce interactions and adsorption properties of palladium:CO and NO TPD studies over Pd-Ce/Al2O3 catalysts. Appl. Catal. B:Environ. 2000,26(2):241-255.
    [65]L. Wang, Y.B. Zhou, Q.F. Liu, Y. Guo, G.Z. Lu. Effect of surface properties of activated carbon on CO oxidation over supported Wacker-type catalysts. Catal. Today.2010,153(2): 184-188.
    [66]A.J. Dyakonov. Abatement of CO from relatively simple and complex mixtures II. Oxidation on Pd-Cu/C catalysts. Appl. Catal. B:Environ.2003,45(2):257-267.
    [67]Y.X. Shen, G.Z. Lu, Y. Guo, Y.Q. Wang. A synthesis of high-efficiency Pd-Cu-Clx/Al2O3 catalysts for low temperature CO oxidation. Chem. Commun.,2010,46(2): 8433-8435.
    [68]K.I. Chol, M.A. Vannice. CO oxidation over Pd and Cu catalysts I. unreduced PdCl2 and CuCl2 dispersed on Alumina or Carbon. J. Catal.1991,127(2):465-488.
    [69]J.S. Lee, S.H. Choi, K.D. Kim. Supported PdCl2-CuCl2 catalysts for carbon monoxide oxidation II. XAFS characterization. Appl. Catal. B:Environ.1996,7(2):199-212.
    [70]E.G. Zhizhina, L.I. Kuznetsova., K.I. Moiseev. Influence of the nature of the oxidation agents on the mechanism of the oxidation of carbon monoxide in the presence of an aqua complex of palladium(II). Kinet. Katal.1985,26(2):404-409.
    [71]Y. Yamamoto, T. Matsuzaki, K. Ohdan. Structure and electronic state of PdCl2-CuCl2 catalysts supported on activated carbon. J. Catal.1996,161(1):577-586.
    [72]G.P. Osorio, F. Castillon, A. Simakov, H. Tiznado, F. Zaera, S. Fuentes. Effect of ceria-zirconia ratio on the interaction of CO with PdO/Al2O3-(Cex-Zr1-x)O2 catalysts prepared by sol-gel method. Appl. Catal. B:Environ.2007,69(1):219-225.
    [73]B.T. Qiao, L.Q. Liu, J. Zhang, Y.Q. Deng. Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations:From gold to palladium. J. Catal.2009,261(1):241-244.
    [74]L.Q. Liu, F.Zhou, L.G. Wang, X.J. Qi, F. Shi, Y.Q. Deng. Low-temperature CO oxidation over supported Pt, Pd catalysts:Particular role of FeOx support for oxygen supply during reactions. J. Catal.2010,274(1):1-10.
    [75]M.F. Garcia, A.M. Arias, A.I. Juez, A.B. Hungria, J.A. Amderson, J.C. Conesa, J. Soria. Behavior of bimetallic Pd-Cr/Al2O3 and Pd-Cr/(Ce,Zr)Ox/Al2O3 catalysts for CO and NO elimination. J. Catal.2003,214(1):220-233.
    [76]Y.S. Bi, L. Chen, G.X. Lu. Constructing surface active centres using Pd-Fe-O on zeolite for CO oxidation. J.Mol. Catal. A:Chemical.2007,266(1):173-179.
    [77]Y.B. Yu, T. Takei, H. Ohashi, H. He, X.L. Zhang, M. Haruta. Pretreatments of Co3O4 at moderate temperature for CO oxidation at-80 ℃. J.Catal.2009,267(1):121-128.
    [78]X.W. Xie, Y. Li, Z.Q. Liu, M. Haruta, WJ. Shen. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature.2009,458:746-749.
    [79]V. Iablokov, K. Frey, O. Geszti, N. Kruse. High Catalytic Activity in CO Oxidation over MnOx Nanocrystals. Catal. Lett.2010,134(1):210-216.
    [80]H.Y. Lin, Y.W. Chen, WJ. Wang. Preparation of nanosized iron oxide and its application in low temperature CO oxidation. Journal of Nanoparticle Research.2005,7(1):249-263.
    [81]C.L. Gu, J. Miao, Y. Liu, Y.Q. Wang. Hierarchical meso-macroporous titania-supported CuO nanocatalysts:preparation, characterization and catalytic CO oxidation. J. mater. Sci. 2009,44(2):6717-6726.
    [82]J.L. Cao, Q.F. Deng, Z.Y Yuan. Mesoporous Ce0.8Zr0.2O2 solid solutions-supported CuO nanocatalysts for CO oxidation:a comparative study of preparation methods. J. mater. Sci. 2009,44(2):6663-6669.
    [83]Y. Liu, C. Wen, Y. Guo, G.Z. Lu, Y.Q. Wang. Effects of surface area and oxygen vacanicies on ceria in CO oxidation:Differences and relationshipls. J. Mole. catal. A: Chemical 2010,316(2):59-64.
    [84]B.T. Qiao, Y.Q. Deng. Effective Au-Au+-Clx/Fe(OH)y catalysts containing Cl" for selective CO oxidations at lower temperatures. Appl. Catal. B:Environ.2006,66(2): 241-248.
    [85]B. Schumacher, V. Plazak, M. Kinne and R.J. Behm. Highly active Au/TiO2 catalysts for low-temperature CO oxidation:preparation, conditioning and stability. Catal. Lett.2003, 89(1-2):109-114.
    [86]B.H. Yue, R.X. Zhou, X.M. Zheng, W.C. Lu. Promotional effect of Ca on the Pd/Ce-Zr/Al2O3 catalyst for low-temperature catalytic combustion of methane. Fuel Process. Technol.2008,89(2):728-735.
    [87]J. Guzman, B.C. Gates. Ctalysis by supported gold:correlation between catalytic activity for CO oxidaton and oxidation states of gold. J. Am. Chem. Soc.2004,126(2): 2672-2673.
    [88]A. Szegedi, M. Hegedus, J.L. Margitfalvi, I. Kiricsi. Low temperature CO oxidation over iron-containing MCM-41 catalysts. Chem. Commun.2005,11(2):1441-1443.
    [89]N.S. Babu, N. Lingaiah, J.V. Kumar, P.S. Sai Prasad. Studies on alumina supported Pd-Fe bimetallic catalysts prepared by deposition-precipitation method for hydrodechlorination of chlorobenzene. Appl. Catal. A 2009,367(2):70-76.
    [90]F.J. Berry, C.H. X., S. Jobson. Titania-supported iron-ruthenium and iron-iridium catalysts. J. Chem. Soc., Faraday Trans.1990,86(2):165-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700