Cu-SAPO-34/堇青石整体式催化剂用于柴油机尾气净化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源危机的加剧,动力性更强、经济性更好的柴油车和贫燃汽油车的使用量大大增加。在燃烧过程中加入过量空气,既提高了燃油的经济性,同时也显著降低了碳氢化合物(HC)和CO的排放量。但在富氧条件下,利用常规的三效催化剂很难有效地脱除NOx。因此,如何在贫燃条件下催化净化NOx已成为当前必须面对的问题。
     选择性催化还原NOx的反应中,要求催化剂不仅具有热稳定性好、使用寿命长的特点,而且需要再含有大量水分的湿热气氛中依然可保持良好的催化活性。催化剂的载体性能对催化剂的活性和使用寿命影响较大。汽车发动机的实际工况要求车用催化剂的载体必须满足,排气阻力小、升温快、耐高温、低热膨胀系数、高机械强度、质量轻、安装方便等条件。
     基于此,本文选择堇青石为催化剂载体,以氧化铜为铜源,采用一步水热合成法制备了Cu-SAPO-34/堇青石整体式催化剂。采用XRD、SEM、TG-DTG、ICP、XPS等手段对催化剂进行了表征,模拟实际柴油车和贫燃汽油车尾气的操作条件,分别以丙烷和氨气作为还原剂,评价了整体式催化剂的脱硝(deNOx)性能。通过实验研究得到以下几方面的结果:
     (1)一步水热合成法在合成分子筛时将硅源和杂原子源同时加入到合成体系中,使得杂原子可以进入到分子筛的骨架中,明显提高分子筛中杂原子的含量。一次合成的Cu-SAPO-34分子筛在堇青石载体上的负载量可达到22%左右。堇青石蜂窝陶瓷载体表面的Cu-SAPO-34分子筛与其结合具有一定的牢固度,超声波处理60min后,催化剂的损失率低于1%。
     (2)制备的整体式催化剂对柴油机车尾气表现出较高C3H8-SCR的脱硝活性。适当增加C3H8浓度、降低O2浓度或空速都有利于NOx-SCR活性的提高。在原料气中添加10%的水蒸气后,NOx转化率降低,加水停止后,催化剂活性可部分恢复。在NH3-SCR中,活性组分铜的添加对催化剂的催化活性有明显的促进作用。空速的降低有利于NOx-SCR活性的提高,但其对催化剂的活性影响并不明显。向原料气中添加大量的水蒸气,在一定程度上抑制了催化剂的活性,但若同时存在少量的SO2气体,则在一定程度上促进了催化剂活性的提高。
     (3)催化剂经过热处理之后,其晶体结构和表面性质基本没有发生变化。在550℃下,经过25小时的实验,催化剂仍然能够保持较高的催化活性和水热稳定性,整个反应时间内NOx的转化率都保持在80%以上
As global energy crisis intensifying, the amounts of vehicles with stronger motive power and better economic performance increase gradually. The addition of excess O2 not only improve the efficiency of fuel but also significantly reduce the emissions of HC and CO. But NOx, which is the main environmental pollutant, is purified difficultly by the conventional three-way catalysts in the rich oxygen conditions. Recently, the catalytic conversion of NO in the presence of excess O2 has been intensively studied to decrease the NOX in the exhaust gas from diesel engines and lean-burn facilities.
     The catalyst for NOX-SCR needs to meet the demands of resist-thermal and long-life but also exhibits high activity for the selective reduction of NO under an atmosphere containing water vapor and rich O2. Catalyst carrier properties have the great effect on catalyst activity and service-life. Due to the influence of actual conditions of engine, vehicle exhaust catalyst carrier must have the traits of small resistance, warming faster, high temperature resistance, high mechanical strength, light quality, convenient installation, and et al.
     Based on these, the cordierite monoliths were used as the catalyst carriers, CuO was used as the copper source and Cu-SAPO-34/cordierite samples were synthesized via one-step hydrothermal procedure. The samples were characterized by XRD, SEM, TG-DTG, ICP, XPS techniques. The performance of Cu-SAPO-34/cordierite monolithic catalysts for removal NO in simulated diesel-engine exhaust conditions was explored using propane and ammonia as the reducing agent, respectively. The main results and conclusion obtained from experiments and studies were given as follow:
     (1) The method of one-step hydrothermal procedure can make the metal active components directly synthesize on the molecular sieve and obviously increasing the content of miscellaneous atoms of molecular sieve. The loading amount is more than 22% after one synthesis operation. The Cu-SAPO-34 coatings obtained by the in situ synthesis are firm and compact. The loss of the catalysts is lower than 1% after ultrasonic treatment.
     (2) For the C3H8-SCR process, Cu- SAPO-34/cordierite catalyst shows a high conversion of NO. NO conversion decreases with the increase of space velocity and the decrease of concentration of O2. The NOx conversion decreases after the addition of 10% water vapor to the feed gas but the deactivation caused by water vapor is not permanent. For the NH3-SCR process, the active Cu component prepared through in situ synthesis can significantly improve the activity of selective catalytic reduction. The conversion of NO is decreased slightly with the increase of space velocity. The H2O in the feed gas decreases the NO conversion and the coexistence of SO2 and H2O have the slight promoting influence on the NO reduction activity.
     (3) The aging experiments clearly show that almost no changes of the characteristic diffraction peaks can be recognized in XRD patterns of catalysts before and after the heat treatment. Cu-SAPO-34/cordierite shows the good thermal and chemical stability. The conversion of NOX is more than 80% in the entire experimental periods.
引文
[1]范秀英,张微,韩圣惠.我国汽车尾气污染状况及控制对策分析[J].环境科学,1999,20(5):51-53.
    [2]J. Kaspar, P. Fornasiero, M. Graziani. Use of CeO2-based oxides in the three-way catalysis [J]. Catalysis Today,1999,50(2):285-298.
    [3]马振兴.洁净燃烧工程[M].济南:山东工业大学电子出版社,1999:18-20.
    [4]何邦全,姚春德,刘曾勇.柴油机NOx排放控制与废气再循环技术[J].小型内燃机,2000,29(1):22-26.
    [5]H. Bosch, F. Jansson. Catalytic reduction of nitrogen oxides-A review on the fundamentals and technology [J]. Catal. Today,1988,2:369-379.
    [6]K. C. Taylor. Nitric oxide catalysis in automotive exhaust systems [J]. Catal. Rev. Sci. Eng.,1993,35:457-481.
    [7]J. N. Armor. Environmental catalysis [J]. Appl. Catal. B,1992,1:221-256.
    [8]G. L. Manney, L. Froidevaux, J. W. Waters, et al. Chemical depletion of ozone in the arctic lower stratosphere during winter 1992-1993 [J]. Nature,1994,20:429-434.
    [9]李英实,陈宏德.负载型汽车尾气催化剂简介[M].环境科学进展,1999,7(3):52-61.
    [10]李勤.现代内燃机排气污染物的测量与控制[M].北京:机械工业出版社,1998.
    [11]H. H. Mi, W. J. Lee, C. B. Chen, etc. Effect of fuel aromatic content on PAH emission from a heavy-duty diesel engine [J]. Chemosphere,2000,41(11):1783-1790.
    [12]N. Macleod, R.M. Lambert. Lean NOx reduction with CO+H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts [J]. Applied Catalysis B:Environmental,2002,35:269-279.
    [13]R. Burch, M.D. Coleman. An investigation of the NO/H2/O2 reaction on noble-metal catalysts at low temperatures under lean-burn conditions [J]. Applied Catalysis B: Environmental,1999,23:115-121.
    [14]J.M. Garcia-Cortes, J. Perez-Ramirez, M. J. Illan-Gomez, etc. Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propone [J]. Applied Catalysis B:Environmental,2001,30:399-408.
    [15]G. Ramis, M. A Larrubia. An FT-IR study of adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts [J]. Journal of Molecular Catalysis A: Chemical,2004,215:161-167.
    [16]M. Kantcheva. Stability and reactivity of NOx species adsorbed on titania-supported manganese catalysts [J]. Journal of Catalysis,2001,204:479-494.
    [17]Y. Teraoka, H. Nii, S. Kagawa, etc. Influence of the simultaneous substitution of Cu and Ru in the perovskit-type (La, Sr) MO3 (M=Al, Mn, Fe, Co) on the catalytic activity for CO oxidation and CO-NO reactions [J]. Applied Catalysis:General,2000,194-195(1): 35-41.
    [18]M. Misono, Y. Hirao, C. Yokoyama. Reduction of nitrogen oxide with hydrocarbons catalyzed by bifunctional catalysts [J]. Catalysis Today,1997,38:157-162.
    [19]B. M. Lok, C. A. Messina, R. L. Patton. Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids [J] Chem. Soc.,1984,106: 6092-6093.
    [20]王爱琴,梁东白,徐长海等.堇青石蜂窝陶瓷载体上ZSM-5及Anacime沸石的原位合成[J].催化学报,2000,21(1):19-52.
    [21]李永生,王金渠,鲍钟英等.在载体上引入晶种合成ZSM-5沸石膜.石油学报[J]2000,16(5):31-35.
    [22]T. Ishihara, M. Kagawa, F. Hadama etc. Copper ion-Exchanged SAPO-34 as a Thermostable Catalyst for Selective Reduction of NO with C3H6 [J]. Journal of Catalysis, 1997,169(1):93-102.
    [23]许洪军,曹会智,刘伍权等.柴油机尾气氮氧化物的机外净化技术研究(二)[J].内燃机,2005,01:38-40.
    [24]张雄福,王金渠,殷德宏等.喷涂晶种法ZSM-5沸石膜的合成及影响因素考察[J].催化学报,2000,21(5):1-4.
    [25]EPA. Health assessment document for diesel emissions. Review draft [N]. EPA, USA, 1998.
    [26]倪计民.汽车内燃机原理[M].上海:同济大学出版社,1999.
    [27]李英实,陈宏德.负载型汽车尾气催化剂简介[M].环境科学进展,1999,7(3):52-61.
    [28]W. Held, A. Koenig, T. Richter. Catalytic NOx reduction in net oxidizing exhaust gas [R]. Society of Automotive Engineers Technical Paper Series 900496, Warrandale PA,1990.
    [29]N. Takahashi, H. Shinjoh, T. Iijima, etc. The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst [J]. Catalysis Today,1996,27(1-2): 63-69.
    [30]李党.Fe-Mo/ZSM-5催化剂上NOx的催化还原及表面性能研究[D].太原,太原理工大学,2006.
    [31]王桂茹主编.催化剂与催化作用[M].大连:大连理工大学出版社,2008.
    [32]B. Stefan, H. Thomas. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5-WO3/TIO2 catalyst [J]. Applied Catalysis Environment, 2000,28(2):101-111.
    [33]A. Amirnazmi, J. E. Benson, M. Boudart. Oxygen inhibition in the decomposition of NO on metaioxides and platinum [J]. J. Catal.,1973,30:55-56.
    [34]孙济美.天然气和液化石油气汽车[M].北京:北京理工大学出版社,1999.
    [35]A. Amirnazmi, M. Boudart. Decomposition of nitric oxides on platinum [J]. J. Catal., 1975,39:383-394.
    [36]S. Pancharatnum, K. J. Lim, D. M. Mason. The decomposition of nitric oxide on a heated platinum wire [J]. Chem. Eng. Sci.,1975,30:781-787.
    [37]陈艳林,严海标.多孔陶瓷的制备和性能研究[J].陶瓷,2005,3:13-15.
    [38]赵阳,郑亚峰,辛峰.整体式催化剂性能及应用的研究进展[J].化学反应工程与工艺,2004,20(4):357-342.
    [39]P. W. Bachman, G. B. Taylor. Decomposition of nitric oxide by platinum at temperatures and its retardation by oxygen [J]. J. Phys. Chem.,1929,33:447-455.
    [40]唐晓龙,郝吉明,徐文国等.新型MnOx催化剂用于低温NH3选择性催化还原NOx[J].催化学报,2006,10:843-848.
    [41]国家环保总局,机动车排放污染防治技术政策.环境保护[J].1999,10:6.
    [42]A. Ogata, A. Obuchi, K. Mizuno, O. Ohi, H. Ohuchi. Environment effect of Mg2+ion on direct nitric oxide decomposition over supported platinum catalyst [J]. Appl. Catal.,1990, 65:L11-L15.
    [43]A. Ogata, A. Obuchi, K. Mizuno, O. Ohi, H. Ohuchi. Active sites and redox properties of supported palladium catalysts [J]. J. Catal.,1993,144:452-459.
    [44]Lovallo M, Tsapatsis M, Tallo C, et al. Preparation of an asymmetric zeolite film [J]. Chemistry of Materials,1996,8(8):1579-1583.
    [45]Mintova S, Bein T, Lina L, et al. Nanosized AIPO4-5 molecular sieves and ultrathin films prepared by microwave synthesis [J]. Chemistry of Materials,1998,10:4030-4036.
    [46]Nishivama K, Uevama T, Masahiko L, et al. Synthesis of defect-free zeolite-alumina composite membranes by vapour-phase transport method [J]. Microporous Materials, 1996,7(6):299-308.
    [47]Palella B, Cadoni I, M. On the hydrothermal stability of CuAPSO-34 microporous catalysts for N2O decomposition: comparison with CuZSM-5 [J]. J Catal.2003,217: 100-106.
    [48]Wilson S T. Lok B M, Messina C A, Cannan T R, Flanigen E M. Aluminophosphate molecular sieves:a new class of microporous crystalline inorganic solids [J].J. Am. Chem. Soc.1982; 104:1146-7.
    [49]Frache A,, Palella B, Cadoni M, Pirone R. Catalytic DeNOx activity of cobalt and copper ions in microporous MeAlPO-34 and MeAPSO-34 [J]. Catal. Today,2002,75:359-65.
    [50]王伟,张浩等,堇青石质蜂窝陶瓷载体的表面改性[J].应用科技,2007,34:3.
    [51]B. I. Palella, M. Cadoni, On the hydrothermal stability of CuAPSO-34 microporous catalysts for N2O decomposition:a comparison with CuZSM-5 [J]. Journal of Catalysis, 2003,217:100-106.
    [52]M. Shelef. Selective catalytic reduction of NOx with N-free reductants [J]. Chem. Rev., 1995,95:209-225.
    [53]Gomzi. Experimental and theoretical study of NO decomposition in a catalytic monolith reactor [J].Chem.Eng. and Proc.2004,43:765.
    [54]Iglesia, R. Mallada, L. Preparation of zeolite films as catalytic coatings on microreactor channels [J]. Microporous and Mesoporous.Materials,2008,115:147.
    [55]王学勤,王祥生.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程[J].石油学报(石油加工),1994,10(2):38-43.
    [56]Xue B, Chen J, Guan N, Zhang F. Direct synthesis of zeolite coatings on cordierite supports by in situ hydrothermal method [J].Catal,2005,292:312-21.
    [57]Kang M. Effect of cobalt incorporated into the framework of SAPO-34 (CoAPSO-34s) on NO removal [J]. Journal of Molecular Catalysis A:Chemical, Volume 2000; 161 (1-2):115-23.
    [58]Lachman I M, Patil M D. Crystalling zeolite onto surface of monolithic ceramic substrate to obtain catalyst of industrial use [J]. US:4800187.1989-1-24.
    [59]陈树伟,闫晓亮,陈佳琪.柴油机四效催化转化器的研究[J].催化学报,2010,31: 1107.
    [60]S. Mintova, T. Bein. Nanosized AIPO4-5 molecular sieves and ultrathin films prepared by microwave synthesis [J]. Chemistry of Materials,1998,10,4030-4036.
    [61]武鹏,于青.贫燃条件下汽车尾气净化催化技术的发展与展望[J].催化学报,2010,31:912.
    [62]Guan N J, Zhang F X, Liu DX. Application of zeolite membranes, films and coatings [J]. Appl Catal A,2005,292:312.
    [63]Li L D, Chen J X, Zhang S J, Guan N J, Richter M, Eckelt R, Fricke R. Growth of oriented Silicalite-films in view of zeolite membrane preparation [J].Catal,2004,228: 12.
    [64]Liu Q Y, Liu Z Y, Su J H. The use of rapidly solidified ribbons in automotive exhaust gas catalyst substrate [J]. Catal Today,2010,158:370.
    [65]Mongkolsiri N, Praserthdam P, Silveston P L, Hudgins R R. Zeolites grown on wire gauze:a new structured catalyst packing for dustproof, low pressure drop deNOx processes [J]. Chem Eng Sci,2000,55:2249.
    [66]Amiridis M D, Zhang T J, Farrauto R J. Synthesis of defect-free zeolite-alumina composite membranes by vapour-phase transport method [J]. Appl Catal B,1996,10: 203.
    [67]Szailer T, Kwak J H, Kim D H, Hanson J C, Peden C H F, Szanyi J. Synthesis of films of oriented silicalite crystals using microwave heating [J]. J Catal,2006,239:51.
    [68]Quincoces C E, Kikot A, Basaldella E I, Gonzalez M.G. Effect of Hydrothermal Treatment on Cu-ZSM-5 Catalyst in the Selective Reduction of NO [J]. Ind. Eng. Chem. Res.1999,38(11):4236-40.
    [69]Gomez S A, Campero A, Martinez-Hernandez A, Fuentes G A. Changes in Cu2+ environment upon wet deactivation of Cu-ZSM-5 deNOx catalysts [J]. Appl. Catal.A, 2000,197(1):157-64.
    [70]Inui T, Kojo S, Masaki S, Yoshida T, Iwamoto S. NO decomposition on Cu-incorporated A-zeolites under the reaction condition of excess oxygen with a small amount of hydrocarbons [J]. Stud. Surf. Sci. Catal.,1991,69:355-64.
    [71]Balle P, Geiger B, Kureti S.Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhausts [J].Applied Catalysis B:Environmental,2009, 85(1-2):109-19.
    [72]Landong Li,Jixin Chen, Shujuan Zhang, Naijia Guan, Tianyou Wang, Shuliang Liu. Selective catalytic reduction of nitrogen oxides from exhaust of lean burn engine over in situ synthesized monolithic Cu-TS-1/cordierite [J]. Catalysis Today 2004,90:207-213.
    [73]M.A.Ulla, R.Mallada, J.Coronas, L.Gutierrez, E.Miro, J. Santamaria. Synthesis and characterization of ZSM-5 coatings onto cordierite honeycomb supports [J]. Applied Catalysis A:General,2003,253:257-269.
    [74]A. Bueno-Lopez, D. Lozano-Castello, I. Such-Basanez, J. M. Garcia-Cortes, M. J. Ulan-Gomez, C. Salinas-Martnez. Preparation of beta-coated cordierite honeycomb monoliths by in situ synthesis utilisation as Pt support for NOx abatement in diesel exhaust [J]. Applied Catalysis B:Environmental,2005,58:1-7.
    [75]Juan M. Zamaro, Maria A. Ulla, Eduardo E. Miro. Improvement in the catalytic performance of In-mordenite through preferential growth on metallic monoliths [J]. Applied Catalysis A:General,2006,308:161-171.
    [76]Aiqin Wang, Dongbai Liang, Changhai Xu, Xiaoying Sun, Tao Zhang. Catalytic reduction of NO over in situ synthesized Ir/ZSM-5 monoliths [J]. Applied Catalysis B: Environmental,2001,32:205-212.
    [77]L.D. Li, J.X. Chen, S.J. Zhang, etc. Selective catalytic reduction of nitrogen oxides from exhaust of lean burn engine over in situ synthesized monolithic Cu-TS-1/cordierite[J]. Catalysis Today,2004,90:207-213.
    [78]L.D. Li, B. Xue, J.X Chen, etc. Direct synthesis of zeolite coatings on cordierite supports by in situ hydrothermal method [J]. Applied Catalysis A:General,2005,292:312-321.
    [79]L.D. Li, F. X Zhang, N.J Guan, etc. Selective catalytic reduction of NO by propane in excess oxygen over IrCu-ZSM-5 catalyst [J]. Catalysis Communications,2007,8: 583-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700