MnOx、LaMnO_3和LaVO_4催化剂的制备及催化氧化氯苯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染问题的日益严峻,氯代芳烃及二恶英等高毒性有机污染物的排放控制和消除引起了学术界、工业界、政府和公众的普遍关注,因此通过低温催化氧化实现二恶英的零排放已成为各国科学家及工业界的追求目标。本论文以氯苯(注:实验室中二恶英替代物)为模型化合物,主要研究了MnOx/TiO2-CNTs、LaMnO3和LaVO4催化剂的制备及其对氯苯的催化氧化性能。
     研究了采用机械力化学(高能球磨)法制备的MnOx/TiO2-CNTs催化剂上氯苯的催化氧化性能。结果表明,该催化剂对氯苯有很好的催化氧化能力,在MnOx含量为20%时,300℃下对氯苯的催化氧化性能达到97.4%;同时,我们测试了空速和载体对MnOx/TiO2-CNTs催化剂的影响,以及催化剂在300℃下长期反应的稳定性。为了进一步提高催化剂在低温下对氯苯的催化氧化性能,我们对其进行了CeO2和V2O5掺杂,结果表明CeO2的加入提高了催化剂在低温下对氯苯的催化氧化性能,而V2O5加入使催化剂对氯苯的催化氧化性能降低。
     本文还研究了采用溶胶凝胶法制备的类钙钛矿型LaMnO3和LaVO4催化剂对氯苯的催化氧化性能。结果表明,在低温下LaMnO3催化剂对氯苯的催化氧化性能高于LaVO4催化剂,而当反应温度高于300℃时,LaVO4催化剂的活性高于LaMnO3。当用Sr部分取代La后形成的La0.8Sr0.2MnO3钙钛矿型催化剂,在低温下,对氯苯的转化率反而比LaMnO3催化剂低,而当反应温度在200℃以上时,La0.8Sr0.2MnO3催化剂的优越性能就体现出来了,温度越高La0.8Sr0.2MnO3催化剂的活性越好。当La0.8Sr0.2MnO3催化剂在300℃下活化12小时后,该催化剂在低温下对氯苯的转化率有了明显的提高。在反应温度为150℃时,La0.8Sr0.2MnO3催化剂对氯苯的催化氧化活性从67.9%提高到77.6%。此外,类钙钛矿型LaMnO3和LaVO4催化剂对氨有很好的催化氧化活性,在常压下,600℃对氨氧化成NOx的转化率分别为88%和95%。
The emission abatement of toxic chemicals, such as chlorinated aromatics and polychlorinated dioxins/furans (PCDD/F) has attracted much attention from academia, industry, government and public with the growing environmental crisis; and the zero emission of dioxins through catalytic oxidation of dioxin-like compounds at low temperatures is a useful strategy and becomes the ultimate goal for scietists and industry. In this thesis work, the catalytic oxidation of chlorobenzene (CB), a common substitute material of dioxins in laboratory, on MnOx/TiO2-CNTs, LaMnO3 and LaV04 catalysts has been investigated.
     Catalytic oxidation of CB was tested over MnOx/TiO2-CNTs catalysts prepared by mechanical-chemical (high-energy ball-milling). The results show that, all the samples showed high catalytic activity for CB oxidation; among them the catalyst with 20wt%MnOx was identified as the most active one with an efficiency to destruct 97.4%of CB at 300℃. Moreover, effects of space velocity, and TiO2/CNTs supports on their catalytic activity and stability were also studied. To further improve the catalytic oxidation of CB at low temperature, we doped the catalyst with CeO2 and V2O5. The results showed that the doping of CeO2 increased the catalytic oxidation of CB, while the doping of V2O5 decreased the catalytic property at low temperature.
     Catalytic oxidation of CB was also tested over perovskite-type LaMnO3 and LaVO4 catalysts prepared by sol-gel. The results showed that the LaMnO3 catalyst presented higher catalytic oxidation of CB than LaVO4 catalyst at low temperature. While the reaction temperature was higher than 300℃, LaVO4 showed higher catalytic oxidation of CB than LaMnO3 catalyst. When Sr partial substituted for La to form Lao.8Sr0.2Mn03 perovskite catalyst, the conversion rate of CB was lower than LaMnO3 catalyst at low temperatures. But, when the reaction temperature was above 200℃, exhibited superior performance on catalytic oxidation of CB. After catalyst was activated at 300℃for 12 hours, the conversion of CB had been significantly improved at low temperature. The efficiency of catalytic oxidation of CB increased from 67.9%to 77.6%at 150℃. In addition, both of LaMnO3 and LaVO4 showed good activity for catalytic oxidation of NH3 to NOx. The NOx conversion achieved 88% and 95% for LaMnO3 and LaVO4, respectively at 600℃.
引文
[1]G Mckay, Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration:review. Chem. Eng. J.,2002,86:343.
    [2]P Cole, D Trichopoulos, H Pastides, T Starr, J S Mandel, Dioxin and cancer:a critical review. Regulatory Toxicology and Pharmacology,2003,38:378.
    [3]蒋可,二恶英毒性及污染,中国环保产业,1999,10:21.
    [4]K Olie, P L Vermeulen, O Hutzinger, Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands, Chemosphere,1977,6:455.
    [5]K Tuppurainen, I Halonen, P Ruokoarvi, Formation of PCDDs and PCDFs in Municipal Waste Incineration and its Inhibition Mechanisms:a review. Chemosphere,1998,36:1493.
    [6]K Tuppurainen, P Ruokojarvi, J Ruuskanen, Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste(MSW) incineration and other combustion processes. Acc. Chem. Res.,2003,36:652.
    [7]王金成,熊力,张连玉,二恶英的毒性及危害,解放军医学高等专科学校学报,1999,27:65.
    [8]United States Environmental Protection Agency(USEPA), Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD)and Related Compounds. EPA/600/Bp-92/001c Estimation Exposure to Dioxin-like Compounds, EPA/600/6-88/005Cb,Office of Research and Development, Washington,DC,1994a.
    [9]H J Geyer, K W Schramm, E A Feicht, A Behechti, C Steinberg, R Bruggemann, H Poiger, B Henkelmann, A Kettrup, Half-lives of tetra-, penta-, hexa-, hepta-, and octachlorodibenzo-p--dioxin in rats, monkeys, and humans-a critical review. Chemosphere,2002,48:631.
    [10]United States Environmental Protection Agency (USEPA), National center for Environmental assessment.The inventory of sources and environmental releases of dioxin-like compoundds in the United States:The Year 2000 update. Washington, D C.
    [11]C Rappe, R Andersson, P A Bergqvist, C Brohede, M Hansson, L O Kjeller, G Lindstrom, S Marklund, M Nygen, S E Swanson, M Tysklind, K Wiberg, Overview on environmental fate of chlorinated dioxins and dibenzofurans-sources, levels and isoeric pattern in various matrices. Chemosphere,1987,16:1603.
    [12]L G Oberg, C Rappe, Biochemcial formation of PCDD/F from chlorophenols. Chemosphere, 1992,25:49.
    [13]Dow Chemicals, The Trace Chemistries of Fire-A source of and Routes for the Entry of chlorinated Dioxins into the Environment. The chlorinated Dioxin Task Force, Michigan Division, Dow Chemicals, USA,1978.
    [14]C Gaus, G J Brunskill, R Weber, O Papke, J F Muller, Historical PCDD inputs and their source implications from dated sediment cores in queens land (Australia). Environ. Sci. Technol.,2001,35:4597.
    [15]W V S B Ligon, R J Dorn, Chlorodibenzofuran and chlorodibenzo-p-dioxin levels in Chilean mummies dated about 2800 years before the present. Environ. Sci. Technol.,1989,23:1286.
    [16]E J Hoekstra, H de Weerd, E W B de Leer, U A T H Brinkman, Natural formation of chlorinated phenols, dibenzo-p-dioxins and dibenzo furans in soil of Douglas fir forest. Environ. Sci. Technol.,1999,33:2543.
    [17]K Everaert, J Baeyens, The formation and emission of dioxins in large scale thermal processes. Chemosphere,2002,46:439.
    [18]M K Cieplik, J P Carbonell, C Munoz, S Baker, S Kruger, P Liljelind, S Marklund, R Louw, On dioxin formation in iron ore sintering. Environ. Sci. Technol.,2003,37:3323.
    [19]J V Ryan, B K Gullett, On-road emission sampling of a heavy-duty diesel vehicle for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ. Sci. Technol., 2000,34:4483.
    [20]B R Stanmore, The formation of dioxins in combustion systems. Combustion and Flame, 2004,136:398.
    [21]H P Hagenmaier, M Kraft, H Brunner, R Haag, Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol.,1987,21:1080.
    [22]H Vogg, L Stieglitz, Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators. Chemosphere,1986,15:1373.
    [23]I E Fangmark, B van Bavel, S Marklund, B Stromberg, N Berge, C Rappe, Influence of combustion parameters on the formation of polychlorinated dibenzo-p-dioxins, dibenzofurans, benzenes, and biphenyls and polyaromatic hydrocarbons in a pilot incinerator. Environ. Sci. Technol.,1993,27:1602.
    [24]I E Fangmark, B Stromberg, N Berge, C Rappe, Influence of postcombustion temperature profiles on the formation of PCDDs, PCDFs, PCBzs, and PCBs in a pilot incinerator. Environ. Sci. Technol.,1994,28:624.
    [25]E Wikstrom, S Marklund, Secondary Formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes, and phenols during MSW combustion. Environ. Sci. Technol.,2000,34:604.
    [26]B R Stanmore. The formation of dioxins in combustion systems [J]. Combustion and Flame, 2004 (136):398.
    [27]周宏仓,仲兆平,金保升。城市固体废弃物焚烧过程中二恶英的生成和控制[J].洁净煤燃烧与发电技术,2002,4:15.
    [28]包向军,蔡九菊,罗光前.垃圾焚烧二恶英产生机理及控制对策[J].黄金学报,2001,4:318.
    [29]蒋斌,严桂英.垃圾焚烧中二恶英的生成及抑制机理[J].污染防治技术,2005,3:42.
    [30]周莉菊,赵由才.二恶英从头合成机理研究进展[J].工业安全与环保,2006,4:14.
    [31]沈伯雄,姚强.垃圾焚烧中二恶英的形成和控制[J].电站系统工程,2002,5:8.
    [32]马洪亭,张于峰PCDD/F从头合成的影响因素和抑制方法[J].化工进展,2006,5:557.
    [33]J W A Lustenhouwer, K Olie, O Hutzinger, Chlorinated dibenzo-p-dioxins and related compounds in incinerator effluents:a review of measurements and mechanisms of formation. Chemosphere,1980,9:501.
    [34]G G Choudhry, K Olie, O Hutzinger, Mechanisms in the thermal formation of chlorinated compounds including polychlorinated dibenzo-p-dioxins. Chlorinated Dioxins and related compounds., Pergamon Press. New York,1982,275.
    [35]M J Blumich, Hutzinger, M van der Berg, K Olie, Sources and fate of PCDDs and PCDFs:an overview. Chemosphere,1985,14:581.
    [36]L Stieglitz, G Zwick, J Beck, W Roth, H Vogg, On the de novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators. Chemosphere,1989,18:1219.
    [37]L Stieglitz, H Vogg, G Zwick, J Beck, H Bautz, On formation conditions of organohalogen compounds from particulate carbon of fly ash. Chemosphere,1991,20:1255.
    [38]H Ismo, T Kari, R Juhani, Formation of aromatic chlorinated compounds catalyzed by copper and iron. Chemosphere,1997,34:2649.
    [39]M Takaoka, A Shiono, K Nishimura, T Yamamoto, T Uruga, N Takeda, T Tanaka, K Oshita, T Matsumoto, H harada, Dynamic change of copper in fly ash during de Novo synthesis of dioxins. Environ. Sci. Technol.,2005,39:5878.
    [40]T Hatanaka, A Kitajima, M Takeuchi, Role of copper chloride in the foration of polychlorinated dibenzo-p-dioxins and dibenzofurans during incineration. Chemosphere, 2004,57:73.
    [41]S P Ryan, E R Altwicker, Understanding the role of iron chlorides in the de novo synthesis of polychlorinated dibenzo-p-dioxins/dibenzofurans. Environ. Sci. Technol.,2004,38:1708.
    [42]曹玉春,严建华,等.垃圾焚烧中二恶英生成机理的研究进展[J].热力发电,2005,9:16.
    [43]M Gordon. Dioxin characterization, formation and minimization during municipal solid waste incineration:review [J]. Chemical Engineering Journal,2002,86:343.
    [44]A Konduri, E Altwicker. Anslysis of time scales pertinent to dioxin/furan formation on fly ash surface in municipal solid waste incinerators [J]. Chemosphere,1994,28 (1):23.
    [45]曹青等.抑制焚烧衍生垃圾燃料过程中产生二恶英的途径[J].现代化工,2006,11:67.
    [46]F Asselriss, Optimization of combustion conditions to minimize dioxin emissions [J]. Waste manageres,1987,5 (3):311.
    [47]R T Yang, Adsorobents:Fundamentals and Applications, John Wiley&Sons,2010,25:87
    [48]H J Fell, M Tuczek, Removal of dioxins and furans from flue gases by non-flammable adsorbents in a fixed bed.Chemosphere,1998,37:2327.
    [49]X D Liu, Y Murayama, M Matsunaga, M Nomizu, N Nishi, Preparation and characterization of DNA hydrogel bead as selective adsorbent of dioxins. International Journal of Biological Macromolecules,2005,35:193.
    [50]K Everaert, J Baeyens, J Degreve, Entrained-Phase adsorption of PCDD/F from incinerator flue gases. Environ. Sci. Technol.,2003,37:1219.
    [51]H X Xi, Z Li, H B Zhang, X Li, X J Hu, Estimation of activation energy for desorption of low-volatility dioxins on zeolites by TPD technique. Separation and Purification Technology, 2003,31:41.
    [52]M Yates, J Blanco, P Avila, M P Martin, Honeycomb monoliths of activated carbons for effluent gas purification, Microp. Mesop Mater.,2000,37:201.
    [53]R T Yang, R Q Long, J Padin, A Takahashi, Adsorbents for dioxins:A new technique for sorbent screening for low-volatile organics. Ind. Eng. Chem. Res.,1999,38:2726.
    [54]R Q Long, R T Yang, Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc.,2001,123:2058.
    [55]R Jager, A M Schneider, P Behrens, B Henkelmann, K Schramm, D Lenoir, Selective Adsorption of polychlorinated dibenzo-p-dioxins and dibenzofurans by zeosils UTD-1, SSZ-24, and ITQ-4, Chem. Eur. J.,2004,10:247.
    [56]H Matzing, W Baumann, B Becker, K Jay, H Paur, H Sifert, Adsorption of PCDD/F on MWI fly ash, Chemosphere,2001,42:803.
    [57]K Everaert, J Baeyens, Catalytic combustion of volatile organic comounds. J. Hazard. Mater. B,2004,109:113.
    [58]P Papaefthimiou, T Ioannides, X E Verykios, Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts. Appl. Catal. B:Environ.,1997,13:175.
    [59]E M Cordi, J L Falconer, Oxidation of volatile organic compounds on Al2O3, Pd/Al2O3, and PdO/Al2O3 catalysts. J. Catal.,1996,162:104.
    [60]K Okumura, T Kobayashi, H Tanaka, M Niwa, Toluene combustion over palladium supported on various metal oxide supports. Appl. Catal. B:Environ.,2003,44:325.
    [61]L Becker, H Forster, Oxidative decomposition of chlorobenzene catalyzed by palladium-containing zeolite Y. J. Catal.,1997,170:200.
    [62]R W van den Brink, R Louw, P Mulder, Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/y-Al2O3 catalyst. Appl. Catal. B:Environ., 1998,16:219.
    [63]R W van den Brink, P Mulder, R Louw, Catalytic combustion of chlorobenzene onPt/y-Al2O3 in the presence of aliphatic hydrocarbons. Catal. Today,1999,54:101.
    [64]S Scire, S Minico, C Crisafulli, Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Appl. Catal. B:Environ.,2003,45:117.
    [65]M Okumura, T Akita, M Haruta, X Wang, O Kajikawa, O Okada, Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin. Appl. Catal. B:Environ.,2003,41:43.
    [66]P Subbanna, H Greene, F Desal, Catalytic oxidation of polychlorinated biphenyls in a monolithic reactor system. Environ. Sci. Technol.,1988,22:557.
    [67]P O Larsson, A Andersson, L R Wallenberg, B Svensson, Combustion of CO and toluene; characterization of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide. J. Catal.,1996,163:279.
    [68]S Krishnamoorthy, J A Rivas, M D Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J. Catal.,2000,193:264.
    [69]S D Yim, D J Koh, I S Nam, A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts. Catal. Today,2002,75:269.
    [70]A K Sinha, K Suzuki, Three-dimensional mesoporous chromium oxide:A highly efficient material for the elimination of volatile organic compounds. Angew. Chem. Int. Ed.,2005,44: 271.
    [71]H Rotter, M V Landau, M herskowitz, Combustion of chlorinated VOC on nanostructured chromia aerogel as catalyst and catalyst support. Environ. Sci. Technol.,2005,39:6845.
    [72]L Jin, M A Abraham, Low-temperature catalytic oxidation of 1,4-dichlorobenzene. Ind. Eng. Chem. Res.,1991,30:89.
    [73]S Krishnamoorthy, J P Baker, M D Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts. Catal. Today,1998,40:39.
    [74]S Krishnamoorthy, M D Amiridis, Kinetic and in situ FTIR studies of the catalytic oxidation of 1,2-dichlorobenzene over V2O5/Al2O3 catalysts. Catal. Today,1999,51:203.
    [75]S Krishnamoorthy, J A Rivas, M D Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J. Catal.,2000,193:264.
    [76]S Lomnicki, J Lichtenberger, Z T Xu, M Waters, J Kosman, M D Amiridis, Catalytic oxidation of 2,4,6-trichlorophenol over vanadia/titania-based catalysts. Appl. Catal. B: Environ.,2003,46:105.
    [77]J Lichtenberger, M D Amiridis, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J. Catal.,2004,223:296.
    [78]Y Liu, M F Luo, Z B Wei, Q Xin, P L Ying, C Li, Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl. Catal. B:Environ.,2001,29:61.
    [79]Y Liu, Z B Wei, Z C Feng, M F Luo, P L Ying, C Li, Oxidative destruction of chlorobenzene and o-dichlorobenzene on a highly active catalyst:MnOx/TiO2-Al2O3.J. Catal.,2001,202: 200.
    [80]G J Hutchings, C S Heneghan,I D Hudson, S H Taylor, Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature,1996,384:341.
    [81]S H Taylor, C S Heneghan, G J Hutchings, I D Hudson, The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catal. Today,2000,59:249.
    [82]A Trovarelli, C de Leitenburg, M Boaro, G Dolcetti, The utilization of ceria in industrial catalysis. Catal. Today,1999,50:353.
    [83]S Scire, S Minico, C Crisafulli, C Satriano, A Pistone, Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl. Catal. B:Environ.,2003,40:43.
    [84]D Andreeva, R Nedyalkova, L.Ilieva, M V Abrashev, Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation. Appl. Catal. A:Gen.,2003,246:29.
    [85]C H Wang, S S Lin, Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons. Appl. Catal. A:Gen.,2004,268:227.
    [86]S Carrettin, P Concepcion, A Corma, J M Lopez Nieto, V F Puntes, Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed.,2004,43:2538.
    [87]J Guzman, S Carrettin, A Corma, Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc.,2005,127:3286.
    [88]J Guzman, S Carrettin, J C Fierro-Gonzalez, Y L Hao, B C Gates, A Corma, CO oxidation catalyzed by supported gold:Cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew. Chem. Int. Ed., 2005,44:4778.
    [89]R W van den Brink, V de Jong, R Louw, P Maggi, P Mulder, Hydrogen-deuterium isotope effects in the reactions of chlorobenzene and benzene on Pt/y-A12O3 catalyst. Catal. Lett., 2001,71:15.
    [90]V de Jong, M K Cieplik, W A Reints, F Fernandez-Reino, R Louw, A Mechanistic study on the catalytic combustion of benzene and chlorobenzene. J. Catal.,2002,211:355.
    [91]S A Rowlands, K Halla, P G Mccormick, etal. Destruct ion o f toxic materials [J]. Nature, 1994,367(6460):223.
    [92]Y Tanaka, Q W Zhang, F Saito, et al. Dependence of mechanochemically induced decompo sition of monochlo robiphenyl on the occurrence of radicals [J]. Chemosphere,2005,60(7): 939.
    [93]Y Tanaka, Q W Zhang, F Saito. Mechano-chemical dechlorination of chlo rinated compounds [J]. Journal of Materials Science,2004,39(16/17):5497.
    [94]Y Tanaka, Q W Zhang, K Mizukami, et al. Decomposition of trichlorobenzene isomers by cogrinding whith CaO [J]. Bullet in of the Chemical Society of Japan,2003,76(10):1919.
    [95]Y Tanaka, Q W Zhang, F Saito. Mechano-chemical dechlorination of trichlorobenzene on oxide surfaces [J]. Journal of Physical Chemistry B,2003,107(40):11091.
    [96]H Mio, S Saeki, J Kano, et al. Estimation of mechano-chemical dechlorination rate of poly(viny 1 chloride) [J]. Environmental Science and Technology,2002,36(6):1344.
    [97]S Saeki, J Kano, F Saito, et al. Effect of additives on dechlorination of PVC by mechano-chemicaltr treatment [J]. Journal of Material Cycles and Waste Management,2001, 3(1):20.
    [98]P W Tongam, J Kano, Q W Zhang, et al. Simultaneous treatment of PVC and oyster shell wastes by mechano-chemical means [J]. Waste Management,2008,28(3):484.
    [99]Q W Zhang, H Matsumoto, F Saito, et al. Debrominat ion of hexabromo benzene by its co-grinding with CaO[J]. Chemosphere,2002,48(8):787.
    [100]Y Tanaka, Q W Zhang, F Saito, Mechano-chemical decomposition of an aromatic polyamide film [J]. Industrial and Engineering Chemistry Research,2003,42(21):5018.
    [101]V Birke, J Mattik, D Runne, et al. Dechlorination of recalcitrant polychlorinated contaminants using ball milling [C]. Ecological Risks Associated with the Destruction of Chemical Weapons. Luneburg, DE:Springer,2006:111.
    [102]E M Monagh, G Mulas, S Doppiu, et al. Reduction o f poly chlorinated dibenzodioxins and dibenzofurans in contaminated muds by mechanically induced combustion reactions[J]. Environmental Science and Technology,1999,33(14):2485.
    [103]Y Nomura, S Nakai, M Hosomi. Elucidation of degradation mechanism of dioxins during mechano-chemical treatment [J]. Environmental Science and Technology,2005,39(10): 3799.
    [104]李鹏,童志权,黄妍,等.新型CuMn/TiO2苯类催化燃烧催化剂的研制及活性实验[J].环境科学学报,2008,28(3):468.
    [105]Q Richard, T Long and Ralph, J Yang. Am. Chem. Soc.2001,123:2058
    [106]W Chen, L Duan, D O Zhu, Environ. Sci.Technol.2007,41:8295.
    [107]D Q Yang, B Hennequin, E Sacher. Chem. Mater.2006,18:5033.
    [108]W Tian, H S Yang, X Y Fan, X B Zhang, Catalysis Communication 2010,11:1185.
    [109]G Mckay, Dioxin characterisation, formation and minimisation during municipal solid waste(MSW) inceneration:review. Chem. Eng. J.,2002,86:343.
    [110]K Everaert, J Baeyens, The formation and emission of dioxins in large scale thermal processes. Chemosphere,2002,46:439.
    [111]R T Yang, R Q Long, J Padin, A Takahashi, Adsorbents for dioxins:A new technique for sorbent screening for low-volatile organics. Ind. Eng. Chem. Res.,1999,38:2726.
    [112]K Everaert, J Baeyens, Catalytic combustion of volatile organic comounds. Journal of Hazardous Materials B,2004,109:113.
    [113]M Okumura, T Akita, M Haruta, X Wang, O Kajikawa, O Okada, Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin. Appl. Catal. B:Environ.,2003,41:43.
    [114]A M Padilla, J Corlla J M Toledo, Total oxidation of some chlorinated hydrocarbons with commercial chromia based catalysts. Appl. Catal. B:Environ.,1999,22:107.
    [115]Y Liu, Z B Wei, Z C Feng, M F Luo, P L Ying, C Li, Oxidative destruction of chlorobenzene and o-dichlorobenzene on a highly active catalyst:MnOx/TiO2-Al2O3. J. Catal.,2001,202: 200.
    [116]R Weber, T Sakurai, H Hagenmaier, Low temperature decomposition of PCDD/PCDF, chlorobenzes and PAHs by TiO2-based V2O5-WO3 catalysts. Appl. Catal. B:Environ.,1999, 20:249.
    [117]J Lichtenberger, M D Amiridis, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J. Catal.,2004,223:296.
    [118]G K Boreskov, J R Anderson, M. Boudart(Eds.), Catalysis, Science and Technology, vol.3, Springer, Berlin,1982,39.
    [119]G B Hoflund, S D Gardner, D R Schryer, B T Upchurch, E J Kielin, Au/MnOx catalytic performance characteristics for low-temperature carbon monoxide oxidation, Appl. Catal. B6(1995) 117.
    [120]F Gaillard, P Artizzu, Y Brulle, M Primet, Catalytic combustion of methane:surface characterization of manganese-substituted barium hexa-aluminate catalysts, Surf. Interface Anal.1998,26:367.
    [121]M Baldi, V S Escribano, J M G. Amores, F Milella, G Busca, Characterization of manganese and iron oxides as combustion catalysts for propane and propene, Appl. Catal.1998, B 17: L175.
    [122]F Kaptejin, L Singoredjo, A Andreini, J A Moulijin, Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia, Appl. Catal.1994, B3:173.
    [123]A Wollner, F Lange, H Schmelz, H Knozinger, Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia, Appl. Catal.1993, A 94:181.
    [124]F Kapteijn, L Singoredjo, M Vandriel, A Andreini, J A Moulijn, G Ramis, G Busca, Alumina-supportedManganese oxide catalysts. II. Surface characterization and adsorption of ammonia and nitric oxide, J. Catal.1994,150:105.
    [125]L Casagrande, L Lietti, I Nova, P Forzatti, A Baiker, SCR of NO by NH3 over Ti02-supported V2O5-MoO3 catalysts:reactivity and redox behavior, Appl. Catal. B: Environ.,1999,63.
    [126]I Giakoumelou, C Foutzoula, C Kordulis, S Boghosian, Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3:in situ Raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2, J. Catal.2006,239:1.
    [127]L K Boudali, A Ghorbel, P Grange, SCR of NO by NH3 over V2O5 supported sulfated Ti-pillared clay:reactivity and reducibility of catalysts, Appl. Catal.2006, A 305:7.
    [128]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.145.
    [129]V Vu, J Belkouch, A Ould-Dris, B Taouk, Journal of Hazardous Materials 2009,169:758
    [130]A Wollner, F Lange, H Schmelz, H Knozinger. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Appl Catal A.1993,94:181.
    [131]F Kapteijn, L Singoredjo, A Andreini, Appl. Catal. B:Environ.1994,3:173.
    [132]F Arena, T Torre, C Raimondo, A Parmaliana, Phys. Chem. Chem. Phys.2001,3:1911.
    [133]J Carno, M Ferrandon, E Bjornbom, S Jaras, Appl. Catal. A:Gen.1997,155:265.
    [134]J Trawczyns, B Bielak, W Mis'ta, Appl. Catal. B:Environ.2004,55:277.
    [135]Y Liu, M Luo, Z Wei, Q Xin, P Yang, C Li, Appl. Catal. B:Environ.2001,29:61.
    [136]C Moreno-Castilla, F J Maldonado-Hodar, F Carraso-Marin, E Rodriguez-Castellon, Langmuir 2002,18:2295.
    [137]F Arena, G Trunfio, J Negro, B Fazio, L Spadaro, Chem. Mater.2007,19:2269.
    [138]S H Chang, J W Y H M Chein, L Y Hsu, K H Chi, M B Chang, Environ. Sci. Technol.2008, 42:5727.
    [139]Z B Wu, B Q Jiang, Y Liu, Applied Catalysis B:Environmental 2008,79:347.
    [140]X Tang, J Hao, W Xu, J Li, Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods, Catal. Commun.2007,8:329.
    [141]S Scire, S Minico, C Crisafulli, Appl. Catal. B:Environ.2003,45:117.
    [142]F Bertinchamps, M Treinen, P Eloy, A M Dos Santos, M M Mestdagh, E M Gaigneaux, Appl. Catal. B:Environ.2007,70:360.
    [143]Y Liu, Z B Wei, Z C Feng, M F Luo, P L Ying, C Li, J. Catal.2001,202:200.
    [144]E Finocchio, G Busca, M Notaro, Appl. Catal.,2006, B 62:12.
    [145]Y Liu, M Luo, Z Wei, Q Xin, P Yang, C Li, Appl. Catal. B:Environ.2001,29:61.
    [146]X Y Wang, Q Kang, D Li, Applied Catalysis B:Environmental,2009,86:166.
    [147]J Kaspar, P Fomasiero, M Graziani, Use of CeO-based oxides in the three-way Catalysis [J]. Catalysis Today,1999,50:113.
    [148]A Trovarelli, C Leitenburg, M Boaro, etal. The utilization of ceria in industrial catalysis [J]. Catalysisi Today,1999,50:353.
    [149]C Lamonier, A Ponchel, L D-Huysser, et al. Catal. Today,1999,50(2):247.
    [150]Y X Li, Y H Guo, Y Q Ji, L Wu, X B Hua. Acta Phys-Chim. Sin,2005,21 (5):468.
    [151]M Machide, M Uto, D Kurogi, et al. Chem. Mater.,2000,12(10):3158.
    [152]S Hamoudi, F Larachi, A Adnot, et al. J. Catal,1999,185(2):333.
    [153]C R Jung, J Han, S W Nam, et al. Catal. Today,2004,183:93.
    [154]K Y Otsuka, Y Wang, E Sunada, et al. J. Catal.,1998,175(2):152.
    [155]M Primet, M E Azhar, R Frety, et al. Appl. Catal.,1990,59(1):153.
    [156]J Cunningham, D Culinane, J Sanz, et al. J. Chem. Soc., Faraday Trans.,1992,88(21):3233.
    [157]C W Sun, H Li, Z X Wang, L Q Chen, X J Huang, Synthesis and characterization of polycrystalline CeO2 nanowires. Chem. Lett.,2004,33:662.
    [158]P Subbanna, H Greene, F Desal, Catalytic oxidation of polychlorinated biphenyls in a monolithic reactor system. Environ. Sci. Technol.,1988,22:557.
    [159]L Jin, M A Abraham, Low-temperature catalytic oxidation of 1,4-dichlorobenzene. Ind. Eng. Chem. Res.,1991,30:89.
    [160]Y Ide, K Kashiwabara, S Okada, T Mori, M Hara, Catalytic decomposition of dioxin from MSW incinerator flue gas. Chemosphere,1996,32:189.
    [161]L Becker, H Forster, Oxidative decomposition of chlorobenzene catalyzed by palladium containing zeolite Y. J. Catal.,1997,170:200.
    [162]P Papaefthimiou, T Ioannides, X E Verykios, Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts. Appl. Catal. B:Environ.,1997,13: 175.
    [163]S F Tahir, C A Koh, Catalytic destruction of volatile organic compound emissions by platinum based catalyst. Chemosphere,1999,38:2109.
    [164]T Takeguchi, S Aoyama, J Ueda, R Kikuchi, K Eguchi,Catalytic combustion of volatile organic compounds on supported precious metal catalysts. Top. Catal.,2003,23:159.
    [165]K Okumura, T Kobayashi, H Tanaka, M Niwa, Tolunene combustion over palladium supported on various metal oxide supports. Appl. Catal. B:Environ.,2003,44:325.
    [166]R W van den Brink, R Louw, P Mulder, Formation of polychlorinated benzenes during the catalytic combustion of chlorobezene using a Pt/Al2O3 catalyst. Appl. Catal. B:Environ., 1998,16:219.
    [167]R W van den Brink, P Mulder, R Louw, Catalytic combustion of chlorobenzene on Pt/Al2O3 in the presence of aliphatic hydrocarbons. Catal. Today,1999,54:101.
    [168]S Scire, S Minico, C Crisafulli, Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Appl. Catal. B:Environ.,2003,45:117.
    [169]M Okunura, T Akita, M Haruta, X Wang, O Kajikawa, O Okada. Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin. Appl. Catal. B:Environ.,2003,41:43.
    [170]Y Liu, M F Luo, Z B Wei, Q Xin, P L Ying, C Li, Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Appl. Catal. B:Environ.,2001,29:61.
    [171]Y Liu, Z B Wei, Z C Feng, M F Luo, P L Ying, C Li, Oxidative destruction of chlorobenzene and o-dichlorobenzene on a highly active catalyst:MnOx/TiO2-Al2O3. J. Catal.,2001,202:200.
    [172]S Krishnamoorthy, M D Amiridis, Kinetic and in situ FTIR studies of the catalytic oxidation of 1,2-dichlorobenzene over V2O5/Al2O3 catalysts. Catal. Today,1999,51:203.
    [173]J Lichtenberger, M D Amiridis, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. J. Catal.,2004,223:296.
    [174]G J Hutchings, C S Heneghan, I D Hudson, S H Taylor, Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature,1996,384:341.
    [175]S H Taylor, C S Heneghan, G J Hutchings, I D Hudson, The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catal. Today,2000,59:249.
    [176]S Krishnamoorthy, J A Rivas, M D Amiridis, Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J. Catal.,2000,193:264.
    [177]J M Garcia-Cortes, Appl. Catal. B:Environ.2001,30:399.
    [178]G A Papapolymerou, L.D. Schmidt, Langmuir 1985,1:488.
    [179]Y Murakami, M Inomata, K Mori, K Suzuki, A Miyamoto, T Hattori,in, G Poncelet, P Grange, P A Jacobs (Eds.), Preparation of Catalysis Ⅲ,Elsevier, Amsterdam,1983,531.
    [180]N Yamazoe, Y Eeraoka, T Seiyama. The effect of oxygen sorption on the crystal structure of lanthanum strontium cobalt oxide [J]. Chem Lett,1981,120(12):1767.
    [181]Y Yokoi, H Uchida. Catalytic activity of perovskite type oxide cayalysts for direct decomposition of NO [J]. Fatal Today,1998,42(1-2):167.
    [182]T Arakawa, N Ohara. Reduction of perovskite oxide LaCoO3 in a hydrogen atmosphere [J]. Mater Sci,1986,21(5):1824.
    [183]T Nakamura, G Petzow. Stability of the perovskite phase LaBO3 (B= Cr. Mn, Fe. Co}Ni) in a reducing atmosphere [J]. Mater Res Bull,1979,14(5):649.
    [184]M Cherry, M S Islam. Oxygenion migration in perovskite-type oxides [J]. Solid Sate Chem,1995,118(1):125.
    [185]胡华强.固体催化剂研究方法[M].北京:科学出版社,2004:5210.
    [186]S Varma, B N Wani, N M Gupta (2001) Appl Catal A:General 205:295
    [187]刘亚芹,蔡文祥,余中平,朱晓莹,黄海凤钙钛矿型La0.8 Sr0.2MnO3催化剂对氯苯催 化燃烧的性能研究,浙江工业大学学报,2007年10月第35卷第5期.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700